Well-posedness of a non local ocean-atmosphere coupling model: study of a 1D Ekman boundary layer problem with non-local KPP-type turbulent viscosity profile
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 123-165.

This paper addresses the mathematical analysis of the ocean-atmosphere coupling problem, including Coriolis force, non-local turbulent closure and realistic nonlinear interface conditions. We introduce a 1D vertical model corresponding to a coupled Ekman boundary layer problem with non-local turbulent viscosities. The interest of this model lies in its proximity to realistic ones by considering the numerical strategies employed to take into account the turbulent scale. Well-posedness is first studied in stationary and non-stationary states considering generalized parameterized turbulent viscosities. We establish sufficient criteria on the viscosity profiles for the uniqueness of solution and find that they are not met for parameters in the order of magnitude used in ocean and atmosphere models. To identify precisely the conditions of well-posedness, we therefor establish a necessary and sufficient criterion for the stationary state. We show that there is non-uniqueness of the solution when considering typical viscosity profiles from ocean and atmosphere models. Eventually, we illustrate that non-uniqueness is produced by an inconsistency between the viscosity profile and the boundary layer parametrisation.

Publié le :
DOI : 10.5802/ambp.435
Classification : 34B15, 34M04, 35A02, 35Q86, 76F40
Keywords: Ocean-atmosphere coupling model, Ekman boundary layer problem, non-local partial differential equation

Sophie Thery 1

1 Institute of Mathematics University of Augsburg 86150 Augsburg Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_1_123_0,
     author = {Sophie Thery},
     title = {Well-posedness of a non local ocean-atmosphere coupling model: study of a {1D} {Ekman} boundary layer problem with non-local {KPP-type} turbulent viscosity profile},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {123--165},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {1},
     year = {2025},
     doi = {10.5802/ambp.435},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.435/}
}
TY  - JOUR
AU  - Sophie Thery
TI  - Well-posedness of a non local ocean-atmosphere coupling model: study of a 1D Ekman boundary layer problem with non-local KPP-type turbulent viscosity profile
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 123
EP  - 165
VL  - 32
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.435/
DO  - 10.5802/ambp.435
LA  - en
ID  - AMBP_2025__32_1_123_0
ER  - 
%0 Journal Article
%A Sophie Thery
%T Well-posedness of a non local ocean-atmosphere coupling model: study of a 1D Ekman boundary layer problem with non-local KPP-type turbulent viscosity profile
%J Annales mathématiques Blaise Pascal
%D 2025
%P 123-165
%V 32
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.435/
%R 10.5802/ambp.435
%G en
%F AMBP_2025__32_1_123_0
Sophie Thery. Well-posedness of a non local ocean-atmosphere coupling model: study of a 1D Ekman boundary layer problem with non-local KPP-type turbulent viscosity profile. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 123-165. doi : 10.5802/ambp.435. https://ambp.centre-mersenne.org/articles/10.5802/ambp.435/

[1] S. P. S. Arya Parameterizing the height of the stable atmospheric boundary layer, J. Appl. Meteorol. Climatol., Volume 20 (1981) no. 10, pp. 1192-1202 | DOI

[2] D. E. Barton Handbook of mathematical functions with formulas, graphs and mathematical tables, Wiley Publishing, 1965

[3] Christine Bernardi; Tomás Chacón Rebollo; Roger Lewandowski; François Murat A model for two coupled turbulent fluids. Part I: analysis of the system, Nonlinear partial differential equations and their applications (Studies in Mathematics and its Applications), Volume 31, Elsevier, 2002, pp. 69-102 | Zbl

[4] Didier Bresch; Benoît Desjardins; Jean-Michel Ghidaglia; Emmanuel Grenier Global weak solutions to a generic two-fluid model, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 599-629 | DOI | MR | Zbl

[5] Chongsheng Cao; Jinkai Li; Edriss S. Titi Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., Volume 214 (2014), pp. 35-76 | MR | Zbl

[6] Chongsheng Cao; Edriss S. Titi Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., Volume 166 (2007) no. 1, pp. 245-267 | Zbl

[7] Tomás Chacón Rebollo; Macarena Gomez-Marmol; Samuele Rubino On the existence and asymptotic stability of solutions for unsteady mixing-layer models, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 2, pp. 421-436 | DOI | MR | Zbl

[8] Simon Clement; Florian Lemarié; Eric Blayo Semi-discrete analysis of a simplified air-sea coupling problem with nonlinear coupling conditions, International Conference on Domain Decomposition Methods (Lecture Notes in Computational Science and Engineering), Volume 149, Springer (2022), pp. 141-148 | Zbl

[9] Vagn W. Ekman On the influence of the Earth’s rotation in ocean-currents, Arch. Math. Astron. Phys., Volume 2 (1905), pp. 1-52 | Zbl

[10] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2022 | MR

[11] Rupert Klein; Eileen Mikusky; Anthony Z. Owinoh Multiple scales asymptotics for atmospheric flows, Proceedings of the 4th European Conference on Mathematics, European Mathematical Society (2004), pp. 201-220 | Zbl

[12] William G. Large; James C. McWilliams; Scott C. Doney Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., Volume 32 (1994) no. 4, pp. 363-403 | DOI

[13] William G. Large; S. Pond Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., Volume 11 (1981) no. 3, pp. 324-336 | DOI

[14] Jacques-Louis Lions; Roger Temam; Shouhong Wang Models of the coupled atmosphere and ocean (CAO I). I, Comput. Mech. Adv., Volume 1 (1993) no. 1, pp. 5-54 | MR | Zbl

[15] Jacques-Louis Lions; Roger Temam; Shouhong Wang Numerical analysis of the coupled atmosphere-ocean models (CAO II). II, Comput. Mech. Adv., Volume 1 (1993) no. 1, pp. 55-119 | MR

[16] Jacques-Louis Lions; Roger Temam; Shouhong Wang Mathematical theory for the coupled atmosphere-ocean models (CAO-III), J. Math. Pures Appl. (9), Volume 74 (1995) no. 2, pp. 105-163 | MR | Zbl

[17] Gurvan Madec; Mike Bell; Adam Blaker; Clément Bricaud; Diego Bruciaferri; Miguel Castrillo; Daley Calvert; Jérôme Chanut; Emanuela Clementi; Andrew Coward; Italo Epicoco; Christian Ethé; Jonas Ganderton; James Harle; Katherine Hutchinson; Doroteaciro Iovino; Dan Lea; Tomas Lovato; Matt Martin; Nicolas Martin; Francesca Mele; Diana Martins; Sébastien Masson; Pierre Mathiot; Francesca Mele; Silvia Mocavero; Simon Muller; A. J. George Nurser; Stella Paronuzzi; Mathieu Peltier; Renaud Person; Clement Rousset; Stefanie Rynders; Guillaume Samson; Sibylle Téchené; Martin Vancoppenolle; Chris Wilson NEMO Ocean Engine Reference Manual, 2023 | DOI

[18] James C. McWilliams; Edward Huckle Ekman layer rectification, J. Phys. Oceanogr., Volume 36 (2006) no. 8, pp. 1646-1659 | DOI

[19] Andrei S. Monin; Aleksandr M. Obukhov Basic laws of turbulent mixing in the surface layer of the atmosphere, Tr. Geofiz. Inst., Akad. Nauk SSSR, Volume 24 (1954), pp. 163-187 | Zbl

[20] James J. O’Brien A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer, J. Atmos. Sci., Volume 27 (1970) no. 8, pp. 1213-1215 | DOI

[21] Frank W. J. Olver Hypergeometric Function, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge University Press, 2010 http://dlmf.nist.gov/15 (chapter 15) | Zbl

[22] Charles Pelletier; Florian Lemarié; Eric Blayo; Marie-Noëlle Bouin; Jean-Luc Redelsperger Two-sided turbulent surface-layer parameterizations for computing air–sea fluxes, Q. J. R. Meteorol. Soc., Volume 147 (2021) no. 736, pp. 1726-1751 | DOI

[23] Madalina Petcu; Roger Temam; Mohammed Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of numerical analysis. Vol XIV. Special volume: Computational methods for the atmosphere and the oceans (Handbook of Numerical Analysis), Volume 14, Elsevier, 2009, pp. 577-750 | DOI

[24] Tomás Chacón Rebollo; Stéphane Del Pino; Driss Yakoubi An iterative procedure to solve a coupled two-fluids turbulence model, ESAIM, Math. Model. Numer. Anal., Volume 44 (2010) no. 4, pp. 693-713 | DOI | Numdam | MR | Zbl

[25] Tomás Chacón Rebollo; Roger Lewandowski Mathematical and numerical foundations of turbulence models and applications, Springer, 2014 | DOI | MR | Zbl

[26] Sophie Thery; Charles Pelletier; Florian Lemarié; Eric Blayo Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numer. Algorithms, Volume 89 (2022) no. 3, pp. 1145-1181 | DOI | MR | Zbl

[27] I. Troen; Larry Mahrt A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Boundary-Layer Meteorol., Volume 37 (1986), pp. 129-148 | DOI

Cité par Sources :