@article{AMBP_1995__2_1_267_0,
author = {W.H. Schikhof},
title = {A scalar field for which $C$-zero has no {Hahn-Banach} property},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {267--273},
year = {1995},
publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
volume = {2},
number = {1},
zbl = {0830.46072},
mrnumber = {1342822},
language = {en},
url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/}
}
TY - JOUR AU - W.H. Schikhof TI - A scalar field for which $C$-zero has no Hahn-Banach property JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 267 EP - 273 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/ LA - en ID - AMBP_1995__2_1_267_0 ER -
%0 Journal Article %A W.H. Schikhof %T A scalar field for which $C$-zero has no Hahn-Banach property %J Annales mathématiques Blaise Pascal %D 1995 %P 267-273 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/ %G en %F AMBP_1995__2_1_267_0
W.H. Schikhof. A scalar field for which $C$-zero has no Hahn-Banach property. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 267-273. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_267_0/
[1] and , On a class of orthomodular quadratic spaces. L'Enseignement Mathématique 31 (1985), 187-212. | Zbl | MR
[2] , Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49. | Zbl | MR
[3] , Non-archimedean analysis when the value group has non-archimedean order. In : p-adic Functional Analysis, Proceedings of the 2nd International Conference on p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Editorial de la Universidad de Santiago de Chile (1994), 87-98.
[4] , Non-archimedean Functional Analysis. Marcel Dekker, New York (1978). | Zbl | MR
[5] , Topological fields. North Holland, Amsterdam (1989). | Zbl | MR
