A scalar field for which C-zero has no Hahn-Banach property
Annales Mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 267-273.
@article{AMBP_1995__2_1_267_0,
     author = {Schikhof, Wilhelm H.},
     title = {A scalar field for which $C$-zero has no Hahn-Banach property},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {267--273},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {2},
     number = {1},
     year = {1995},
     doi = {10.5802/ambp.37},
     zbl = {0830.46072},
     mrnumber = {1342822},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.37/}
}
W.H. Schikhof. A scalar field for which $C$-zero has no Hahn-Banach property. Annales Mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 267-273. doi : 10.5802/ambp.37. https://ambp.centre-mersenne.org/articles/10.5802/ambp.37/

[1] H. Gross and U-M. Künzi, On a class of orthomodular quadratic spaces. L'Enseignement Mathématique 31 (1985), 187-212. | MR 819350 | Zbl 0603.46030

[2] H.A. Keller, Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49. | MR 576294 | Zbl 0414.46018

[3] H. Ochsenius, Non-archimedean analysis when the value group has non-archimedean order. In : p-adic Functional Analysis, Proceedings of the 2nd International Conference on p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Editorial de la Universidad de Santiago de Chile (1994), 87-98.

[4] A.C.M. Van Rooij, Non-archimedean Functional Analysis. Marcel Dekker, New York (1978). | MR 512894 | Zbl 0396.46061

[5] S. Warner, Topological fields. North Holland, Amsterdam (1989). | MR 1002951 | Zbl 0683.12014