@article{AMBP_1995__2_1_275_0, author = {Stany De Smedt}, title = {Orthonormal bases for $p$-adic continuous and continuously differentiable functions}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {275--282}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, zbl = {0830.46070}, mrnumber = {1342823}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_275_0/} }
TY - JOUR AU - Stany De Smedt TI - Orthonormal bases for $p$-adic continuous and continuously differentiable functions JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 275 EP - 282 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_275_0/ LA - en ID - AMBP_1995__2_1_275_0 ER -
%0 Journal Article %A Stany De Smedt %T Orthonormal bases for $p$-adic continuous and continuously differentiable functions %J Annales mathématiques Blaise Pascal %D 1995 %P 275-282 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_275_0/ %G en %F AMBP_1995__2_1_275_0
Stany De Smedt. Orthonormal bases for $p$-adic continuous and continuously differentiable functions. Annales mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 275-282. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_275_0/
[1] Les nombres p-adiques, Presses Universitaires de France, 1975. | MR | Zbl
,[2] Some new bases for p-adic continuous functions, Indagationes Mathematicae N.S. 4(1), 1993, p.91-98. | MR | Zbl
,[3] The van der Put base for Cn-functions, Bulletin of the Belgian Mathematical Society 1(1), 1994, p.85-98. | MR | Zbl
,[4] p-adic continuously differentiable functions of several variables, Collectanea Mathematica, To appear. | MR | Zbl
,[5] Non-Archimedean calculus (Lecture notes), Report 7812, Katholieke Universiteit Nijmegen, 1978. | MR | Zbl
,[6] Ultrametric Calculus : an introduction to p-adic analysis, Cambridge University Press, 1984. | MR | Zbl
,[7] Algèbres de functions continues p-adiques, Thèse Université d'Utrecht, 1967.
,