Singularités des fonctions de Green hypoelliptiques
Annales mathématiques Blaise Pascal, Volume 3 (1996) no. 1, pp. 23-32.
@article{AMBP_1996__3_1_23_0,
     author = {G\'erard Ben Arous and Mihai Gradinaru},
     title = {Singularit\'es des fonctions de {Green} hypoelliptiques},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {23--32},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {3},
     number = {1},
     year = {1996},
     zbl = {0868.58083},
     mrnumber = {1397321},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_23_0/}
}
TY  - JOUR
AU  - Gérard Ben Arous
AU  - Mihai Gradinaru
TI  - Singularités des fonctions de Green hypoelliptiques
JO  - Annales mathématiques Blaise Pascal
PY  - 1996
DA  - 1996///
SP  - 23
EP  - 32
VL  - 3
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_23_0/
UR  - https://zbmath.org/?q=an%3A0868.58083
UR  - https://www.ams.org/mathscinet-getitem?mr=1397321
LA  - fr
ID  - AMBP_1996__3_1_23_0
ER  - 
%0 Journal Article
%A Gérard Ben Arous
%A Mihai Gradinaru
%T Singularités des fonctions de Green hypoelliptiques
%J Annales mathématiques Blaise Pascal
%D 1996
%P 23-32
%V 3
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%G fr
%F AMBP_1996__3_1_23_0
Gérard Ben Arous; Mihai Gradinaru. Singularités des fonctions de Green hypoelliptiques. Annales mathématiques Blaise Pascal, Volume 3 (1996) no. 1, pp. 23-32. https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_23_0/

[A]R. Azencott, : Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynmann, Dans: Azéma, J., Yor, M. Seminaire de Probabilités XVI. Supplément: Géométrie différentielle stochastique (Lect. Notes Math. vol. 921, pp. 237-284), Berlin Heidelberg , New York: Springer 1982 | Numdam | MR | Zbl

[BA1]Ben Arous, G.: Flots et séries de Taylor stochastiques, Probab. Th. Rel. Fields 81, pp. 29-77 (1989) | MR | Zbl

[BA2]Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale, Ann. Inst. Fourier 39, pp. 73-99 (1989) | Numdam | MR | Zbl

[BA-G]Ben Arous, G., Gradinaru, M.: Singularities of hypoelliptic Green functions, Preprint LMENS-95-19, soumis au "Potential Analysis", 1995 | MR | Zbl

[BA-Le]Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale I,II, Probab. Th. Rel. Fields 90, pp. 175-202377-402, (1991) | MR | Zbl

[B-Gav-Gr]Beals, R., Gaveau, B., Greiner, P.C.: Solution fondamentale pour des varietés de Cauchy-Riemann, Exposés au Seminaire d'Analyse, Institut "Henri Poincaré", 1993

[Ca] Castell, F.: Asymptotic expansion of stochastic flows, Probab. Th. Rel. Fields 96, pp. 225-239 (1993) | MR | Zbl

[CM-LG]Chaleyat-Maurel, M., Le Gall, J.-F.: Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes, Probab. Th. Rel. Fields 83, pp. 219-264 (1989) | MR | Zbl

[Fo] Folland, G.B.: A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79, pp. 373-376 (1973) | MR | Zbl

[Fo-S] Folland, G.B., Stein, E.M.: Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27, pp. 429-522 (1974) | MR | Zbl

[Fe-Sa] Fefferman, C.L., Sánchez-Calle, A.: Fundamental solutions for second order subelliptic operators, Ann. Math. 124, pp. 247-272 (1986) | MR | Zbl

[G]M. Gradinaru, : Fonctions de Green et support de diffusions hypoelliptiques, Thèse, Université de Paris-Sud, Orsay, 1995

[Gav] Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139, pp. 96-153 (1977) | MR | Zbl

[Gr1] Greiner, P.C.: A fundamental solution for a nonelliptic partial differential operator, Canad. Jour. Math. 31, pp. 1107-1120 (1979) | MR | Zbl

[Gr2] Greiner, P.C.: On second order hypoelliptic differential operators and the ∂-Neumann problem, In: Diedrich, K Complex analysis, Proceedings of Workshop at Wuppertal 1990, pp. 134-142, Braunschweig : Vieweg 1991 | MR | Zbl

[Gr-S] Greiner, P.C., Stein, E.M.: On the solvability of some differential operators of type □b, Dans: Several complex variables, Proceedings of the conference at Cortona 1976-1977, pp. 106-165, Pisa: Scuola Normale Superiore 1978 | MR | Zbl

[H]L. Hörmander, : Hypoelliptic second order differential equations, Acta Math. 119, pp. 147-171 (1967) | MR | Zbl

[J-Sa] Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators, Dans: Berenstein, C.A (ed.)Complex analysis III, Proceedings of the Special Year at University of Maryland 1985-1986, (Lect. Notes Math. vol. 1277 pp. 46-77), , Berlin Heidelberg 1987 SpringerNew York | MR | Zbl

[Le] Léandre, R.: Développement asymptotique de la densité d'une diffusion dégénérée, Forum Math. 4, pp. 45-75 (1992) | MR | Zbl

[N-S-W] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I Basic properties. Acta Math. 155, pp. 103-147 (1985) | MR | Zbl

[Sa] Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of square of vector fields, Invent. math. 78, pp. 143-160 (1984) | MR | Zbl

[Sz] Sznitman, A.S.: Some bounds and limiting results for the measure of the Wiener sausage of small radius associated with elliptic diffusions, Stoch. Proc. Appl. 25, pp. 1-25 (1987). | MR | Zbl