A scalar field for which C-zero has no Hahn-Banach property
Annales mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 267-273.
@article{AMBP_1995__2_1_267_0,
     author = {W.H. Schikhof},
     title = {A scalar field for which $C$-zero has no {Hahn-Banach} property},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {267--273},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {2},
     number = {1},
     year = {1995},
     zbl = {0830.46072},
     mrnumber = {1342822},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/}
}
TY  - JOUR
AU  - W.H. Schikhof
TI  - A scalar field for which $C$-zero has no Hahn-Banach property
JO  - Annales mathématiques Blaise Pascal
PY  - 1995
DA  - 1995///
SP  - 267
EP  - 273
VL  - 2
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/
UR  - https://zbmath.org/?q=an%3A0830.46072
UR  - https://www.ams.org/mathscinet-getitem?mr=1342822
LA  - en
ID  - AMBP_1995__2_1_267_0
ER  - 
%0 Journal Article
%A W.H. Schikhof
%T A scalar field for which $C$-zero has no Hahn-Banach property
%J Annales mathématiques Blaise Pascal
%D 1995
%P 267-273
%V 2
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%G en
%F AMBP_1995__2_1_267_0
W.H. Schikhof. A scalar field for which $C$-zero has no Hahn-Banach property. Annales mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 267-273. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/

[1] H. Gross and U-M. Künzi, On a class of orthomodular quadratic spaces. L'Enseignement Mathématique 31 (1985), 187-212. | MR | Zbl

[2] H.A. Keller, Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49. | MR | Zbl

[3] H. Ochsenius, Non-archimedean analysis when the value group has non-archimedean order. In : p-adic Functional Analysis, Proceedings of the 2nd International Conference on p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Editorial de la Universidad de Santiago de Chile (1994), 87-98.

[4] A.C.M. Van Rooij, Non-archimedean Functional Analysis. Marcel Dekker, New York (1978). | MR | Zbl

[5] S. Warner, Topological fields. North Holland, Amsterdam (1989). | MR | Zbl