Global-Local subadditive ergodic theorems and application to homogenization in elasticity
Annales mathématiques Blaise Pascal, Volume 9 (2002) no. 1, pp. 21-62.
@article{AMBP_2002__9_1_21_0,
     author = {Christian Licht and G\'erard Michaille},
     title = {Global-Local subadditive ergodic theorems and application to homogenization in elasticity},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {21--62},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {9},
     number = {1},
     year = {2002},
     zbl = {01805820},
     mrnumber = {1914260},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_2002__9_1_21_0/}
}
TY  - JOUR
AU  - Christian Licht
AU  - Gérard Michaille
TI  - Global-Local subadditive ergodic theorems and application to homogenization in elasticity
JO  - Annales mathématiques Blaise Pascal
PY  - 2002
DA  - 2002///
SP  - 21
EP  - 62
VL  - 9
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_2002__9_1_21_0/
UR  - https://zbmath.org/?q=an%3A01805820
UR  - https://www.ams.org/mathscinet-getitem?mr=1914260
LA  - en
ID  - AMBP_2002__9_1_21_0
ER  - 
%0 Journal Article
%A Christian Licht
%A Gérard Michaille
%T Global-Local subadditive ergodic theorems and application to homogenization in elasticity
%J Annales mathématiques Blaise Pascal
%D 2002
%P 21-62
%V 9
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%G en
%F AMBP_2002__9_1_21_0
Christian Licht; Gérard Michaille. Global-Local subadditive ergodic theorems and application to homogenization in elasticity. Annales mathématiques Blaise Pascal, Volume 9 (2002) no. 1, pp. 21-62. https://ambp.centre-mersenne.org/item/AMBP_2002__9_1_21_0/

[1] Y. Abddaimi. Homogénéisation de quelques problèmes en analyse variationnelle, application des théorèmes ergodiques sous-additifs. Thèse, Univerité Montpellier 2, 1996.

[2] Y. Abddaimi, C. Licht, and G. Michaille. Stochastic homogenization for an integral functional of quasiconvex function with linear growth. Asymptotic Analysis, 15:183-202, 1997. | MR | Zbl

[3] M.A. Ackoglu and U. Krengel. Ergodic theorems for superadditive processes. J. Reine angew. Math., 323:53-67, 1981. | MR | Zbl

[4] H. Attouch. Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, London, 1985. | MR | Zbl

[5] H. Attouch and R J.B. Wets. Epigraphical processes : laws of large numbers for random lsc functions. Séminaire d'Analyse Convexe, 13, 1990. | MR | Zbl

[6] M. Bellieud and G. Bouchitté. Homogenization of elliptic problems in a fiber reinforced structure. Ann. Scuola Norm. Sup. Pisa, Serie IV, XXVI, 4, 1998. | Numdam | MR | Zbl

[7] G. Bouchitté, I. Fonseca, and L. Mascarenhas. A global method for relaxation. Arch. Rational Mech. Anal., 145:51-98, 1998. | MR | Zbl

[8] A. Braides. Homogenization of some almost-periodic functional. Rend. Accad. Naz. XL, 103:313-322, 1985. | MR | Zbl

[9] B. Dacorogna. Direct methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989. | MR | Zbl

[10] C. Hess. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics, 24:1298-1315, 1996. | MR | Zbl

[11] U. Krengel. Ergodic Theorems. Walter de Gruyter, Berlin, New York, 1985. | MR | Zbl

[12] C. Licht and G. Michaille. Une modélisation du comportement d'un joint collé élastique. C.R. Acad. Sci. Paris, 322, Série I:295-300, 1996. | MR | Zbl

[13] C. Licht and G. Michaille. A modelling of elastic adhesive bonding joints. Mathematical Sciences and Applications, 7:711-740, 1997. | MR | Zbl

[14] G. Dal Masoand L. Modica. Non linear stochastic homogenization and ergodic theory. J. Reine angew. Math., 363:27-43, 1986. | EuDML | MR | Zbl

[15] G. Michaille, J. Michel, and L. Piccinini. Large deviations estimates for epigraphical superadditive processes in stochastic homogenization. prepublication ENS Lyon, 220, 1998.

[16] S. Muller. Homogenization of non convex integral functionals and cellular elastic material. Arch. Rational Mech. Anal., 7:189-212, 1987. | Zbl

[17] R.T. Rockafellar. Integral functionals, normal integrands and measurable selections. Lecture Notes in Mathematics, 543:133-158, 1979. | MR | Zbl

[18] Nguyen Xuhan Xanhand H. Zessin. Ergodic theorems for spatial processes. Z. Wah. Verw. Gebiete, 48:133-158, 1979. | MR | Zbl