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Global-Local subadditive ergodic theorems
and application to homogenization in

elasticity

Christian Licht
Gérard Michaille

ANNALES MATHEMATIQUES BLAISE PASCAL 9, 21-62 (2002)

Abstract

We establish a global-local ergodic theorem about subadditive pro-
cesses which seems to be a flexible tool to identify some limit problems
in homogenization involving several small parameters. When the sub-
additive process is parametrized in a separable space, we show that
the convergence takes place in the variational sense of the epiconver-
gence (or r-convergence). Some applications are given in the setting
of nonlinear elasticity.

1 Introduction

The Ackoglu-Krengel subadditive ergodic theorem asserts, for a subaddi-
tive process A - SA, the existence of a pointwise limit for the sequence
SAn/meas (An) where (An)n is a family of cubes in Rd whose size tends to
infinity. This result seems to be firstly used in the setting of the calculus
of variation by G. Dal Maso-L. Modica [10]. In this context, we would like
to generalize this theorem to sequences indexed by convex sets. Indeed, ho-
mogenization of nonconvex integral functionals with linear growth seems to
require this generalisation (see Y. Abddaimi-C. Licht-G. Michaille [2]). In
these applications, the limit density (or its regular part in a nonreflexive case)
appears to be the limit of a suitable subadditive process and it is of interest
to study, from a variational point of view, the "stability" of the limit with
respect to perturbations. This is the reason why we study the variational
property of the previous convergence when the process depends on a param-
eter in a metric space. On the other hand many mathematical modelings in
homogenization involve several small parameters and the limit problem, in
the sense of epiconvergence, depends on their relative behavior. The previous
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(global) subadditive theorem or the local and more generally the global-local
version, according to the various relative behaviors, seems to be an eflicient
mathematical tool to identify the limit problem. Consequently, we study the
pointwise limit of SAn Qr/meas (An)rq when the "size " p(An ) tends to infin-
ity and that of the cube Qr tends to zero where S is defined on the product
Bb(Rd) x Bb(Rq) of bounded Borel sets of Rd and Rq.

The paper is organized as follows. In section 2, we investigate the in-
variant case : the subadditive set function is invariant when the set index is
translated in Zd in the global version, when the set index is translated in Rq
in the local version. The result obtained in the global version is well known
when the indices are [0, n[d. We give a complete proof of the generalization to
a suitable family of convex indices (An)n through some arguments of Nguyen
Xuhan Xanh-H. Zessin [18] and various ideas explained in M.A. Ackoglu-U.
Krengel [3] and U. Krengel [11]. After giving the local theorem, we mix the
two versions to obtain a global-local subadditive theorem and a complete
description of the limit.

In view of some applications (see G. Bouchitté-I. Fonseca-L. Mascarenhas
[7]), we generalize, in section 3, the previous global result to the quasiperiodic
case.

Section 4 is devoted to the random case. The subadditive set function

takes its values in ~1 (S~, T, P) where (S~, T, P) is a probability space and
the translation of the index in Zd modifies the function through a group of
P-preserving transformations in the global version. When the family (An)n
is constituted of suitable intervals of Rd, we recover the Ackoglu-Krengel
ergodic theorem. Our generalisation is perhaps known (see for instance var-
ious remarks in U. Krengel ~11~, chapter 7) but we give an exhaustive proof
which is a natural extension of the proof of the invariant case and a complete
description of the limit in the nonergodic case. We recall without proof the
local version due to M.A. Ackoglu-U. Krengel [3] and we give a global-local
subadditive theorem.

In section 5, when the subbaditive process depends on a parameter vary-
ing through a separable metric space and when the set valued maps 03C9 ~
epi are random sets, where epi SA (cv, . ) denotes the epigraph of

.), we establish, in the global case, a variational almost sure conver-
gence of previous sequences with respect to the parameter : the limit is

obtained in the sense of epiconvergence (also called r-convergence). The

method consists in applying the previous results to the Baire approximate
of -SAn/meas (An) which is a superadditive process. The conclusion then
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follows thanks to a characterization of epiconvergence by the pointwise con-
vergence of the Baire approximate. We do not give the local or global-local
version which are easy adaptations of the previous method.

In the last section, we first recall some results about stochastic homoge-
nization of nonconvex integral functionals and particularly those with linear
growth, and give three applications. In the two first one, using Theorem
5.2 about almost sure epiconvergence of parametrized subadditive processes,
we establish the continuity of homogenized energy or homogenized density
energy with respect to some parameters. The last application concerns a
modeling of elastic adhesive bonded joints. At least three parameters ap-
pears : the stiffness of the adhesive, the thickness c of the layer filled by
the adhesive and the size A of heterogenities. Using the global or the local
subadditive ergodic theorem, we give the limit problems corresponding to
the cases A « ~ or c « A.

2 The invariant case

2.1 The global theorem
In the sequel, Bb(Rd) will denote the family of all the bounded Borel sets of
R~, ~ the euclidean distance in Rd. For every A in Bb(Rd), (A~ will denote
its Lebesgue measure and we define the positive number p(A) := sup{r >
0 : : Br(x) C A} where Br(x) = {y E Rd: 03B4(x, y)  r}.
A sequence (Bn)nEN of sets of Bb(Rd) is said to be regular, if there exists an
increasing sequence of intervals In in Zd and a positive constant C indepen-
dent of n such that Bn C In and |In|  Vn E N. This last inequality
will be used only in section 3.

, 
A subadditive Zd-invariant set function is a map, S : : Bb(Rd) ~ R, A -

SA, such that

(i) VA, B E Bb(Rd) with A ~ B = 0, SAUB  SA + SB,

(ii) VA E Bb(Rd), Vz E Zd, Sz+A = SA.

Theorem 2.1: Let S be a subadditive Zd-invariant set function such that

03B3(S) := inf{SI |I| : 7 = [a, b[, a, b E Zd, di =1, ... , d, ai  bi } > -oo,
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and which satisfies the following domination property: : there exists a positive
constant C(S)  +oo such that |SA|  C(S) for alL Borel sets A inctuded
in [0, 1[d. Let (An)nEN be a regular sequence of Borel convex sets of Bb(Rd)
satisfying lim 03C1(An) = +~. Then

n~+~

I. SAn |An| = . 

f {S[0,m[d md} = 03B3 (8)
m~N*

PROOF: The proof is divided in four steps. In what follows, [t] denotes the
integer part of the real t.

First step. We establish lim S[0,n[d nd - mf {S[0,m[d md}. This ls a well knownn-i+oo n m~N* rl2

result but, for the sake of completeness, we give its proof.
Let m  n be in N* and consider the following partition

[0, n[d= z~mzd~[0,n-m]d(z + [0,m[d) U Rn,m

where card(mZd fl [0, n - m]d) _ and Rn,m is a finite union of Zd trans-
lated of [0,1[d with card(Zd fl Rn,m) = nd - [n m]dmd. Thus, by subadditivity
and invariance

S + (1- l[d.S[0,n[d nd ~ (-) [n m]d S[0,m[d m d + (1- (-) [n m]d )S[0,1[d.

Letting n ~ +~, we obtain, for every m E N*

lim sup S[0,n[d nd ~ S[0,m[d md,n m

thus

lim sup S[0,n[d nd = lim inf S[0,m[d md = inf {S[0,m[d md}.
n~+~ nd m~+~ m~N*

Second step. We establish lim d = ~y(S).r~

Fix I = ~a, b~, a, b E Zd, a2  bi, i = 1, ... , n. By invariance, we may
assume a = ~0. For m large enough, let us consider the partition

[0, m[d = AI,m U Rl,m
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where AI,m is the subset of [0, constituted of all the disjoint Zd-translated
of I included in [0, Considering each component of b e it is straight-
forward to check that 

|AI,m| md ~ (I( and |RI,m| md ~ 0
when m tends to +oo . Therefore, by the arguments of the first step lim S[0,m[d md ~m-+aJ m

SI |I| so that lim S[0,n[d nd  q(S) which concludes this second step, the con-
n~+~ nd

verse inequality being obvious.

Third step. We adopt the following notations. Let (An)n~N be a sequence of
convex sets of Bb(Rd) such that lim 03C1(An) = +~. For m  n, m e N*,

n~+~
we set

= {z~Ezd :(z+[0,mpd~An}(z + [0, m[d)
{z~mZd : (z+[0,m[d)nAn##)(Z + [°> m[d).

We will need the following lemma (see Nguyen-Zessin [18])
Lemma 2.2: If (An)n~N is a sequence of convex sets of Bb(Rd) with lim 03C1(An) =

n~+~

+~, then

’ ~ 
PO 0

[An [
when n tends to +~.

Finally, let

lm := lim sup SAn,m |An,m|, lm = lim inf SAn,m |An,m|n~+~ n~+~

l := lim sup SAn |An|, l = lim inf SAn |An|.n~+~ n~+~

Our aim, in this step, is to establish I = I := I.
The finitness of lm follows from

SAn |An,m| ~ card{z G mZd : (Z + (0, ~ An} |An,m|S[0,m[d

- 
S[0,m[d

~ £d .
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The inclusion An,m ~ An implies, by subadditivity, invariance and domina-
tion

SAn |An| ~ SAn,m |An,m| |An,m| |An| + SAnBAn,m |An|
~ SAn,m |An,m| |An,m| |An| + C(S)|An,m BAn,m| |An|

thus, by Lemma 2.1

(2.1)
With the same computation, the second inclusion A~ G implies

(2.2)
Let 6 > 0 and N be such that, for every m > m(~)

S[0,m[d md - 03B3(S) ~ ~.
For a fixed m > m(~) and for every 7 e Bb(Rd), finite union of mZd-
translated of [0, m[d, by subadditivity and invariance

SI - card{I n  0. (2.3)
(Note that Sm is a non increasing subadditive mZd-invariant set function.)
For every subadditive set function defined on finite unions of mZd-translated
of [0, ?7~ we define

a, 

With this definition

~(~) > ~($) - ~~ > -~. (2.4)

According to the regularity of the sequence (An)n~N, there exists a sequence
of non decreasing intervals where := (z+[0,m[d)~In~0}(z+
[0,m[d). Taking 7 = in (2.3), we obtain 

SAn,m |An,m| - S[0,m[d md = SmAn,m |An,m| ~ SmIn,m |In,m| |In,m| |An,m|

> ~(~)~~, ,|An,m|
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thus

lm - S[0,m[d md > (2.5)

(note that lim inf|In,m| |An,m| > 1) so that /- > -oo.
Taking I == An,m in (2.3) we obtain

~.~0. (2.6)m ’ ’

Consequently, from (2.6), (2.5) and (2.4)

Since (2.1), (2.2) give
~ - ~  ~ - ~  c. (2.7)

we obtain the desired result letting c 2014~ 0.

Last step. We identify I. By (2.1), (2.6) ~ -  0 so that, according to
m

the second step ~  ~(?). On the other hand, from (2.5) and (2.4)

l - S[0,m[d md > 03B3m(Sm)

~ 03B3(S) - S[0,m[d md
and we complete the proof after letting m - +~. n

Remark : In the definition of sub additivity, assertion (i) can be replaced by :
VA, B C with A n B = 0 and = = 0, SAUB ~ SA +
SB. Indeed all the sets considered in the proof have a Lebesgue negligeable
boundary. This remark will be applyed in section 6 for the various processes
defined from infimum of integral functionals.

2.2 The local and global-local theorems
We denote by the set of intervals of the form [a, &[ in R~ and we
consider a subadditive Rq-invariant set function defined in that is a
map S : 2014~ R which satisfies
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s

i) dll, ... , Is disjoints sets in such that I = U Ii is in P(Rq),
~=i

s

Sr _ ~ Sr, ,
~=i

ii) VA e dx E Rq, Sx+A = SA-

For every xo in Rq, let Qr(x0) be the cube in P(Rq) of size r centered
at xo. We have the following elementary local result (cf M.A. Ackoglu-U.
Krengel [3])

Theorem 2.3: Let S be a subadditive and Rq-invariant set function defined
as above and satisfying

a := +~.

then

lim SQr(x0) rq = S := |I| ~ 0}.r~0 rq 

PROOF: For every 6 > 0 let Ie be such that

SI~ |I~| > ,S - e. (2.8)

On the other hand, there exists r(c) > 0 such that for 0  r  r(c) there
exists I; in P(Rq) included in IE, a union of disjoint translates of QT(xo) with

s

je - U xi + Qr(x0), IIs B Iel  ~|I’~|.
~==1

Subadditivity and invariance yield

(2.9)|I’~| 
~ 

rq

But

SI~ |I~| ~ SI’~ |I’~| + 03B4|I~BI’~| |I’~|

 SI’~ |I’~| + be. (2.10)
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Estimates (2.8), (2.9) and (2.10) implies > g’- (03B4+1)~. Going to the

limit in r and c we obtain lim inf > 5’. Obviously lim sup SQr(x0) rq  5’

and the proof is complete, r-,

We now consider a subadditive set function $ indexed by a product of
Borel sets. More precisely the map S : Bb(Rd) P(Rq) ~ R, A I ~ SA I
is such that

i) for every 7 in 7 C A ~ SA I is a subadditive Z-
invariant set function satisfying all the hypothesis of section 2.1 and
Theorem 2.1 and where the constant in the domination property does
not depend on 7.

ii) for every A in C I ~ SA I is a subadditive R?-
invariant set function satisfying all the hypothesis of previous Theorem
2.2 and where the constant 8 does not depend on A

Then as a corollary of Theorems 2.1 and 2.2 we obtain the following
global-local and local-global subadditive ergodic theorems in the determinis-
tic case

Theorem 2.4: Let ? &e a subadditive set function satisfying hypothesis z)
and ii) md (An)n~N be a regular sequence o/ Borel convex sets o/’ Bb(Rd)
satisfying limn~+~ 03C1(An) = +00. Then

lim lim SAn Qr(x0) |An|rq = inf sup 
n~+~ r~0 A~P(Zd) I~P(Rq)

~?
= inf SUp  mdS[0,m[d [0, 1 n [q

6m~

lim lim SAn Qr(x0) |An|rq = sup inf 
r~0 n~+~ I~P(Rq) A~P(Zd)

~?
=== sup inf 

n~N* m~N*

Moreover if

mf sup : |A| ~ 0, |I| ~ 0} = sup inf : 0, !/! ~ 0}!~H7~ ’~ ’! !~ -~
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then, /or every sequence (rn)n~N of positive reals tending to zero, lim SAn Qrn(x0) |An|rqnn~+~

exists and is equal to this common value.

PROOF: We have
SAn Qrn(x0)  SAn I |An||I|.

Going to the limit on n and according to Theorem 2.1

lim sup SAn Qrn(x0) |An|rqn ~ inf sup SAx I
n~+~ A 7 

On the other hand

li1m = infSA Qrn(x0) |A|rqn  SAn Qrn(x0) |An|rqn
.

m~+~ mdrqn

Going to the limit on n and according to Theorem 2.2

sup inf SA I |A||I|  lim infSAn Qrn(x0) |An|rqn.I A n~+~
and the proof is complete. ~

3 The almost periodic case.

With the notations of the previous section, we now consider an almost peri-
odic subadditive set function, that is a subadditive map $ : 2014~ R

satisfying : ~~ > 0, T~ c Rd, L~ > 0 such that

(i) R~=T,+[0,L~

(ii) |St+A - SA|  ~|A| for all t in T~.
If moreover $ satisfies the growth condition

(iii) BC > 0 such that SA  C|A|,
we have the following global theorem.

Theorem 3.1: For every cube A o/ the form [a,b[d, lim SsA |sA| exists and iss~+~ |sA|

equal to lim S[0,sgd sd.
s~+~
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PROOF: The proof is divided in two steps.

First step. The limit ~ := lim exists.
s

Let s be a fixed positive real, t > s intended to tend to +~, and consider
a net made of the (sz)z~Zd-translated of [0, Before to perturb this net by
a family (tz)z~Zd, tz ~ T~, we begin to disconnect its elements by a distance of
order L~. More precisely, we consider the family ((s + + [0, We
now perturb the corresponding net by [0, L~]d to obtain a family of disjoint
translated of [0, s[d by suitable elements of T~ as follows : for every (s + L~)z,
there exists tz C T~ such that (s + L~)z ~ tz + [0,L~]d and we consider the
family (tz + [0, s[d)z~Zd, tz T~, tz C (s + [0, L~]d. We finally have

M’= 
z~Is,t

where Is,t = {z e Zd : tz + [0,s[d~ [0,t[d}. An easy calculation gives
 card(7,~) ~ [~ and the left bound gives  

By subadditivity and hypothesis (iii), we obtain

S[0,t[d  E + C(td - [t s + 2L~]dSd)~’’ "~

and by (ii) and the right bound of card(Is,t), we infer that

S[0,t[d  + ~sd) + 

 [~(~[. + + c(~ - [20142014]’~). °
Dividing by ~, we obtain

~~~~-~j~, ~
Letting t ~ +~, we deduce that

lim SUp 
S[0,t[d td  S[0,s[d sd 

+ q + C( 1 - ( 
s s + 2L~

)d),
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and going to the limit on 5 we finally find that

r S[0,t[d td ~ r . S[0,s[d td + ~Iim sup 201420142014  inn int . + ??~+00 ~ 
and we end the proof of this step after letting ~ 2014~ 0.

Second step. Let A be a cube of the form 6 + [0, a[d. By (i), there exists
03C4t e T~ such that ~ t + [0,L~]d. Consequentely tA = t + + [0,ta[d
where [0, L~ and by (ii), we obtain

Sl~,t+[0,ta[d (ta)d - ~ ~ StA |tA| ~ Sl~,t+[0,ta[d (ta)d + ~.

The conclusion will follow if we prove

lim linf lim inf Sl~,t+[0,ta[d (ta)d ~ l, (3.12)
~~0 t~+~

lim sup lim sup Sl~,t+[0,ta[d (ta)d  L (3.13)
n~0 t~+~

Proof of (3.13). The cube + [0,ta[d is a perturbation of [0,ta[d by an
element of [0~ L~]~, so that, using again the perturbed net made of the family
(~ + [0, considered in the first step, we infer as (3.11) that

~ ~ ’~’~’~ ~ ~~- ’~’~~.
where we have used [2014~20142014~ ~ card(7,,,)  [~-±J~]~ Then (3.13) is

easily obtained after letting t ~ +~, 5 ~ +00 and ~ ~ 0.
Proof of (3.12). We have + [0, [0, ~ + so that [0, ~ + L~[~=

l~,t + [0, ta[d~N~,t and by subadditivity  + with
= (~~ + L~ - (~)~. Therefore 

~ ~ ~~ ~ 

S[0,ta+L~[d (ta + L~)d ~ Sl~,t+[0,ta[d (ta)d + C(1 - / ta ta + L~)d).
Letting t ~ +00 and by the first step we obtain, ~~ > 0, l  Iim inf Sl~,t+[0,ta[d (ta)d" ’ - 

t~+~

which is (3.12). D

For an application of this result, consult G. Bouchitté-I Fonseca- L. Mas-
carenhas [7]. Similar results have already been obtained by the same argu-
ments in the framework of the homogenization of almost-periodic integral
functionals (see A. Braides [8]).
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4 The Stochastic case

4.1 The global Theorem
Let (0, T, P) be a probability space and (Tz)zEZd be a group of P-preserving
transformations on {S~, T), that is

(i) Tz is T-measurable,

(ii) P o Tz(E) = P(E), for every E in T and every z in Zd,

(iii) Tz o Tt = Tz+t, T_z = Tz for every z and t in Z~.

In addition, if every set E in T such that Tz(E) = E for every z E Zd has
a probability equal to 0 or 1, (Tz)zEZd is said to be ergodic. A sufficient
condition to ensure ergodicity of (z)z~Zd is the following mixing condition :
for every E and F in T

lim P(TzE n F) = P(E)P(F)
Izl+oo

which expresses an asymptotic independance. In the sequel, F (resp. Fm, me
N*) will denote the 03C3-algebra of invariant sets of T for (z)z~Zd) (resp. for

(z)z~mZd, and EF (resp. EFm ) will denote the conditional expectation op-
erator with respect to F (resp. to j~).

A subadditive process for (z)z~Zd is a set function S : Bb(Rd) ~
L1 (S~, T, P) such that

i) VA, B E Bb(Rd) with A n B = 0, SA~B _ sA + SB

ii) VA E Bb(Rd), , Vz E Zd, Sz+A = SA o Tz (covariance).

The following result generalizes Theorem 2.1 in a stochastic framework and
gives an explicit formula for the limit in the non ergodic case. For the study
of the speed of convergence in the ergodic case (more precisely in the in-
dependent case), we refer the reader to G. Michaille-J. Michel-L. Piccinini
[15]
Theorem 4.1: Let S be a subadditive process for (Tz) zEZd such that

~ b E Zd, Vi = 1,...,d, 
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and which satisfies the following domination property : there exists f in

L1 (03A9, T, P) such that, for all Borel sets A included in |SA|  f.
Let (An)n~N be a regular sequence of convex Borel sets of Bb(Rd) satisfying
lim +oo. Then almost surely
n~+~

lim SAn (03C9) |An| 
= inf EF S[0,m[d md (03C9).

Moreover, if ( Tz) zEZd is ergodic

lim inf { dP} = 03B3(S).n~+~ m~N*

PROOF: We acknowledge the result in the additive case (see for instance
Nguyen Xuan Xanh-H. Zessin [18] or U. Krengel [11]. In this case, almost
surely

lim SAn(03C9) |An| = E s[o,l[d(cv)( n ’

and more generally, if the process is associated to a (Tz)zEmZd group where
m E N*, then, almost surely

lim SAn(03C9) |An| 
= (03C9).

n~+~

For every subadditive process 03A8 for (z)z~mZd, m E N*, defined on finite
unions of mZd-translated of [0, m~d we set

03B3m(03A8) := inf{03A9 03A8I |I| dP : I = [a, b[, a, b E mZd, ~i =1, ... , d, ai  bi}.

The main ingredient of the proof is the following maximal inequality (this is
an easy adaptation of U. Krengel ~11~, Theorem 2.6 and Corollary 2.7, p.205)
which allows us to estimate the probability of the event {c~ : : >

a~ corresponding to inequality (2.7) of section 2 :

Lemma 4.2:[maximal inequalityJ let (In)n~N be a regular sequence of inter-
vals with vertices in mZd, with constant of regularity C, and sm be a non
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positive subadditive process for a group (z)z~mZd, m e N* . Then, for every
a > 0 the probability of the set

Ea := {03C9 ~ 03A9 : iif SmIn(03C9) |In| ~ -03B1}
satisfies

 .

a

First step. Let lm , I , lm and I be defined as in the proof of Lemma 2. I . We
establish that! = I almost surely. We will denote by I this common value.
Like in section 2, the inclusion c An implies, by subadditivity and
domination

SAn | An| ~ SAn,m |An,m| |An,m| |An| 
+ SAnBAn,m |An|

~ SAn,m |An,m||An,m| |An|+1 |An| 03A3 f 
o z

z~Zd~(An,mBAn,m)

where almost surely

lim 1 |An| 03A3 f o z = 0
n~+~ z~Zd~(An,mBAn,m)

(see Nguyen Xuan Xanh-H.Zessin [18] , Corollary 4. 10) . Hence, almost surely

I  lm. (4. 14)

Similarly, An c An,m implies, almost surely

lm ~ 1. (4. 15)

Let a > 0 be fixed. As (w : I(w)-I(w) > a) c Em,03B1 := (w : >
a), it suffices to show that Ve > 0 and for m large enough

~d~
 -

a
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provided that we have established for m large enough -oo  Im(w) 
 +00 a.s., hence -oo  ~(c~)  I(w)  +00 a.s..

Let ~ > 0 and m(c) E N* be such that, for m > m(6)

03A9 S[0,m[d md dP - ’)’(S) :::; f

(apply Theorem 2.1 to the Zd-invariant and subadditive set function A ~

03A9 SAdP).
On the other hand, let Im denote the family of finite unions of mZd-translated
of [0, m[d and consider the additive process Am for the group (z)z~mZd de-
fined in Im by:

AmI := 03A3 S[0,m[d 0 Tz. "
zElnmZd

Substracting this process from the restriction of S to we get a non positive
and non increasing process for the group (z)z~mZd defined on Im:

sm := S - ,A.m  0. (4.16)

By additivity and covariance

03B3m(Am) = 03A9 S[0,m[d md dP

so that, for m > m(~)
> -~. (4.17)

Moreover, according to the well known results related to additive processes
recalled at the begining of the proof, w almost surely

.-, hm 
(03C9)

I

= lim AmAn,m(03C9) |An,m| .

n~+~

- EFm S[0,m[d
- 

md 
.
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Taking successively (An,m)nEN and in (4.16) and going to the limit
on n, we obtain, as in (2.5), (2.6), w almost surely,

lm(03C9) - Lm(03C9) > inf SmIn,m(03C9) |In,m| (4.18)

0. (4.19)
Inequality (4.18) implies

{c.~ Im - Lm G -a} C Ea.

By (4.17) and the maximal inequality (Lemma 4.1) applyed to the process S"~
for the group (z)z~mZd, for m > m(é) (note that (In,m)n~N is non decreasing
and therefore is a regular sequence of intervals with constant 1) we get

2~
P({o;: -a})  03B1. (4.20)

The almost sure inequality -oo follows after letting a tend to +00 and
lm  +00 follows from (4.19). On the other hand (4.18) and (4.19) imply

lm(03C9) - lm(03C9) ~ - inf SmIn,m(03C9) |In,m| 

" Iln,ml l
so that C Ea. Therefore, by the maximal inequality and (4.17), for
m > m(e)

~ 03A9 : ’ L(w) - > a})  ~ 03A9 : ’ a})
 _  

2d~ 
. 

_

- 

a 
- 

a

As e and a are arbitrary, the proof of this step is complete. Note that we
have also proved : lm = 1~,~ = I a.s..
Second step. We prove that I is almost surely invariant, that is Vz E
Zd, = l(z03C9) a.s..
From (4.19) and the invariance of Lm for (z)z~mZd, we have

: > 03B1} == (W : Lm(mz03C9) + Lm(03C9) - l(03C9) > CY}
C {~ : : > a}
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thus, for m > m(~), by (4.20),

P({03C9 : - l(03C9) > 03B1})  P({03C9 : Lm(03C9) - l(03C9) > 03B1}
2d~

 -
- 

a

which yields
l(mz03C9)  l(03C9) a.s.. (4.21)

¿From (4.21),

P({03C9 : l(z03C9) - l(03C9) > - P({03C9 : l(mz03C9) - l((m-1)z03C9) > 03B1}
 : l(mz03C9) - l(03C9) > 03B1}

 2d~.
- a

so that, going to the limit on ~

l(z03C9)  l(03C9) a.s..

On the other hand, noticing that An,m+z C where |zi|,
we obtain 

~ 

SAn,m(z03C9) |An,m| ~ SAn,m+|z|1 (03C9) |An,m+|z|1| |An,m+|z|1 |An,m|,

and finally, going to the limit on n,

l(z03C9 > a.s. (4.22)

Collecting (4.21) and (4.22), the proof of the second step is complete.

Last step. We identify l. Let us set for all m E N*, , : EF(S[0,m[d md).
We first prove t  inf fm- Indeed, by (4.1), (4.6), for every m E N*,

m~N*

I  Lm = and, by invariance of I and with J’ c 0m,l 
_ Lm E 

m d 
and, by mvariance of l and mth F C Fm,

t = EFl  EFLm
_ ~g7 _ E ~E m d )
= 

EF S[0,m[d md.
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On the other hand, by (4.15), Fatou ’s Lemma, (4.17), for every E and
m ~ )7t(e), up to a subsequence with respect to n

E(l - Lm)dP ~ E lim SmAn,m |An,m|dPn~+~
> lim dP~ 

~ 

. ~
> lim sup / - 

n~+~

~ 03B3m(Sm) > -E.

Thus

 l dP > 
~~

= 

> E inf fm dP - C~.

According to the previous inequality, letting 6-~0

~E ~ F, E l dP = E inf fm dP.m~N*

As inf fm is 0-measurable, we may conclude = infm~N* fm) = infm~N* fm
mN*

a.s. which completes the proof..

Remark: The remark of section 2 about subadditivity reamins valid in this
stochastic case.

4.2 The local and global-local theorems

With the notations of subsection 2.2, we consider a subadditive process for a
group of P-preserving transformations (Tx)x~Rq on (H,7") defined in P(Rq).
More precisely, we consider a map S : 2014~ L~(H, T, P) satisfying
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s

i) ~I1, ... , IS disjoints sets in such that I = U li is in P(Rq),
i=l

s

sr _ 
z=l

ii) t1A E dx E R~, = SA o Tx.

M.A. Ackoglu and U. Krengel have proved in [3] the following local the-
orem which generalizes Theorem 2.2

Theorem 4.3: Let S be a subadditive process for a group of P-preserving
transformations (Tx)x~Rq and satisfying

b := sup{03A9|SI| |I| dP : : I e P(Rq), 0}  +oo.

then lim exists almost surely.
r-+o rq

We now consider a subadditive process S indexed by a product of Borel
sets. More precisely

S : : Bb(Rd) x ---~ L1(~,T, P)

with

i) for every I in P(Rq), I C A H SA I is a subadditive process
for (z)z~Zd satisfying all the hypothesis of section 4.1 and Theorem 4.1
and where the function f in the domination property does not depend
on I.

ii) for every A in Bb(Rd), A C ~0, 1(d, I - SAXI is a subadditive process
for (Tx)x~Rq satisfying all the hypothesis of previous Theorem 4.3 and
where the constant b does not depend on A.

Then as a corollary of Theorems 4.1 and 4.2 we obtain the following
global-local and local-global subadditive ergodic theorems, the proof of which
being an easy extension of the proof of Theorem 2.2.

Theorem 4.4: Let S be a subadditive process satisfying hypothesis i) and
ii), (An)n~N be a regular sequence of Borel convex sets of Bb(Rd) satisfy-
ing limn~+~ p(An) _ +~ and (rm)m~N be a sequence of positive numbers
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tending to zero. Then almost surely the two following limits exist :

lim lim SAn Qrm(x0) |An|rqm and lim lim SAn Qrm(x0) |An|rqm 
.

n~+~ m~+~

If these two limits are equal, lim exists and is equal to this( 
common value.

5 Parametric subadditive processes

In what follows, we assume that T is P-complete and that (z)z~Zd is ergodic.
This section is concerned with the variational property of the almost sure
convergence studied in section 4, when the subadditive process depends on a
parameter which belongs to a separable metric space. For convenience and
in view to use some usual concepts of the calculus of variations, the process
S will be assumed to be superadditive that is -S is subadditive.
More precisely, (X, d) being a given separable metric space, we consider the
map

S: : Bb(Rd) x X ~ L1(03A9, T, P), SA(x, .)
satisfying hypotheses :

(i) for every x E X, A - SA(x, .) is a superadditive process;

(ii) VA E Bb(Rd), (x,03C9) ~ SA(x,03C9) is B(X) ~ T measurable;

(iii) VA E Bb(Rd), Vw E 0, x ~ SA(x,03C9) is lower semicontinuous (lsc).
(iv) 3a > 0, B/? > 0, B~o e X such that VA e V~ e X,

SA(x, 03C9) + (ad(x, xo) + >_ 0.

In this context, under (i), (ii) and (iii) every set valued map w e epi sA(., c~),
where epi sA(., w) denotes the epigraph of x ~ SA(x,03C9), is a random set and
with the terminology of R.T. Rockafellar [17] or H. Attouch-R J.B. Wets [5],
every map (x, w) ~ SA(x, cv) is a random lsc function.

We recall that for f, , X --~ R,

f = epil im f n ~ epilimsupfn:S f  epilimin f f n
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where

epilimsup fn(x) := sup lim sup inf f n (y)
~>0 n~+~ y~B(x,~)

epiliminf fn(x) = sup lim inf inf ,

e>0 y~B(x,~)

B(x, ~) denoting the open ball of X with radius ~ and centered at x. We then
say that fn epiconverges to f . Let us also recall the following "variational
property" of epiconvergence (cf Attouch ~4~ ) : :

Proposition 5.1: Assume that epiconverges to f and let xn E X be
such that

fn(xn)  inf{ fn(y) : y ~ X } + ~n,
assume furthermore that the set {xn, : n E N} is relatively compact, then
any cluster point x of x~, is a minimizer of f and lim inf ~ : y =

n~+~

f (x) .

For any g : X ~ R, and k E N*, we define the Baire approximate of g
by

gk ( x) := inf ~g(y) + y)~.
yEX

If g is lsc in X, non identically equal to +oo and satisfies :

~03B1 > 0, ~03B2 > 0 ~x0 E X such that b’x E X, g(x) + 03B1d(x, x0) + ,Q > 0

then g~ is lipschitzian with Lipschitz constant k and g = sup g~.
kEN*

Moreover, if the sequence (fn)n~N satisfies the above properties where the
constants a, ~Q and xo do not depend on n, we have :

epilimin f f n = sup lim inf f ~
k~N* n~+~

epilimsup fn = sup lim sup f n .
k~N* n~+~

For more details see C. Hess ~10~. For another approximation process see H.
Attouch-R J.B. Wets [5] and for a complete study of epiconvergence see H.
Attouch E4~ .

In these conditions we state in the theorem below that the almost sure
convergence in Theorem 4.1 is variational in the sense of epiconvergence.
When S is additive, we recover the law of large numbers for random lsc
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functions firstly established by H. Attouch-R.J.B. Wets [5]. For more details
and an upper bound of the tail probabilities of the law, we refer the reader
to G. Michaille-J. Michel-L. Piccinini [15].
Theorem 5.2: If S satisfies (i) - (iv) and -S satisfies the hypotheses of
Theorem 4.1 including ergodicity for each fixed x E X, we have w-almost
surely

SAn |An| (., w) - sup { J (., 03C9)dP(03C9)}
n mEN* S2 m

- 7(s(~, .))~ °

PROOF: ~ ~ ad(x, xo)-~,~ being a continuous perturbation of x 
it suffices to prove our result for the non negative process A t-~ SA(x, .) +
(ad(x, xo) + ( see H. Attouch [4] for stability properties of epiconver-
gence). We adopt the same notation for this new process.
First step. There exists Hi E T, = 1 such that ~03C9 E S21

eqiliminfSAn |An| (.,03C9) ~ m~N* 03A9 md(.,03C9)dP(03C9)}.

It is easily seen that, for every fixed x, A ~ - infy~X{SA(y, .)+kd(x,y)|A|}
is a subadditive process satisfying all the hypothesis of Theorem 2.1 (the
measurability comes from the measurability of epi , see H.
Attouch-R J.B Wets [5] or C. Hess [11] ). Therefore, D denoting a dense
countable subset of X, there exists S21 E T, P(S21) = 1 such that ~03C9 E Hi
and ‘d~ e D

n~+~ m~N*

~ 03A9 (S[0,m[d md(.,03C9))k (x)dP(03C9) dm E N*.
By equi-lipschitz property of the Baire approximations, the above inequality
is satisfyed for every (w, x) in 521 x X. Going to the limit on k, we obtain
finally

epilimin fSAn |An| (.,03C9) ~ EN’ { 03A9 S[0,m[d md (.,03C9)dP(03C9)} dw E 03A91.
n m~N*
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Second step. There exists 03A92 ~ 7", P(03A92) = 1 such that V(j e 03A92

epilimsupSAn |An|(.,03C9) ~ sup {03A9 S[0,m[d md(.,03C9)dP(03C9)}.
m~N*

For every ~ > 0, x e X,

inf (y,03C9 ) ~ SAn(x,03C9 ).In ,20142014(~~)  20142014(~~)."t~!

According to Theorem 2.1, there exists 03A9x ~ 7", == 1 such that ~03C9 e

H~

lim sup inf SAn |An|(y,03C9)  sup { /’ S[0,m[d md(x,03C9)dP(03C9)}.n~+~ y~B(x,~) m~N*

We conclude by an argument used in H. Attouch-R J.B. Wets [5], lemma 2.5.
Indeed, let P be a dense countable subset of the epigraph of

~ sup { 03A9S[0,m[d md(x,03C9)dP(03C9)},
m~N*

let 03A0XD its projection on X and set 03A92 := ~x~03A0XD03A9x. Taking the supremum
on ~ in above inequality, we deduce that ~03C9 e 03A92, {(x, r) G D : : &(:r)  r} is

a subset of the epigraph epilimsupSAn |An|(x,03C9) which is closed. Taking
closures of both sides yields the desired result. []

6 Some applications to Homogenization

Let us first recall the probabilistic setting related to general stochastic ho-
mogenization. Let Mm N be the space of m x JV matrices. We now consider a

space (H, 7", P) and the set G of all functions g from Rd x Mm N
into R, measurable with respect to the first variable, and such that there ex-
ists three positive constant 03B1, /3 and L with, for every a, & in Mm N and
~ a.e. in R~

~(!~-i)~,a)/?(i+!0

o) - &)!  L(i + |a|p-1 + (6.23)
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where 1  p  +00. We equip 9 with the trace a-field a(9) of the product
a-field of RRdxMmxN and define the group of transformation (Tz)zEZd in G,
by zg(x, a) = g(x + z, a).

We finally consider a map f from S2 x Rd x MmxN into R, which is
T0 B(Rd) 0 B(Mm d) measurable and such that, for every 03C9 in SZ, f (w, ., .)
belongs to 9. In the sequel, to shorten the notations, f will also denote the
partial map w H f (c~, ., .) from 52 into ~.

It is clear that the maps Tz f from H into p are (T, Q(~)) measurable. The
process f is said to be stationary if, for every z in Zd, P o f -1 - P o (Tz f )-1 
and is said to be ergodic if Po f-1(E) E {0,1} for every E in such that,
Tz(E) = E for every z in Zd.
The two following sufficient conditions ensure the stationarity and ergodicity
of f (see G. Dal Maso-L.Modica [14])

(ST) If, for all finite families (xi, ai)iEI of Rd x MmxN, the random vectors
and ( f (., xi + z, ai))i~I have the same law for every z in

Zd, then f is stationary.

(ER) If, for all finite families ai, ri)iEl and (Yj, bj , of Rd x Mm N x R

[f(., Yj, bj) > Sj])|z|~+~: z~Zd
= > > Sj])

then f is ergodic.

In the context of integral functionals and when d = N, applying Theorem
4.1 to the following subadditive process

SA(g, a) := inf{ g(x, a + e RN)}

defined in the probability space (C, O(9)P o f-1) image of (St, T, P) by a
given stationary process f, we obtain

lim S1 ~nA(f(03C9),a) |1~n A| = inf 
EF S[0,m[d(f(.), a) 

md (03C9)n~+~ mEN* 

where EF denotes the conditional expectation operator with respect to the
a-field of all the events E E T satisfying Tz f(E) = f (E), Vz E Zd. This
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limit is the density (or its regular part when p == 1) of the almost sure limit
in the sense of epiconvergence for the strong topology of Rm) of the
following sequence indexed by En and defined in Rm)

F~n(03C9,u) = {o f(03C9, x ~n, ~u) dx if u ~ W1,p(O,Rm)

+~ otherwise

when En tends to zero.
More details can be found in G. Dal Maso-L. Modica [14] when p > 1,

f ergodic, x, .) convex and in Y. Abddaimi-C. Licht-G. Michaille [2]
when p = 1 and f is assumed to be stationary only. It is precisely about
this last extension that some encountered technical difficulties ([2], pp. 195-
199) motivate us to generalize subadditive theorems to sequences indexed by
convex sets. We now give two new applications respectively using Theorem
5, 4.1 and 2.2.

6.1 Application to optimization of integral functionals
in stochastic homogenization

Let (X, d) be a separable metric space. According to the probabilistic setting
stated above, we consider a map f from X x H x Rd x Mmxd into R which is
B(X) 0 T ® B(Rd) 8) measurable and which fullfils, for every fixed
8 in X conditions (i) and (ii) below.

(i) w f (8, W, ., .) is a stationary and ergodic process.

Let now fixed matrix in Mm d and b a fixed element
of Rm. For every B E E H and every open bounded subset A of Rd,
we define the functional Fe(., 03C9, A) in Rm) equipped with its strong
topology, by

A = / A f (8, c~, x, ~u) dx if u E La + Rm)
F03B8(u,03C9,A) =+~ otherwise

where La is the function defined by la(x) = a.x + b. We assume

(ii) if 0n ~ 03B8 in (X, d), the sequence (F03B8n(.,03C9, A))n~N epiconverges w-a.s.
to the lower semicontinuous envelope -F~(., c~, A) of .Fe(., c~, A).
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Condition (ii) is satisfyed for instance if (Fen (., cv, A) )nEN is non increas-
ing. Note also, that when p > 1, = 

We now define the random infimum

= inf{ f(03B8,03C9,x, ~u) dx: u e la + W1,p(O, Rm)}~0 ~

where 0 is a given open bounded subset of Rd. Note that

inf m 
I~(03C9,03B8) = meas(O) u~Lp(O,Rm) ~ meas(1 ~O) .

We finally define the process

s : Bb(Rd) x X - L1(03A9, T, P)

by

sA(e, w) = inf 

Then, according to conditions fulfiled by the process W ~ f(03B8,03C9,.,.), and to
hypotheses (i), (ii), S is a parametrized subadditive process. Thanks to (ii),
we actually have continuity of 0 H Applying Theorem 5.2, we de-
duce that 03C9 a.s., -I~(03C9,.) epiconverges to -I = -meas(O) infnEN* .

Therefore, if the set > 0} of ~-minimizers of is relatively
compact in X, we have

lim I~ (03C9, 03B8) = sup I(03B8).~~0 BEX

So, roughly speaking, for maximizing the random energy with respect
to a (physical) parameter 0, it suffices, for the small values of c, to maximize
the deterministic homogenized energy I.

6.2 Application to the continuity of an homogenized
density with respect to a geometrical parameter

Let us onsider Di CC]O,l[2, i = 1, 2 and A = ~D1, D2~ equipped with
the probability presence pi and p2 of Di and D2. We set S1 = AZ2, define
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the classical Bernoulli product probability space (H, T, P) and the random
chessboard = ~z~Z2((03C9z + z} in R2.

Let now f : R2 -~ R be a given function satisfying the growth conditions
6.23 and a, b two numbers in R. We denote by I(R2) the set of all the inter-
vals of R~ of the form [a, b[, a, b E Z2 and define a parametrized subadditive
process

s : z(R~) X ~o, ~o~ -~ L1 (s~, T, P)
by

f(Dv) dx : 1 meas(A) v dx = a, v = b in A ~ D03B4(03C9)}
where D03B4(03C9) = ~z~Z2(h03B403C9z + z), h03B403C9z = {x E 03C9z : wz) > 03B4}. It
is easily seen that this process satisfies all conditions of Theorem 5.2. We
would like to establish the continuity at 03B4 = 0 of the almost sure limit

L(03B4) = lim (03B4, 03C9).n

We proceed as follows : w a.s.

lim lim S[0,n[2 n2(03B4,03C9) = sup hm S[0,n[2 n2(03B4,03C9)

- hm sup S[0,n[2 n2(03B4,03C9)
= L(0)

where we have used Theorem 5, for processes restricted to I(R2), in the
second equality. In the deterministic case, the limit L(0) forms part of the
definition of a non local homogenized problem studyed in M. Bellieud-G.
Bouchitté [6]. In our case, above result is an essential tool for describing this
problem in a probabilistic setting.

6.3 Application to a modeling of elastic adhesive bonded
joints

Here, we extend or give more direct proofs of some results of [12], [13] to
where we refer for a detailled presentation of the problem (see also [1]). This
problems devoted to the modelling of elastic adhesive bonded joints.
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Let 0 be a domain with lipschitz boundary in R3 whose intersection S
with the plane x3 = 0 is assumed to have a positive two dimensional Hausdorff
measure In the sequel x = (x, x3) denotes a current point of R3. If e is
a small positive parameter intended to tend to zero, BE :_ e}
(respectively O~ :== (9 B B~) denotes the interior of the part of the reference
configuration filled by the adhesive (respectively by the adherents). The
adhesive and the adherents are assumed to be perfectly stuck together along

:= {x E O : : ±x3 == e}. They are modeled as hyperelastic. The small
positive parameters ~, and A are associated respectively with the low stiffness
and the size of heterogenities of the adhesive. We will denote by s the 3-uplet
( , e, A), and s tends to zero means that there exists a sequence En, 03BBn))n
going to (0, 0, 0). Moreover, we assume that lims~0  2~ = l with l E [0, +~[.
The stored strain energy associated with a displacement field v is then given
by the following functional where w denotes a random parameter

Fs(03C9)(03BD) := O~ h(x, +  B~ b(03C9)(x 03BB,
The structure made of the elastic bodies and the adhesive is clamped on

a part fo of 80 with H2(03930) > 0, and is subjected to applied body forces f
and applied surface forces g on ri :== 80 B ro. We shall make precisely the
following assumptions on the exterior loading and 

(Hi) ( f, g) E Lz((~, R3) x and there exists eo > 0 such that for
all ~ ~ Co, Be = S x (-e, +e) and (supp( f ) U 03931) ~ B~ = 0.

If we define L by

L(v) := O f(x).v(x) dx + 03931 g(x).v(x)da,
equilibrium configurations of the structure are given by the displacement
fields solutions of the problem

min{F’s(v) - L(v)}

where the minimum is taken over the space

V = {v E W1,2(O, R3) : v = 0 on 03930}.
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We study the behavior of Us when s tends to zero. Due to the small stiff
ness in the layer BE:, the limit displacement field vs can at the limit develop
discontinuities along S to which Be shrinks, and converges in R3) to a
solution of the limit problem :

min{Oh(x,~v(x))dx + l J ~ e3) dH2 - L(v)}

Qh is the quasiconvex envelope of h, the density of the surface
energy defined below and [v] is the jump of the displacement field v through
S. Actually, arguing as in [13], it suffices to exhibit the almost sure epilimit
of Fs.

The limit problem describes the equilibrium of deformable bodies filling
the closure of C~~ = C~ n {~x3 > 0} as reference configurations, made of hy-
perelastic materials with energy density Qh, subjected to the loading ( f, g),
clamped on ro and constrained along S to which Be shrinks.

The density b is assumed to be a stationary and ergodic process, that is
satisfies (ST) and (ER) with d = 2 and m = N = 3, with, more precisely,
value in the class .~ of bulk energy densities satisfying the two uniform con-
ditions

~ a, p, C E R+ such that x a.e. in R2and V(Q, Q’) E M3 3 x M3 3

(H2) 03B1|Q|2 ~ b(x, Q) C 03B2(1 + |Q|2) |b(, Q) - b(x, ~ GIQ - + |Q’|)

and the following behavior at infinity

(H3) There exist boo,2, C’, 0  m  2 such that Q r-+ Q) is positively
homogeneous of degree 2 and

|b~,2(, 0) - b(, Q)| C C’(1 + |Q|2-m) ~(, Q) E M3 3.

It is easily seen that the process w e also satisfies (ST) and (ER).
Moreover we assume that the deterministic density h satisfies (H2). In the
sequel, to shorten notations, we omit the random variable w. In order to
work in a fixed space, we extend Fs by +00 in L2 (C~, R3 ) ~ V and we define
the limit energy by

F(v) := J o Qh(x, ~v(x))dx + ls(b~,2)hom([v](x) ~ e3) dHz if v E V
+00 if not,
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where

V[ ] := {v E L2(O,R3) : v E W1,2(OBS,R3), v = 0 on ro}
and where is defined in Theorems 6.1, 6.4 below and depends on
the relative behavior of A and 6.

The limit problem is defined in term of epiconvergence in the space
L2 ( C~, R3 ) equipped with its strong topology. More precisely we want to
prove that, almost surely, F = epi lims~0 Fs, that is, the sequence of random
functions (Fs)s fulfils the two following conditions for every w in a set ~2’ of
full probability and every u in L2 ( C~, R3 ) :

(E1) for every us converging to u F ( u )  liminfs-7 

(E2 ) there exists vs in L2 (C~, R3 ) converging to u in L2 (C~, R3 ) such that
F(u) > lim sups~0 Fs(us).

In [12], [13], the cases lim - e]0, +~] were studied. We give a new and
s-0 ~B 

~ g

more direct proof for the case lim ~ - +00 and we complete the study to
the case lim - = 0.s~0

6.1.1 (lim ~ 03BB = +~).
s~0

Theorem 6.1: Almost surely Fs epi-converges to F where for every Q in
M3x3

(b~,2)hom(a) := inf 1 k3 03A9 inf{kY b~,2(,Q+~03C6(y))dy : 03C6 ~ W1,20(kY, R3)} dP.
k~N*

PROOF: The proof is divided in three steps.
First step. We prove the lower bound (Ei) for regular elements u of
that is for every element of the space v ~ of all the functions u whose

restrictions to are the restrictions to C~~ of R3 ) - functions.
It suffices to assume lim inf Fs(us)  +~. Therefore, for a subsequence

s~

not relabelled, the bounded Borel measure

u := dx + dx
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tends weakly to a bounded Borel measure v. Our method consists in an-

alyzing the limit measure v. More precisely, if v = 03BDa + 03BDsing where va is
absolutely continuous with respect to the Lebesgue measure on O and 03BDsing
is the singular part of v, we prove

a > Qh(., dx

> L ~ e3)H2S.

For proving the first inequality, by the differentiation of measures, it

suffices to establish for almost all Xo in 0

lim > ~u(x0))iQ 03BD(B03C1(x0)) meas(B03C1(x0)) > Qh(x0, ~u(x0))
03C1~0

where Bp(xo) denotes the open ball of R3 with radius p and centered at zo.
Let xo be fixed in O B Sand p  d(x0, S). According to the Alexandrov
theorem, for p e]0, S)~BN where N is a countable set

lim 03BD(B03C1(x0)) means (B03C1(x0)) 
- lim lim 03BDs(B03C1(x0)) meas(B03C1(x0))

p~0 
p~0 s~0

= lim lim J dx.
p~0 s~0

But by coercivity of the quasiconvexification Qh and by weak lower semicon-

tinuity of the integral functional v Qh(x, ~v) dx in R3),
we have 

/’

lim B03C1(x0) h(x, ~us) dx > h(x, ~u) dx.

Therefore

lim 03BD(B03C1(x0)) meas(B03C1(x0)) ~ lim 1 meas(B03C1(x0))B03C1(x0)h(x, ~u) dxp~0 
p~0

= h(x0, ~u(x0))

for almost all xo in O.
We now prove the lower bound for Denoting by C03C1(x0) the cylinder

S03C1(x0) ]-03C1, p[ where S03C1(x0) is the open ball of R2 with radius p and centered
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at Xo on S, it suffices to establish for H2 almost all Xo in S

lim > ~ es)03C1~0

As in the proof of the first bound

03BD(C03C1(x0)) 
_ lim 03BDs(C03C1(x0))

H2(Sp(xo)) s-r0 H2(Sp(xo))
= lim  H2(S03C1(x0)) / , ~us) dx. (6.24)

Thanks to (Hi), the elements u of V or ] can be extended by zero
in e, +e[. We will use the same notation u for such an extension.
With regard to the strain energy of the adhesive, the smoothing operator
u E ] ~ REu E V defined by

R~u(x) := u(,
|x3|) - u(, - |x3|) 03A8~(x) + u(,

|x3| + u(, - |x3|) 2 if l  +~

u(x) if not

where we(x) := sign(x3) min( I E31,1), allows us to replace Dus by

1 2~(u(, |x3|) - u(, -|x3|)) ~ e3 + ~(us - R~u)
and finally by

1 2~[u](x0) ~ e3 + ~(us - R~u)
Indeed by the lipschitz property of b

limlim S03C1(x0) ]-~,~[ b(x 03BB, ~us) dx (6.25)

= 

= lim lim S03C1(x0) ]-~,~[b( 03BB, 1 2~[u](x0)~e3 + R~u)) dx.

But by a De Giorgi trick (see L. Modica-G. Dal Maso [14] and C. Licht-
G. Michaille [12], [13]), one can modify vs := us - REu in the boundary
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of S03C1(x0) ] - e, e( by a function ws E t(~), t(~)[, R3) where
lim t E = 1 so that

lim lim  H2(S03C1(x0)) ° b( 03BB, 1 2~[u](x0) ~ e3 + ~vs) dx (6.26)

> limsuplimsup 
H2  H2(S03C1(x0)) S03C1(mg)

]-t(~) ,t(~)[ 
b( 03BB, 1 2~[u](x0) ~ e3 -~ws) dx.

Recalling (6.24), (6.25), (6.26), according to (H3), and after a change of scale,
we obtain

lim 03BD(C03C1(x0))
03C1~0

> lim sup lim sup 2 u ° , 1 e3 + ~ws) dx

> llimsuplimsup 1 inf{Asb~,2(,[u](x0) ~ e3 + ~03C6) dx :

p~0 s~0

~P E 

where AS :_ t~~~, t~~~~. By (Hz), (H3), (ST) and (ER), the
subadditive process

A H SA := inf{b~,2([u](x0) ~ e3 + ~03C6) dx : cp E R3)}.
satisfies all the conditions of the global Theorem 4.1. Thus we finally obtain

lim > ~ e3)p~0 H2(S03C1(x0))
for every w E 52’ with P(S2’) = 1.

Second step. We prove for every u E that is : there exists vs
converging to u in L2(O,R3) such that F(u) > lim sups~0 Fs(us).

Let (SI)i~I(~) be a family of disjoint cubes in R2 with size ~ such that
H2 ( S B U Si ) = 0. We have

i~I(~)

i f (b~,2)hom([u](x) ~ e3) dH2
- lim 03A3 lH2(Si)(b~,2)hom([u][ai] ~ es) (6.27)~~0

i~I(~)
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where a, Si. Let us consider us,i an ~-minimizer of

:= inf { / [u](ai)~ eg + ~03C6)dx :X ? X ’ X 

~e~(~x]-~+~,R~)}
and set

us,~(x) := R~u(x) + 03BB 2~us,i(x 03BB)
which defines an element of t~~~(0,R~) if we extend by zero in R~ B

According to the global subadditive Theorem 4.1, for every
i e 7(7?): :

" ~ ~~~~ ~ ~j e ~ 
M~~ ~ ~ + ~~ ~s~0 2~ H2(1 03BBSi)2~ 

, 

x, u ai @ ea + dx

= lim (1 2~)2Six]-~,+~[b~,2(03BB,[u](ai)~e3+(~us,i)(x 03BB))dx

= Six]-~,+~[b(03BB,1 2~[u](ai)~e3+1 2~(~us,i)(x 03BB))dx

= Six]-~,+~[b( 03BB, ~ s,~) dx + 0(~) .

Summing over z and going to the limit on 7~, we obtain by (6.27)

l(b~,2)hom([u](x)~ e3) dH2 = lim lim  /* b(x,~us,~) dx.~ A ’

By a diagonalization argument, there exists a map s -~ such that

~ ~~ ~~ ~ y 
where us := Moreover using the Poincaré inequality, it can be easily
proved (see [1]) that ~ strongly tends to 16 in L~((9, R~) when ~ tend to zero.
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Thus

G(u) := inf{lim sup Fs(vs) : vs ~ u in 
s2014~o

 t ea) dH2 + / Vu) dx

(note that Us = u in (~E). Taking the lower semicontinuous envelope denoted
by of the two members with respect to the weak topology of

~ S, R3), we obtain

clw-W1,2(O/S,R3)G(u) ~ l S(b~,2)hom([u] ~ e3) dH2 + O Qh(x, ~u) dx
where we have used the compact embedding of W1,2(OBS, R3) into L2(S, R3)
for the first term of the right hand side and the integral representation (see
for instance Dacorogna [9]) of the quasiconvex envelope of the second term.
But (see Attouch [4] for the first equality)

G = clL2(O,R3) G clw-W1,2(OBS,R3)G
so that

G(u) ~ lS(b~,2)hom([u] ~ e3) dH2 + OQH(x, ~u) dx

and we conclude the proof after noticing that the infimum in the definition
of G is attained.

Third step. If u is not smooth, for (El) we approximate u by ua strongly
in W1,2(O, R3) and consider = us - REu + R~u03B4 and conclude as in [13].
For (E2), we reason by density and a diagonalization argument. r-i

Remark: It is straightforward to establish (cf [13]) - (bhom)~,2(Q)
where, for every Q E M3x3

dx: 03C6 E Q.x + R3)}.k~+~

This new expression of conform to physical intuition : since A is
lower than c, we begin to homogenize the layer, then we let the thickness of
the layer tends to zero.
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Remark: In the non ergodic case, according to Theorem 4.1, we obtain the
following expression of the density of the surface energy :

(b~,2)hom(a) := 1 k3EFinf{kYb~,2(,Q+~03C6(y))dy : 03C6 ~ W1,20(kY, R3)}.

6.1.2 Case ~ « 03BB (lims~+~ ~ 03BB = 0). We assume that b(., Q) is ZZ-

periodic and that is convex. Let Y =]0, 1[2, we denote by 
r, r[, R3 ) the space of the elements of the Sobolev space W1,2( ) - r, r(, R3 )
with null trace on the faces Y x {-r}, Y x {r} and with equal traces on the
opposite faces of Yx~ - r, r[.
Theorem 6.2: Under above hypothesis, Fs epi-converges to F where, for
every Q in M3x3,

(b~,2)hom(Q)
-  inf{1 2r x]-r,r[b~,2(, Q + ~03C6) dx : 03C6 ~ W1,2per,0(x] - r, r[, R3)}

= b~,2(x, Q ) dx.

PROOF: First step. We prove (Ei) for every u e [ ] by the strategy of the
previous case. With the same notations, the bounded Borel measure

US := ~us) dx + ~us) dx

tends weakly to a bounded Borel measure v and we will prove

v° > Qh(., ~u) d~
03BDsing > L (b~,2)hom ~([u] ~ e3)H2[S

The first inequality is already proved in Theorem 6.2. For the second, we
have also

03BD(C03C1(x0)) H2(S03C1(x0)) (6.28)
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~  H2(S03C1(x0))S03C1(x0) ]-t(~),t(~)[b( 03BB, 1 2~[u](x0) ~ e3 + ~03C9s) dx

~ l lim lim sup 1 meas(As) inf{ / 63 + Vw) dz :
03C1~0 s~0 meas(As)

where AS := ~, ~[ but here 20142014 tends to zero. Let us set

for any Borel bounded subset A of R~ and any bounded interval I of R :

:== inf{0 A 0 I b~,2(, [u](x0) 0 63 + C W1,2per,0( ,= R3)}.S ÃxI :== 0 b~,2(, [u](x0) 0 e3 + ~03C6) dx : cp E ’ x I, R3)}.

By subadditivity and Z2-invariance of A e SÃ I and by the growth condi-
tion, it is easy to obtain from (6.28)

v(C03C1(x0))  ~ Sk(sx]-t(~) 03BB,t(~) 03BB[  (6.29)P~O~(~(To))’ ~2(~)~)2~ 
~~~~~

where k(s) = [~] + 1. Let us set for every ~ e ’P(Z~) and every I P(R)

S#Ã I := inf{ b~,2(, [u](x0) ~ e3 + e W1,2per,0(Ã x ?, R’)}.

By convexity of ~~(~,.) and the subdifferential inequality, it is straightfor-
ward to show (see S. Muller [16])

S#k(s) ]-t(~) 03BB,t(~)03BB[- S#Y ]-t(~) 03BB,t(~) 03BB[
2~

The conclusion follows from (6.29) by applying the local Theorem 2.2 to the
subadditive set function S#Ã I.

Second step. To prove (~2) we also reproduce the outline of the proof of
the previous case A « ~. With the same notations, let us,i be a minimizer
of the problem

inf{03BB 2~ ]-~ 03BB,~ 03BB[b~,2(,[u](ai) ~ e3 + ~03C6) dx : 03C6 ~ W1,2per,0( ]-~ 03BB, ~ 03BB[, R3)}
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and set 

us,~(x) := R~u(x) + 03BB 2~us,i( x 03BB )US,’1(x) := R~u(x) + 2c us,ï( À)
i~I(~)

which defines an element of W1,2(O, R3) if we extend us,i by 9-periodicity
with respect to the variable 3i and by zero with respect to the variable z3.
Taking into account the periodicity assumption and the inclusion )Sj c

Zi where = [~ 03BB)] + 1 and zi ~ Z2,

© e3)
= lin 03BB 2~ ]-~03BB, ~03BBb~,2(, [u](ai) ~ e3 + ~us,i) dx

~ lim sup 1 H2(103BBSi)03BB 2~ 1 03BBSi -~03BB, ~03BB[b~,2(, [u](ai)~ e3 + ~us,i) dx

thus

© ~3 )
> lim sup  2~ H2(Si) H2(103BBSi) 03BB 2~ ~1 03BBSi ]- ~ 03BB,~ 03BBb~,2(

[u](ai) ~ e3 + ~us,i) dx.

The end of the proof is then identical to that of the previous case.

Third step. In the case when u is not smooth, we reason by a density and
a diagonalization argument.

Last step. It remains to establish

lim inf{1 2r ]-r,r[b~,2(,Q + ~03C6) dx : 03C6 ~ W1,2per,0( ]-r,r[,R3) }

= b~,2(, Q) d.

A change of scale gives

inf{1 2r ]-r,r[b~,2(,Q + ~03C6) dx : 03C6 ~W1,2per,0( ]-r,r[,R3)}

= inf{ ]0,1[b~,2(, Q + 03C6 + 1 r~303C6) dx : 03C6 ~ W1,2per,0( ]0, 1[, R3)}
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where ~03C6 and 83p denote respectively the two matrix valued functions

(~ ~x1, ~ ~x203C6, 0) and (o, o, Let us set for every p in x ]0, 1[, R3)

03A6r(03C6) := ]0,1[b~,2(,Q + 03C6) + 1 r~303C6) dx,
03A6(03C6) := b~,2(, Q) d + I[03C6=0](03C6)

where denotes the indicator function of the set [/? == 0]. Noticing
that any set {03C6r} of minimizers of (pr)r is relatively weakly compact in

R3 ), according to the properties of epiconvergence (see sec-
tion 5), it suflices to establish the epiconvergence of lfr toward $ in the space
Wper,o (Y X ~0! ~ ~, R3 ) equipped with its weak topology, when r -~ 0. Bound
(E2) is trivial (take the sequence equal to the sequence of null func-
tions). Let us prove (Ei). Let be a sequence converging to (/? weakly in

R3) and satisfying liminf 03A6r(03C6r)  +~. Coercivity of b~,2
r~0

implies that + _ C and that ~303C6r strongly tends to
0 in L2( ]0, 1[, M3’3 ) . We infer that ~303C6 = 0 and consequentely 03C6 = 0. On

the other hand, by subdifferential inequality

Y Q) dx  Q), 03C6r + 1 r ~303C6r > dx
= b~,2(, Q) d + ]0,1]  ~b~,2(, Q), ~03C6r > dx

- I-- 1 1  Q), ~303C6r > dx dx3

where the last integral in the right hand side is obviously equal to zero.
Letting r -~ 0, we finally obtain (E1). D
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