@article{AMBP_1995__2_1_267_0, author = {W.H. Schikhof}, title = {A scalar field for which $C$-zero has no {Hahn-Banach} property}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {267--273}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, zbl = {0830.46072}, mrnumber = {1342822}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/} }
TY - JOUR AU - W.H. Schikhof TI - A scalar field for which $C$-zero has no Hahn-Banach property JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 267 EP - 273 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/ LA - en ID - AMBP_1995__2_1_267_0 ER -
%0 Journal Article %A W.H. Schikhof %T A scalar field for which $C$-zero has no Hahn-Banach property %J Annales mathématiques Blaise Pascal %D 1995 %P 267-273 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/ %G en %F AMBP_1995__2_1_267_0
W.H. Schikhof. A scalar field for which $C$-zero has no Hahn-Banach property. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 267-273. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/
[1] On a class of orthomodular quadratic spaces. L'Enseignement Mathématique 31 (1985), 187-212. | MR | Zbl
and ,[2] Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49. | MR | Zbl
,[3] Non-archimedean analysis when the value group has non-archimedean order. In : p-adic Functional Analysis, Proceedings of the 2nd International Conference on p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Editorial de la Universidad de Santiago de Chile (1994), 87-98.
,[4] Non-archimedean Functional Analysis. Marcel Dekker, New York (1978). | MR | Zbl
,[5] Topological fields. North Holland, Amsterdam (1989). | MR | Zbl
,