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Well-posedness of a non local ocean-atmosphere coupling model:
study of a 1D Ekman boundary layer problem with non-local

KPP-type turbulent viscosity profile

Sophie Thery

Abstract

This paper addresses the mathematical analysis of the ocean-atmosphere coupling problem, including
Coriolis force, non-local turbulent closure and realistic nonlinear interface conditions. We introduce a
1D vertical model corresponding to a coupled Ekman boundary layer problem with non-local turbulent
viscosities. The interest of this model lies in its proximity to realistic ones by considering the numerical
strategies employed to take into account the turbulent scale. Well-posedness is first studied in stationary
and non-stationary states considering generalized parameterized turbulent viscosities. We establish
sufficient criteria on the viscosity profiles for the uniqueness of solution and find that they are not met for
parameters in the order of magnitude used in ocean and atmosphere models. To identify precisely the
conditions of well-posedness, we therefor establish a necessary and sufficient criterion for the stationary
state. We show that there is non-uniqueness of the solution when considering typical viscosity profiles
from ocean and atmosphere models. Eventually, we illustrate that non-uniqueness is produced by an
inconsistency between the viscosity profile and the boundary layer parametrisation.

1. Introduction

Ocean-atmosphere (OA) interactions play a critical role for several applications, like
forecasting the trajectories of tropical cyclones, seasonal weather forecasting, or climate
studies. Therefore numerical modeling systems for such applications generally couple an
oceanic model with an atmospheric model, with complex interface conditions (referred
to as a “bulk closure”) that model these interactions. However ocean and atmosphere
models have originally been constructed separately, by two distinct communities. Thus
the question of the mathematical coherence of such a coupled system naturally arises,
since there is no guarantee that all possible associations of an atmospheric model, an
oceanic model and interface “bulk” conditions will lead to a well-posed problem.

The translation of such an OA coupled model into a single global mathematical
model is challenging and gives rise to specific difficulties. A first global OA coupled
model has been presented and studied by [16] as a coupling of the so-called primitive
equations with nonlinear interface conditions. Many studies on the well-posedness of the
primitive equations (without coupling) can be found in the context of ocean or atmosphere
modeling (see for example [6] or [14, 15]). OA coupled models mainly differ by the
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strategies they use to take into account the turbulent scales (turbulent closure) and the
interactions between the two domains (bulk closure). The turbulent closure scheme
considered hereafter relies on the Boussinesq hypothesis which requires the definition
of a turbulent viscosity profile. The resulting model is known as the coupled Ekman
layer problem [9]. The present study addresses the well-posedness of such an Ekman
layer coupled model that takes into account the specificities brought by the bulk interface
conditions. Mathematical results can be obtained for this model, which is representative
of the physics and numerics of realistic models. The combination of the turbulent closure
schemes with specific interface conditions from the bulk formulation leads to a non-local
coupled problem with nonlinear interface conditions, that is, the entire viscosity profile
depends directly on the solution at the interface. This non-locality is the main difficulty in
tackling the mathematical analysis. A first study of this model was proposed by [22]. In
the present work, we present a first synthetic step in the analysis on this non-local problem
in the context of OA coupling, and investigate the well-posedness of this coupled problem
by searching for constraints on the turbulent viscosity profiles.

As a global approach to establish well-posedness, we will adapt a method from existing
work in the fluid-fluid interaction community. A very simplified problem of what would
illustrate the non-local nature of our model would be the system :

−𝜕𝑧 (𝜈(𝑧, |u(0) |)𝜕𝑧u(𝑧)) = g 𝑧 ∈ ]0,Z∞ [ (1.1a)
u(Z∞) = 0 (1.1b)

𝜈(0, |u(0) |)𝜕𝑧u(0) = |u(0) | u(0) (1.1c)

for a given source term g and a parameterized viscosity profile 𝜈. The type of non-local
character we are dealing with here has rarely been considered in the literature. Here we
will refer to a stationary model proposed by [3] which considers a model close to (1.1) on
a two-fluid interaction with a turbulent viscosity profile different from the one considered
here. The authors prove the existence of solutions and show that the uniqueness depends
strongly on the viscosity profile and the regularity of the solution itself. More precisely,
a fixed-point method is used to study the uniqueness of solutions and it appears that it
depends on the ratio between the H1-norm on the solution, the variation of the viscosity
profile and its minimum. In our case, we bring some additional elements to be more
representative of the realistic model by considering the coupling and bulk formulations at
the interface. On the other hand, we simplify the study by considering the viscosity as a
parametrisation 𝜈(𝑧, 𝑢∗) with 𝑢∗ depending on the trace terms. This assumption will allow
us to simplify the study of the well-posedness and give conditions on the parametrized
profile of 𝜈. Therefore, even if our model is simplified, the criteria that we establish
contain the same ingredients and follow the same behavior as in [3]. These criteria for
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the uniqueness of the solution are sufficient criteria. These are not satisfy for viscosity
profile with parameters of the order of magnitude used in OA models and the uniqueness
of solution is therefore not guaranteed. To further investigate this issue, we then introduce
a sufficient and necessary criterion that ensures the well-posedness of the stationary
problem. However, this criterion can only be computed for viscosity profiles for which
the main equation can be solved explicitly. Adapting this strategy to viscosity profiles
representative to those used in OA models, shows to non-uniqueness of the solution. As
will be highlighted, non-uniqueness stems from the combination between these specific
viscosity profiles and interface conditions.

The remainder of this paper is organized as follows. We first construct the OA model in
Section 2. Starting from the primitive equations, we briefly describe the usual assumptions
considered to obtain the model in each domain and the interface conditions (Section 2.1).
Then we describe the viscosity profiles considered, which are representative of OA
coupled models (Section 2.2). We also provide representative values and viscosity profiles
for numerical illustration. The global problem under investigation is summarized in
Definition 2.4. The study of the well-posedness is discussed in Section 3 for general
viscosity profile. Our global strategy is to solve the non-local problem using a fixed-point
method. We first focus on the stationary state of the problem in Section 3.1. In line with
the work of [3] we show the existence of stationary solution and give uniqueness criteria
on the viscosity profiles. The well-posedness of the non-stationary state is studied in
Section 3.2. In the line of the work of [7], we give a criterion to have the existence of a non
stationary solution in the neighborhood of an existing stationary solution. We finally give
well-posedness criteria on the non-stationary state following the same procedure than for
the stationary state. In Section 4.1 we study the well-posedness of the problem for viscosity
profiles specific with parameters in the OA order of magnitude. We illustrate in paragraph
Section 4.2 that the uniqueness criteria given in Section 3 are too restrictive for the OA
order of magnitude. To fully answer the question of uniqueness, we give a necessary and
sufficient criterion for the well-posedness of the stationary problem (Section 4.3), case
without Coriolis effect is quickly discuss. We finally apply this necessary and sufficient
criterion to viscosity profiles that are representative of those used in the OA model
(Section 4.4) and the non-uniqueness of solution is confirmed for these viscosity profiles.
We conclude by giving some conditions on interface conditions that would guarantee
uniqueness.
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2. Construction of the ocean-atmosphere coupled model

In this section, we build our ocean-atmosphere model by justifying the main steps. Readers
wishing to dispense with the justification of the model construction can refer directly to
Definition 2.4 where the final model is recalled.

2.1. A simplified 1D coupled model

To establish a coupled model, we start from the Navier Stokes equations on which we will
make simplifying assumptions, while keeping the most important ingredients to obtain a
relevant coupled model. The steps involved in building our model are the following.

In each domain:

(1) Starting from the Navier–Stokes equations with density stratification in both
oceanic and atmospheric domains, we make the following classical hypotheses
to obtain the so-called primitive equations :

• Hydrostatic hypothesis and Boussinesq approximation (the variations of the
fluid density are weak)

• We consider the earth rotation, represented by the Coriolis force

This leads to

𝜕𝑡uℎ + 𝑓 k × uℎ − 𝜈𝑚Δuℎ =
∇ℎ𝑝
𝜌0

− ∇ · (U ⊗ Uℎ)

𝜕𝑧 𝑝 = −𝑔𝜌′ (hydrostatic balance)

𝜈𝑚∇ · uℎ = 0 (incompressibility)

𝜕𝑡𝚽 = F𝚽 − ∇ℎ · (uℎ𝚽)
𝜌 = 𝜌eos (𝚽, 𝑧)

(2.1)

where U = (uℎ, 𝑤) represents the speed (wind or current), 𝑝 is the pressure, 𝜌
the density provided by an equation of state 𝜌eos, 𝜇𝑚 the molecular viscosity and
𝚽 is a general symbol for tracers (salinity, temperature. . . ). The well-posedness
of these primitive equations are widely studied, some first studies related to ocean
and atmosphere model can be found in [5], or [14, 15], and we refer to [23] for a
recent review of existing results.

(2) In order to take into account the fine-scale dynamics that is not resolved by the
numerical grid, equations (2.1) must be supplemented by “sub-grid” parameter-
ization schemes. The classical approach to introduce these parameterizations
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consists in using the so-called Reynolds decomposition of each variable 𝜙 into
a “resolved” averaged component 𝜙 and an “unresolved” component 𝜙′, with
𝜙′ = 0. Using this decomposition in (2.1) gives for the first line

𝜕𝑡uℎ + 𝑓 e𝑧 × uℎ − 𝜈𝑚Δuℎ − ∇ℎ · u′
ℎ
u′
ℎ
− 𝜕𝑧𝑤′u′

ℎ
=
∇ℎ𝑝
𝜌0

(2.2)

where terms of the form 𝜙′𝜑′ represent the effect of unresolved scales on the
resolved scales. To close the system, we use a turbulent closure considering the
Boussinesq hypothesis which gives 𝑤′𝜑′ in terms of the known resolved-scale
variables as:

u′𝜑′ = −
(
𝜈𝑡 ,𝑥𝜕𝑥𝜑, 𝜈𝑡 ,𝑦𝜕𝑦𝜑, 𝜈𝑡 ,𝑧𝜕𝑧𝜑

)𝑇
where 𝜈𝑡 are turbulent viscosities (a.k.a. eddy-viscosity) depending on space and
time and potentially other parameters. These turbulent viscosities are parameter-
ized using different closure schemes that we will discuss in Section 2.2. Note
𝜈𝑡 is strongly non-isotropic between horizontal direction and vertical direction.
From fluid mechanics notations, we introduce the constraint tensor:

𝝈 = −𝑝I3 + 𝜌0
©«
(𝜈𝑡𝑥 + 𝜈𝑚)𝜕𝑥𝑢 (𝜈𝑡𝑥 + 𝜈𝑚)𝜕𝑥𝑣 0
(𝜈𝑡𝑦 + 𝜈𝑚)𝜕𝑦𝑢 (𝜈𝑡𝑦 + 𝜈𝑚)𝜕𝑦𝑣 0
(𝜈𝑡𝑧 + 𝜈𝑚)𝜕𝑧𝑢 (𝜈𝑡𝑧 + 𝜈𝑚)𝜕𝑧𝑣 0

ª®®¬ (2.3)

with I3 the identity matrix.

For more details on approximations and closure assumptions taken so far, we can refer
to [25]. These assumptions are common in oceanic and atmospheric models used for
climate simulations (see for example [17]).

At the interface. The interface conditions between the ocean and the atmosphere
are complicated, due to the complexity of the natural phenomena they describe. Very
close to the interface, dedicated parameterizations are applied and superposed to the
numerical models. These interface parameterizations rely on the [19] (MO) theory that
assumes constant vertical fluxes and a wall-law in this near-interface zone. The numerical
counterparts to MO theory are the so-called bulk formulations, see [22] for more details.
In order to formulate interface conditions consistently, we separate the near-interface zone
whose flow is governed by MO theory from the rest of the domain where the primitive
equations are considered. The altitude that limit the near-interface to the boundary layer
is defined by 𝛿𝑜 in the ocean and 𝛿𝑎 with 𝛿𝑜 < 0 < 𝛿𝑎. We assume (𝑝𝛼, u𝛼) are
parameterized in [𝛿𝑜, 𝛿𝑎] for 𝛼 ∈ {𝑜, 𝑎}. The ocean and atmosphere domain are defined
as Ω𝑜 = [Z∞

𝑜 , 𝛿𝑜 [ and Ω𝑎 =]𝛿𝑎,Z∞
𝑎 ]. In the following, we consider the interface between

127



S. Thery

the ocean and the atmosphere as a buffer zone [𝛿𝑜, 𝛿𝑎] where MO theory applies. The
interface condition at the ocean surface are given by the continuity of the constraint
𝝈 and the continuity of u. Applying the MO theory in [𝛿𝑜, 𝛿𝑎] (which takes the form
of a non-linear friction law see [22] for a detailled description), leads to the following
conditions :

𝜌𝑜 (𝜈𝑚𝑜 + 𝜈𝑡 ,𝑜 (𝛿𝑜, 𝑡)) 𝜕𝑧uℎ,𝑜 (𝛿𝑜, 𝑡) = 𝜌𝑎 (𝜈𝑚𝑎 + 𝜈𝑡 ,𝑎 (𝛿𝑎, 𝑡)) 𝜕𝑧uℎ,𝑎 (𝛿𝑎, 𝑡) (2.4a)

(𝜈𝑚𝑎 + 𝜈𝑡 ,𝑎 (𝛿𝑎, 𝑡)) 𝜕𝑧uℎ,𝑎 (𝛿𝑎, 𝑡) = 𝐶𝐷 (𝑢∗)
uℎ,𝑎 (𝛿𝑎, 𝑡) − uℎ,𝑜 (𝛿𝑜, 𝑡)


×

(
uℎ,𝑎 (𝛿𝑎, 𝑡) − uℎ,𝑜 (𝛿𝑜, 𝑡)

)
(2.4b)

𝑢∗ =
√︁
𝐶𝐷 (𝑢∗)

uℎ,𝑜 (𝛿𝑎, 𝑡) − uℎ,𝑜 (𝛿𝑜, 𝑡)
 (2.4c)

with 𝜈𝑚𝑎 (resp. 𝜈𝑚𝑜 ) the molecular viscosity in the atmosphere (resp. in the ocean) at and 𝑢∗
the friction velocity. The coefficient𝐶𝐷 is given by the MO theory. This type of non-linear
interface condition based on friction laws is widely studied in fluid-structure interactions
theory (see for example [4]).

Simplifying assumptions. To reduce the complexity of the problem, we make the
following assumptions:

• In the buffer zone ]𝛿𝑜, 𝛿𝑎 [, equations are parameterized. These parameterizations
are taken into account in

√
𝐶𝐷 , that depends on 𝑢∗ itself. However the role of 𝐶𝐷

is minor in our context and can be considered as constant. According to [13], we
set 𝐶𝐷 = 1.2 × 10−3.

• We make an assumption of horizontal homogeneity, justified by the fact that in
this study we are focusing on exchanges that are predominantly in the vertical
direction. Therefore the terms in 𝜕𝑥• and 𝜕𝑦• are neglected, with the exception
of the horizontal pressure gradient.

• It is assumed that the geostrophic winds/currents, noted g := (𝑢𝑔, 𝑣𝑔), are known
and are defined by the equilibrium

− 𝑓 𝑢𝑔𝛼 =
1
𝜌0,𝛼

𝜕𝑦 𝑝𝛼 𝑓 𝑣
𝑔
𝛼 =

1
𝜌0,𝛼

𝜕𝑥 𝑝𝛼

with 𝛼 ∈ {𝑜, 𝑎} (𝛼 = 𝑜 in the ocean, 𝛼 = 𝑎 in the atmosphere). This assumption
allows us to decouple the different variables and to consider a condition at the
outer edge of the media.

u𝛼 (Z∞
𝛼 ) = g(Z∞

𝛼 ) (2.5)
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Finally our model in each domain can be written as:

𝜕𝑡uℎ + 𝑓 e𝑧 × uℎ − 𝜈𝑚Δuℎ − 𝜕𝑧 (𝜈𝑡 (𝑧, uℎ, . . . )𝜕𝑧uℎ) = 𝑓 e𝑧 × g on (𝛿𝛼,Z∞
𝛼 ) (2.6)

In [11] a rigorous derivation of the Ekman layer equation (2.6) is obtained from multiple
scales asymptotic technique. Their derivation indicates that such model is relevant to
describe the evolution of atmospheric horizontal velocities at large scale. From now on,
the overbar notation · and ·ℎ are neglected. Equation (2.6) is considered both in the
oceanic and the atmospheric domains.

2.2. Viscosity profiles and reference values for ocean-atmosphere coupling

In this study, we consider viscosity profiles based on the parameterizations of [27]
and [12] commonly used in ocean-atmosphere models and adapted to the Ekman layer
problem by [18]. In the following we will refer to the corresponding viscosity as K-Profile
Parameterization (KPP) viscosity. There exists different turbulent closure schemes with
different degrees of complexity [7]. We focus here on a closure scheme based on a
so-called zeroth-order closure i.e 𝜈 is directly diagnosed from 𝑢∗ and 𝑧 and does not
involve additional evolution equations as is the case for parameterizations based on the
turbulent kinetic energy (TKE) via the Prandtl–Kolmogorov relation. In the stationary case
a TKE-based viscosity profile would depend locally on the wind shear. A mathematical
analysis of a model close to (2.1)–(2.4) is made in the stationary case by [3] and [24], with
a TKE viscosity profile. They prove the existence of a solution and highlight issues that
occur to prove the uniqueness of such solution. In this study we have a similar objective
but with a KPP viscosity profile and show that the same global uniqueness issues are
encountered.

Definition 2.1 (The KPP viscosity profile). The KPP viscosity profile is built to be
consistent with the MO theory near the interface and to connect continuously with
the constant molecular viscosity outside the boundary layer [20]. 𝜈 ∈ C1 (𝛿𝛼, ℎ𝛼) only
depends on 𝑢∗ and 𝑧, and is such that

𝜈𝛼 (𝑢∗, 𝑧) = 𝜈(𝑢∗𝛼, 𝑧) =


𝜈𝑚𝛼 on (ℎ𝛼,Z∞

𝛼 )

𝐷𝛼 (𝑢∗, 𝑧) 𝐻
(
1 − 𝑧

ℎ𝛼

)
+ 𝜈𝑚𝛼 on (𝛿𝛼, ℎ𝛼)

(2.7)

with 𝐷𝛼 ≥ 0 for all 𝑧 ∈ (𝛿𝛼,Z∞
𝛼 ), 𝐻 is the Heaviside function, ℎ𝛼 depending on 𝑢∗ and

𝜈𝑚𝛼 the molecular viscosity. It must also satisfy
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• consistency with the MO theory : 𝐷𝛼 (𝛿) ≈ 𝜅𝑢∗𝛼𝛿 ≫ 𝜈𝑚𝛼 with 𝜅 the Von Karman
constant (≈ 0.4) and 𝜕𝑧𝐷𝛼 (𝛿) ≈ 𝜅𝑢∗𝛼. with 𝑢∗𝑜 = 𝜆𝑢∗𝑎 = 𝜆𝑢∗ 1.

• order of magnitude assumptions : |Z∞
𝛼 | ≫ |𝛿𝛼 | and 𝐷𝛼 (𝑧) ≫ 𝜈𝑚𝛼 for all

𝑧 ∈ (𝛿𝛼, ℎ𝛼 (1 − 𝜖)) for an 𝜖 ≪ 1. Also

– 𝜈𝑚𝑜 = 𝜆𝜈𝑚𝑎 with 𝜆 =
√︁
𝜌𝑜/𝜌𝑎 ≈ 0.03

– ℎ𝛼 = 𝑐𝛼𝑢
∗ with 𝑐𝛼 = �̃�𝛼/| 𝑓 | and �̃�𝛼 taken from �̃�𝑎 = 0.2 ([1]) and

�̃�𝑜 = −0.7𝜆 [12].
– | 𝑓 | ≈ 5 × 10−5 s−1

– 𝑢∗ ∈ [10−3, 1[ ms−1

The range of values for 𝑢∗ is the one considered in [22] and corresponds to
“classic” values for this parameter in OA models.

Definition 2.2 (Reference values for the ocean-atmosphere context). We consider a KPP
viscosity profile specific to the application of OA coupling as given by [20]:

𝐷𝛼 (𝑢∗𝛼, 𝑧) = 𝜅𝑢∗𝛼 |𝑧 |
(
1 − 𝑧

ℎ𝛼

)2
(2.8)

To apply our results to the specific OA framework, we choose a number of fixed parameters,
which we will call reference values for ocean-atmosphere coupling :

• Z∞
𝑎 = 3000m and Z∞

𝑜 = −500m

• 𝛿𝑎 = 10m and 𝛿𝑜 = 1m

• 𝜈𝑚𝑎 = 15.6 × 10−6m2s−1 and 𝜈𝑚𝑜 = 5 × 10−7m2s−1

• 𝑢∗ is taked such that 𝛿𝛼 < ℎ𝛼 < Z∞
𝛼 for 𝛼 ∈ {𝑜, 𝑎} i.e 𝑢∗ ∈ ]3.24 × 10−3, 9.75 ×

10−1 [ ms−1.

2.3. Model problem

Notation 2.3. Oceanic and the atmospheric domains are denoted as Ω𝛼 with

Ω𝑎 = ]𝛿𝑎,Z∞
𝑎 [ Ω𝑜 = ]Z∞

𝑜 , 𝛿𝑜 [ with Z∞
𝑜 < 𝛿0 < 0 < 𝛿𝑎 < Z∞

𝑎

We also define a notation for the “jump” of a variable in the vicinity of the interface:[
u
]𝑎
𝑜

:= u𝑎 (𝛿𝑎, 𝑡) − u𝑜 (𝛿𝑜, 𝑡)
and |u| denote the norm of the vector u.

1This choice of 𝑢∗ can be justified by the construction of 𝑢∗ in the interface buffer zone, and is detailed
in [22]
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Definition 2.4 (The OA coupled model). The coupled OA model studied here is the
one-dimensional problem:

𝜕𝑡u𝛼 + 𝑓 u⊥
𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑧, 𝑢∗ (𝑡))u𝛼) = 𝑓 g⊥𝛼 on Ω𝛼 × ]0, 𝑇 [ (2.9a)

u𝛼 (Z∞
𝛼 , 𝑡) = g𝛼 (Z∞

𝛼 , 𝑡) on ]0, 𝑇 [ (2.9b)

u𝛼 (𝑧, 𝑡 = 0) = u0
𝛼 (𝑧) on Ω𝑜 ∪Ω𝑎 (2.9c)

𝜈𝑜 𝜕𝑧u𝑜 (𝛿𝑜, 𝑡) = 𝜆2𝜈𝑎 𝜕𝑧u𝑎 (𝛿𝑎, 𝑡) on ]0, 𝑇 [ (2.9d)

𝜈𝑎 𝜕𝑧u𝑎 (𝛿𝑎, 𝑡) = 𝐶𝐷
�� [u(𝑡)]𝑎

𝑜

�� [u(𝑡)]𝑎
𝑜

on ]0, 𝑇 [ (2.9e)

𝑢∗ (𝑡) =
√︁
𝐶𝐷

[
u(𝑡)

]𝑎
𝑜

on ]0, 𝑇 [ (2.9f)

with 𝑓 , 𝜆 and 𝐶𝐷 are known constants g𝛼, u0 are source terms and u = (𝑢, 𝑣)𝑇 and the
scalar 𝑢∗ are the unknowns, with notation 𝛼 ∈ {𝑜, 𝑎} and u⊥ = (−𝑣, 𝑢)T, bold notation
denotes 2D vectors.

Non-local aspects come from the interface condition that depends on 𝑢∗ which itself
depends on the jump of the solution around the interface. The parameter 𝑢∗ thus makes
it possible to group together all the non-local aspects of the problem. To study well-
posedness of such problem, we will first rewrite it using a fixed point fomulation in
Section 3. A more specific study will be made on the spacial case of KPP viscosity profiles
in Section 4.1.

3. Well-posedness criteria for general viscosity profile

In this section we study the well-posedness of problem (2.9) for a general viscosity profile
𝜈(𝑢∗, 𝑧). The main strategy to handle the non-locality is to rewrite the model as a fixed
point formulation on 𝑢∗. This strategy has already been developed by [3] on a close
problem in the stationary state and without Coriolis effect. Authors of this paper prove
the existence of solutions for TKE viscosity profiles, but the uniqueness of the solution is
obtained under some restrictive conditions on the viscosity profile and its variations. The
conclusions we reach on the uniqueness of solutions in this section are similar.

Definition 3.1 (Local problem). We define the general problem P describe by (2.9) and
P𝑒 its stationary version. For a fixed 𝑢∗ the local problem given by (2.9a)–(2.9e) is called
L(𝑢∗) and L𝑒 (𝑢∗) for the stationary state.

Notation 3.2. In all this section, we suppose there exist 𝜈𝑚𝛼 > 0 such that 𝜈𝑚𝛼 ≤ 𝜈(𝑧, 𝑢∗)
for all (𝑧, 𝑢∗) ∈ Ω𝛼 × R+, with 𝛼 ∈ {𝑜, 𝑎}. We define the scalar product on the domain
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Ω := Ω𝑜 ∪Ω𝑎 as:

⟨u, v⟩OA :=
∫
Ω𝑎

u𝑎 · v𝑎 + 𝜆−2
∫
Ω𝑜

u𝑜 · v𝑜

and we define the associated norm:

∥u∥2
OA := ⟨u, u⟩OA = ∥u𝑎∥2

L2 (Ω𝑎 ) + 𝜆
−2 ∥u𝑜∥2

L2 (Ω𝑜 ) .

Since 𝜆 > 0, ∥·∥OA is a norm equivalent to L2 (Ω). In this paragraph we will use space
V := V𝑎 ∪ V𝑜 such that V𝛼 :=

{
v ∈ H1 (Ω𝛼), v(Z∞

𝛼 ) = 0
}
.

3.1. Existence and uniqueness for the stationary state

In this paragraph we gives the a necessary conditions that ensure the well-posedness of
the stationary state problem P𝑒.

𝑓 u⊥
𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑢∗)𝜕𝑧u𝛼) = 𝑓 g⊥𝛼 on Ω𝛼 (3.1a)

u𝛼 (Z∞
𝛼 ) = u𝑔𝛼 (Z∞

𝛼 ) (3.1b)

𝜈𝑜 𝜕𝑧u𝑜 (𝛿𝑜) = 𝜆2𝜈𝑎 𝜕𝑧u𝑎 (𝛿𝑎) (3.1c)

𝜈𝑎 𝜕𝑧u𝑎 (𝛿𝑎) = 𝐶𝐷
�� [u]𝑎

𝑜

�� [u]𝑎
𝑜

(3.1d)

𝑢∗ =
√︁
𝐶𝐷

�� [u]𝑎
𝑜

�� (3.1e)

We first study the well-posedness of the local problem L𝑒 (𝑢∗) given by (3.1a)–(3.1d) and
we then proof the existence of solution of full stationary problem P𝑒. The uniqueness of
solution is given by criteria on the viscosity profile using a Banach fixed point method.

Proposition 3.3 (Well-posedness of the stationary local problem L𝑒 (𝑢∗)). Suppose that
𝜈𝛼 is bounded and u𝑔, ∈ H1 (Ω). Then we have a unique weak solution u ∈ H1 (Ω) of the
stationary local problem (3.1a)–(3.1d). Moreover if 𝜈𝛼 ∈ C1 (Ω)

and u𝑔, ∈ H2 (Ω) then
u ∈ H2 (Ω) that will be used in Theorem 3.10.

Proof. Model (3.1a)–(3.1d) involves a non homogeneous external boundary conditions
in Z∞

𝛼 . To write the problem in his weak formulation, we use a lifting that will deletes the
external boundary condition. To simplify the writing we suppose u𝑔 ∈ H2 (Ω) and use it
as the lifting. The problem we consider in this section is given by :

𝑓 ũ⊥
𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑢∗)𝜕𝑧ũ𝛼) = 𝜕𝑧 (𝜈𝛼 (𝑢∗)𝜕𝑧g𝛼) on Ω𝛼

ũ𝛼 (Z∞
𝛼 ) = 0

𝜈𝑜 (𝜕𝑧ũ𝑜 + 𝜕𝑧g) (𝛿𝑜) = 𝜆2𝜈𝑎 (𝜕𝑧ũ𝑎 + 𝜕𝑧g𝑎) (𝛿𝑎)
𝜈𝑎 (𝜕𝑧ũ𝑎 + 𝜕𝑧g𝑎) (𝛿𝑎) = 𝐶𝐷

�� [ũ + g
]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜
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We have chosen a non-classical lifting2 here to gain explicit control on the solution by
the source term u𝑔 and simplify the computation that will be used in Proposition 3.5.
Consider the first equation on the domain Ω𝑎. Multiplying by a test function v𝑇𝑎 ∈ V and
integrating on Ω𝑎 leads to the formulation:∫ Z∞

𝑎

𝛿𝑎

v𝑎 · 𝑓 ũ⊥
𝑎 +

∫ Z∞
𝑎

𝛿𝑎

𝜕𝑧v𝑎 · 𝜈𝑎𝜕𝑧ũ𝑎 + v𝑎 (𝛿𝑎) · 𝜈𝑎 (𝜕𝑧ũ𝑎 (𝛿𝑎) + 𝜕𝑧g𝑎 (𝛿𝑎))

= −
∫ Z∞

𝑎

𝛿𝑎

𝜈𝑎𝜕𝑧v𝑎 · 𝜕𝑧g𝑎

The same stands for the ocean domain. Then multiplying the formulation from the oceanic
part by 𝜆−2 and adding the formulation from the atmospheric part, we get the weak
formulation of problem :

Find a unique solution ũ ∈ V such that

𝑓
〈
ũ⊥, v

〉
OA +

〈√
𝜈𝜕𝑧ũ,

√
𝜈𝜕𝑧v

〉
OA + 𝐶𝐷

�� [ũ + g
]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜
·
[
v
]𝑎
𝑜
= − ⟨𝜕𝑧g, 𝜈𝜕𝑧v⟩OA

(3.2)
for all v ∈ V with ⟨·, ·⟩OA is define in Notation 3.2. We define (V𝑚)𝑚≥0 the increasing
sequence of finite-dimensional Hilbert subspaces such that V =

⋃
𝑚≥0 V𝑚 Applying

the Brouwer’s fixed point,we show in Appendix A.1 that there exit ũ𝑚 ∈ V𝑚 solution
of the weak formulation (3.2). Taking v = ũ𝑚 in (3.2) and using Young inequality
|𝑥2𝑦 | ≤ 2𝜖 |𝑥 |3/3 + |𝑦 |3/(3𝜖2) we have :√𝜈𝜕𝑧ũ𝑚2

OA + 2𝐶𝐷
3

�� [ũ𝑚 + g
]𝑎
𝑜

��3 ≤ 𝜈 ∥𝜕𝑧g∥2
OA + 2𝐶𝐷

3
�� [g]𝑎

𝑜

��3 (3.3)

with 𝜈𝛼 = ∥𝜈𝛼∥L∞ (Ω×R+ ) . There exist a sub-sequence (u𝑚𝑙
)𝑙≥0 and ũ ∈ V, such that

• (ũ𝑚𝑙
) converge weakly to ũ in V

• (ũ𝑚𝑙
) converge to ũ in C0 (Ω) (Morrey’s inequality)

Previous convergence properties gives ũ𝛼,𝑚(𝛿𝛼) converge to ũ(𝛿𝛼). So
�� [ũ𝑚𝑙

+ g
]𝑎
𝑜

�� ×[
ũ𝑚𝑙

+ g
]𝑎
𝑜

converge to the boundary term in
�� [ũ + g

]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜

and ũ is a solution
of (3.2). The uniqueness is proved by showing that if we have two solutions ũ, ũ′ ∈ V
of (3.2), and choosing v = ũ − ũ′ they satisfy:√𝜈𝜕𝑧 (ũ − ũ′)


OA

+
(�� [ũ + g

]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜
−

�� [ũ′ + g
]𝑎
𝑜

�� [ũ′ + g
]𝑎
𝑜

) ( [
ũ
]𝑎
𝑜
−

[
ũ′]𝑎

𝑜

)
= 0 (3.4)

2For example choosing the lifting g𝛼 = u𝑔
𝛼 (Z∞

𝛼 ) (𝑧 − 𝛿𝛼 ) would allow to have u𝑔 ∈ L2 (Ω)
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Remark that
( [

ũ
]𝑎
𝑜
−

[
ũ′]𝑎

𝑜

)
=

( [
ũ + g

]𝑎
𝑜
−

[
ũ′ + g

]𝑎
𝑜

)
And since (∥x∥ x − ∥y∥ y) (x − y) ≥

0 for all x, y ∈ R2, we have uniqueness in V. To obtain more regularity, since we have
g ∈ H2 (Ω) and 𝜈𝛼 ∈ C1 (Ω𝛼) and using classical method (see for example [10]), we
obtain the weak solution ũ in H2 (Ω) and consequently u = ũ + g ∈ H2 (Ω). □

Theorem 3.4 (Existence of solution for the stationary problem P𝑒). Let g ∈ H1 (Ω)
and 𝜈𝛼 : (𝑧, 𝑢∗) bounded on

(
Ω,R+

)
. Then there exists at least one couple (u𝑒, 𝑢∗𝑒) ∈

H1 (Ω) × R+ solution of (3.1) such that

∥u − g∥H1 (Ω) ≤ ∥g∥H1 (Ω) and 𝑢∗ ≤
√︁
𝐶𝐷

�� [g]𝑎
𝑜

�� (3.5)

with 𝜈 = ∥𝜈∥L∞ . Moreover if g ∈ H2 (Ω) and if 𝜈𝛼 ∈ C1Ω × R+ then the couple solution
(u𝑒, 𝑢∗𝑒) is in ∈ H2 (Ω) × R+ that will be used for Theorem 3.7.

Proof. Weak formulation of the non local problem P𝑒 is : Find (ũ, 𝑢∗) ∈ V × R+ such
that

𝑓
〈
ũ⊥, v

〉
OA +

〈√
𝜈𝜕𝑧ũ,

√
𝜈𝜕𝑧v

〉
OA + 𝐶𝐷

�� [ũ + g
]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜
·
[
v
]𝑎
𝑜
+ 𝑢∗𝑣∗

= − ⟨𝜕𝑧g, 𝜈𝜕𝑧v⟩OA +
√︁
𝐶𝐷

�� [ũ + g
]𝑎
𝑜

�� 𝑣∗ (3.6)

for all (v, 𝑣∗) ∈ V × R+. Using the Brouwer’s fixed point method, we show there
exist a solution of the weak formulation (ũ𝑚, 𝑢∗𝑚) ∈ V𝑚 × R+ satisfying (3.5), with
∥ũ𝑚∥H1 (Ω) ≤ ∥g∥H1 (Ω) and 𝑢∗𝑚 ≤

√
𝐶𝐷

�� [g]𝑎
𝑜

��. See Appendix A.1 for details. Same
arguments than in the local problem hold for the convergence of a sub-sequence ũ𝑚,𝑙 to
ũ ∈ V and 𝑢∗

𝑚,𝑙
to 𝑢∗ such that (ũ, 𝑢∗) is solution of (3.6). Then using 𝜈𝛼 (𝑢∗) ∈ C1 (Ω)

and g ∈ H2 (Ω) in the weak formulation gives the a solution of the non local problem P𝑒
in H2 (Ω). □

Let us now proceed by analyzing the uniqueness of the solution. The general strategy
to ensure uniqueness of the solution of P𝑒 is to consider the model as a fixed-point
formulation for a stationary problem. Using a Banach fixed-point theorem on 𝑢∗, we give
criteria on 𝜈𝛼 and source terms g to obtain the uniqueness of a couple solution (u, 𝑢∗).
We first introduce results derived from Proposition 3.3 that will be used to apply the
fixed-point method in Theorem 3.6.

Proposition 3.5 (Existence of bound global bound on the local solution). Let define

M𝑒 := sup
𝑢∗∈R+

√𝜈𝜕𝑧u2
OA with u the unique solution of L𝑒 (𝑢∗) (3.7)

If 𝜈(𝑧, 𝑢∗) is bounded and if u𝑔 ∈ H2 (Ω) then we can give an upper bound toM depending
on source term:

M𝑒 ≤ 𝜈 ∥𝜕𝑧u𝑔∥2
OA + 2𝐶𝐷

3
�� [u𝑔]𝑎

𝑜

��3 := G𝑒 (3.8)
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with 𝜈 = max𝛼∈{𝑜,𝑎} ∥𝜈𝛼∥L∞
(
Ω×R+

) . Moreover we define 𝑢∗max =
(
3
√
𝐶𝐷G𝑒/2

)1/3 then

for every solution u of L𝑒 (𝑢∗) we have
√
𝐶𝐷

�� [u]𝑎
𝑜

�� ≤ 𝑢∗max.

Proof. If u𝑔 ∈ H2 (Ω) then we can take g = u𝑔 and r = 0. From the weak formulation (3.2)
taking v = ũ we have

〈√
𝜈𝜕𝑧u,

√
𝜈𝜕𝑧ũ

〉
OA +𝐶𝐷

�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
·
[
ũ
]𝑎
𝑜
= 0. Rewrite ũ = u− g

and apply Cauchy–Schwarz and Young’s inequality gives.

1
2

√𝜈𝜕𝑧u2
OA + 𝐶𝐷

3
�� [u]𝑎

𝑜

��3 ≤ 1
2

√𝜈𝜕𝑧g2
OA + 𝐶𝐷

3
�� [g]𝑎

𝑜

��3
If 𝜈 is bounded it imply (3.8). Moreover taking 𝑢∗max such that G𝑒 = 2(𝑢∗max)3/(3

√
𝐶𝐷)

we would have
√
𝐶𝐷

�� [u]𝑎
𝑜

�� ≤ 𝑢∗max. □

Theorem 3.6 (Uniqueness criteria for the stationary solution). Let 𝜈𝛼 (𝑧, 𝑢∗) be bounded,
0 < 𝜈𝑚𝛼 ≤ 𝜈𝛼 (𝑧, 𝑢∗) and source term g ∈ H1 (Ω). Assume viscosity profile 𝜈𝛼 satisfy: 𝜈(𝑧, 𝑢∗) − 𝜈(𝑧, 𝑣∗)√︁

𝜈(𝑧, 𝑢∗)𝜈(𝑧, 𝑣∗)


L∞

(
Ω

) ≤ (
𝐶
√︁
𝐶𝐷M𝑒

)−1
|𝑢∗ − 𝑣∗ | ∀ 𝑢∗, 𝑣∗ ≥ 0 (3.9)

with

𝐶2 = max

(
2
√

2|Ω𝑎 |
𝜈𝑚𝑎

, 𝜆2 2
√

2|Ω𝑜 |
𝜈𝑚𝑜

)
.

Then there exists a unique solution of P𝑒 such that (u𝑒, 𝑢∗𝑒) ∈ H1 (Ω) × R+. The
condition (3.9) is hard to check in practice, a Lipschitz condition that implies (3.9) is :

∥𝜈(𝑢∗) − 𝜈(𝑣∗)∥
L∞

(
Ω

) ≤ 𝜈𝑚𝛼

𝐶
√
𝐶𝐷G𝑒

|𝑢∗ − 𝑣∗ | ∀ 𝑢∗, 𝑣∗ ≥ 0 (3.10)

with G𝑒 define in (3.8) depending on source term. Moreover, for a 𝑢∗max =
(
3
√
𝐶𝐷G𝑒/2

)1/3,
we can ensure that 𝑢∗ ≤ 𝑢∗max and condition (3.9) and (3.10) can be restricted to
𝑢∗, 𝑣∗ ∈ [0, 𝑢∗max].

Proof. We use a fixed point approach, we define 𝑢∗𝑒 the fixed point of the map

𝐹𝑒 :=

{
R+ −→ R+ where u is the unique solution of
𝑢∗ −→

√︁
𝐶𝐷

�� [u]𝑎
𝑜

�� L𝑒 (𝑢∗) given by Definition 3.1

From Proposition 3.3 the local problem L𝑒 (𝑢∗) is well-posed in H1 (Ω) for a fixed 𝑢∗.
We pose 𝑢∗, 𝑣∗ ≥ 0 and u the unique solution of L𝑒 (𝑢∗) and v the unique solution of
L𝑒 (𝑣∗). We define w := u − v ∈ V. We want to show that 𝐹𝑒 is a contracting mapping,
which means

√
𝐶𝐷

���� [u]𝑎
𝑜

�� − �� [v]𝑎
𝑜

���� < |𝑢∗ − 𝑣∗ |. Using inverse triangular inequality we
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have
���� [u]𝑎

𝑜

�� − �� [v]𝑎
𝑜

���� ≤ �� [u]𝑎
𝑜
−

[
v
]𝑎
𝑜

�� = �� [w]𝑎
𝑜

��. Applying trace theorem and Poincare

inequality we can bound |w(𝛿𝛼) |2 =
��2 ⟨𝜕𝑧w,w⟩Ω𝛼

�� ≤ √
2 |Ω𝛼 |
𝜈𝑚𝛼

√𝜈𝛼𝜕𝑧w2
2, and finally���� [u]𝑎

𝑜

�� − �� [v]𝑎
𝑜

����2 ≤ 𝐶2
√︁𝜈(𝑢∗)𝜕𝑧w2

OA
with 𝐶2 = max

(
2
√

2|Ω𝑎 |
𝜈𝑚𝑎

, 𝜆2 2
√

2|Ω𝑜 |
𝜈𝑚𝑜

)
(3.11)

It now remains to control
√︁𝜈(𝑢∗)𝜕𝑧w2

OA. Subtracting equations from L𝑒 (𝑢∗) and
L𝑒 (𝑣∗) gives

𝑓w⊥
𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑢∗)𝜕𝑧w𝛼 + (𝜈(𝑢∗) − 𝜈(𝑢∗))𝜕𝑧v𝛼) = 0 in Ω𝛼

w(Z∞
𝛼 ) = 0

𝜈𝑜 (𝑢∗)𝜕𝑧w𝑜 (𝛿𝑜) + (𝜈𝑜 (𝑢∗) − 𝜈𝑜 (𝑣∗)) 𝜕𝑧v𝑜 (𝛿𝑜) = 𝜆2𝜈𝑎𝜕𝑧w𝑎 (𝛿𝑎)

+ 𝜆2 (𝜈𝑎 (𝑢∗) − 𝜈𝑎 (𝑣∗)) 𝜕𝑧v𝑎 (𝛿𝑎)

𝜈(𝑢∗)𝜕𝑧w𝑎 (𝛿𝑎) + (𝜈𝑎 (𝑢∗) − 𝜈𝑎 (𝑣∗)) 𝜕𝑧v𝑎 (𝛿𝑎) = 𝐶𝐷
(�� [u]𝑎

𝑜

�� [u]𝑎
𝑜
−

�� [v]𝑎
𝑜

�� [v]𝑎
𝑜

)
and energy estimate yields:√︁𝜈(𝑢∗)𝜕𝑧w2

OA
+ 𝐶𝐷

(�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
−

�� [v]𝑎
𝑜

�� [v]𝑎
𝑜

)
·
[
w
]𝑎
𝑜

= − ⟨𝜕𝑧w𝛼, (𝜈𝛼 (𝑢∗) − 𝜈𝛼 (𝑣∗)) 𝜕𝑧v𝛼⟩𝛼 .
Second term in the l.h.s is positive and r.h.s is bounded using :��⟨𝜕𝑧w𝛼, (𝜈𝛼 (𝑢∗) − 𝜈𝛼 (𝑣∗)) 𝜕𝑧v𝛼⟩OA

�� = ���〈√︁𝜈(𝑢∗)𝜕𝑧w, 𝜂√︁𝜈(𝑣∗)𝜕𝑧v〉
OA

���
≤ 1

2

√︁𝜈(𝑢∗)𝜕𝑧w2

OA
+ 1

2
max

𝛼∈{𝑜,𝑎}
∥𝜂𝛼∥2

L∞ (Ω𝛼 )

√︁𝜈(𝑣∗)𝜕𝑧v2

OA

with 𝜂𝛼 =
𝜈𝛼 (𝑢∗ )−𝜈𝛼 (𝑣∗ )√
𝜈𝛼 (𝑢∗ )𝜈𝛼 (𝑣∗ )

for 𝛼 ∈ {𝑎, 𝑜}. From Proposition 3.5 we have
√︁𝜈(𝑣∗)𝜕𝑧v2

OA ≤

M𝑒. If 𝜈 satisfy (3.9) there exits a 𝐿 ∈
[
0, 2

(√
𝐶𝐷

√
M𝑒𝐶

)−1
]

such that 𝜂𝛼 ≤ 𝐿 |𝑢∗ − 𝑣∗ |
and using the definition of M𝑒 we have :

𝐶𝐷𝐶
2
√︁𝜈(𝑢∗)𝜕𝑧w2

OA
≤ 𝐶𝐷𝐶2𝐿2M𝑒 |𝑢∗ − 𝑣∗ |2

and it conclude the proof. The condition (3.10) is obtained using ∥𝜂𝛼 (𝑧)∥L∞ (Ω𝛼 ) ≤
∥𝜈𝛼 (𝑧, 𝑢∗) − 𝜈𝛼 (𝑧, 𝑣∗)∥L∞ (Ω𝛼 )/𝜈𝑚𝛼 . Also, taking 𝑢∗max such that 3

√
𝐶𝐷𝐺

𝑒 ≤ (𝑢∗max)3 then
by Proposition 3.5 we have

√
𝐶𝐷

�� [u]𝑎
𝑜

�� ≤ 𝑢∗max. □

In sum, the condition for the uniqueness of solutions depends on the bounds and the
variations of 𝜈 and H1 norm on u. Generally speaking, if the product between ∥𝜕𝑢∗𝜈∥L∞

and ∥𝜕𝑧u∥L∞ is small compared to the minimum of 𝜈, we can ensure the uniqueness
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of the stationary solution u. The control of the H1 norm on u by the source terms is
given by Proposition 3.5. Uniqueness criteria linking the viscosity profile and the source
term are given in Theorem 3.6. These criteria state that the product between ∥𝜕𝑢∗𝜈∥L∞

and norm on source term g must be small compared to the minimum of 𝜈. A practical
application of this condition will be made in paragraph Section 4.2, where we analyze the
well-posedness of viscosity profiles used in the OA framework.

3.2. Existence and uniqueness of the non-stationary state

In this paragraph we study the well-posedness on the non local problem P given by
system (2.9). We first study the existence of non stationary solutions in a neighborhood of
the stationary state using the method proposed by [7]. A similar case have been studied
by [8] to the local coupled problem with nonlinear interface conditions but with constant
viscosity. In Theorem 3.7, we extend these results to the non-local coupled problem and
the non locality is treated using a Banach fixed point method.

Theorem 3.7 (Existence in the neighborhood of a stationary state). If there exists a
solution (u𝑒, 𝑢∗𝑒) ∈ H2 (Ω) × R+ to the stationary state P𝑒 and if the viscosity 𝜈(𝑧, 𝑢∗𝑒)
satisfies

√︁
𝐶𝐷

𝜕𝑢∗𝜈(𝑢∗𝑒)√︁
𝜈(𝑢∗𝑒)

𝜕𝑧u𝑒
2

OA

< 2𝑢∗𝑒 (3.12)

Then there exists (u, 𝑢∗) ∈ L2 (
0, 𝑇 ; H2 (Ω)

)
∩ H1 (

0, 𝑇 ; L2 (Ω)
)
× L2 (0, 𝑇) a solution of

P in an neighborhood of (u𝑒, 𝑢∗𝑒). Moreover, since (u𝑒, 𝑢∗𝑒) is solution of the stationary
problem, a condition that would imply (3.12) is :

𝜕𝑢∗𝜈(𝑢∗𝑒)𝜈(𝑢∗𝑒)

2

OA
<

2𝑢∗𝑒√
𝐶𝐷G𝑒

(3.13)

with G𝑒 depend on g is defined in (3.8).

Proof. The proof is based on the method developed by [7], where the authors consider
TKE-type viscosity profiles which bring non-linearity in the main equations. Step are
recall in Appendix A.1. After linearisation around the stationary state, we have to prove
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that the linear model

𝜕𝑡v𝛼 + 𝑓 v⊥𝛼 − 𝜕𝑧
(
𝜈𝛼,𝑒𝜕𝑧v

)
= 𝜕𝑧

(
𝑣∗𝜈′𝛼,𝑒𝜕𝑧u𝑒

)
+𝚽 on Ω𝛼 × ]0, 𝑇 [

v𝛼 (𝑧, 𝑡 = 0) = 𝚽0 on Ω𝑜 ∪Ω𝑎

v𝛼 (Z∞
𝛼 , 𝑡) = 𝚽∞ on ]0, 𝑇 [

𝜈𝑜,𝑒 𝜕𝑧v𝑜 (𝛿𝑜, 𝑡) + 𝑣∗ (𝑡)𝜈′𝑜,𝑒𝜕𝑧u𝑒𝑜 (𝛿𝑜)

= 𝜆2𝜈𝑎,𝑒 𝜕𝑧v𝑎 (𝛿𝑎) + 𝜆2𝑣∗ (𝑡)𝜈′𝑎,𝑒𝜕𝑧u𝑒𝑎 (𝛿𝑎) +𝚽𝐼,1 on ]0, 𝑇 [
𝜈𝑎,𝑒 𝜕𝑧v𝑎 (𝛿𝑎, 𝑡) + 𝑣∗ (𝑡)𝜈′𝑎,𝑒𝜕𝑧u𝑒𝑎 (𝛿𝑎)

=
√︁
𝐶𝐷𝑢

∗
𝑒

(( [
v
]𝑎
𝑜
· e𝜏

)
e𝜏 +

[
v
]𝑎
𝑜

)
+𝚽𝐼,2 on ]0, 𝑇 [

(3.14a)

𝑣∗ =
√︁
𝐶𝐷

[
v
]𝑎
𝑜
· e𝜏 +𝚽∗ (3.14b)

with notation 𝜈𝛼,𝑒 = 𝜈𝛼 (𝑧, 𝑢∗𝑒), e𝜏 =
[
u𝑒

]𝑎
𝑜
/
�� [u𝑒]𝑎

𝑜

�� and 𝜈′𝛼,𝑒 = 𝜕𝑢∗𝜈(𝑧, 𝑢∗𝑒), is well-posed
on X := L2 (

0, 𝑇 ; H2 (Ω)
)
∩ H1 (

0, 𝑇 ; L2 (Ω)
)
× L2 (0, 𝑇) for all Y = (𝚽,𝚽0,𝚽∞,𝚽𝐼,1,

𝚽𝐼,2,𝚽∗) ∈ Y := L2 (
0, 𝑇,L2 (Ω)

)
,×H1 (Ω) × L2 (0, 𝑇)4. First note that for any Y ∈ Y,

if 𝜈(𝑧, 𝑢∗𝑒) ∈ C1 (Ω × R) and u𝑒 ∈ H2 (Ω) there exist a unique solution of (3.14a) in X.
For a given stationary solution (𝑢∗𝑒, u𝑒) of P𝑒, we define for every Y ∈ Y:

𝐹Y :=

{
L2 (0, 𝑇) −→ L2 (0, 𝑇)

𝑣∗ −→
√︁
𝐶𝐷

[
v
]𝑎
𝑜
· e𝜏 +𝚽∗ where v is the unique solution of (3.14a)

We want to show that 𝐹Y is a contracting mapping for all Y ∈ Y. Consider 𝑢∗, 𝑣∗ ∈ L2 (0, 𝑇)
and u, v the corresponding solution of (3.14a), we pose 𝑤∗ = 𝑢∗ − 𝑣∗ and w = u − v.
Then, by linearity, (𝑤∗,w) is solution of (3.14a) with Y = 0. Thus an a priori estimate
can be computed:

𝜕𝑡 ∥w∥2
OA +

√𝜈𝜕𝑧w2
OA +

√︁
𝐶𝐷𝑢

∗
𝑒

�� [w]𝑎
𝑜

��2 (
cos(𝜃𝜏)2 + 1

)
= −𝑤∗ ⟨𝜕𝑧w, 𝜈′𝜕𝑧u𝑒⟩OA

Using the following bound :��𝑤∗ ⟨𝜕𝑧w, 𝜈′𝜕𝑧u𝑒⟩OA
�� ≤ √𝜈𝜕𝑧w2

OA + |𝑤∗ |2
4

 𝜈′𝛼√
𝜈𝛼
𝜕𝑧u𝑒

2

OA

and integrating on (0, 𝑡) gives the apriori estimate:

∥w∥2
OA (𝑡) +

(
cos(𝜃𝜏)2 + 1

2

) ∫ 𝑡

0

√︁
𝐶𝐷𝑢

∗
𝑒

�� [w]𝑎
𝑜

��2 ≤ 1
4

 𝜈′𝛼√
𝜈𝛼
𝜕𝑧u𝑒

2

OA

∫ 𝑡

0
|𝑤∗ |2

Therefore, if 𝜈(𝑢∗𝑒) and (u𝑒, 𝑢∗𝑒) satisfy (3.12) then 𝐹Y is a contracting mapping in L2 (0, 𝑇)
for all Y ∈ Y. □
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The existence of a non-stationary solution, as shown by criterion (3.12), requires the
product between 𝜕𝑢∗𝜈/

√
𝜈 and 𝜕𝑧u to be small enough. Product of the same nature has

been found in Theorem 3.6 when analyzing the uniqueness of a stationary solution. It
highlighting the key role of this product when we use the fixed point method.

Similarly, the general non-local problem P is considered as a fixed point problem
on 𝑢∗ considering local problem L(𝑢∗) defined in Definition 3.1. The main difficulty
encountered in the time dependency of 𝜈. First remark that, by definition, the time
regularity of 𝜈 is the time regularity of 𝑢∗. Then, to apply the Banach’s fixed point as
in Theorems 3.6 and 3.7, the time regularity on 𝜈 has to be chosen such that it ensures
the same regularity for the trace of the solution u𝛼 (𝛿𝛼, 𝑡). Moreover, as it appears in
the stationary state, the criterion will depend on the L∞ (0, 𝑇 ;V) norm of u a solution
of the local problem L(𝑢∗). We show in Proposition 3.8 that taking 𝜈 ∈ C1 ([0, 𝑇] ×Ω

)
guarantees u ∈ L∞ (0, 𝑇 ;V) and u𝛼 (𝛿) ∈ C1 [0, 𝑇]. This regularity is then used in the
Banach’s fixed point method in Theorem 3.10 to give a criterion on the well-posedness.

Proposition 3.8 (Well-posedness of the local system L(𝑢∗)). We suppose a given
𝜈𝛼 ∈ C1 ([0, 𝑇] × Ω𝛼

)
. Then, for g ∈ H2 (

0, 𝑇 ; H1 (Ω)
)

and u0 ∈ H2 (Ω) we have a
unique solution u ∈ L2 (0, 𝑇 ; H2 (Ω)) ∩ H1 (0, 𝑇 ;V) of the local problem L(𝑢∗) given
by (2.9a)–(2.9e). Especially we have u ∈ L∞ (0, 𝑇 ;V) and 𝜕𝑡

�� [u]𝑎
𝑜

�� ∈ C0 [0, 𝑇] that will
be useful for Theorem 3.10.

Proof. Model (2.9) involves a non homogeneous external boundary conditions in Z∞
𝛼 . To

write the problem in his weak formulation, we use a lifting that will deletes the external
boundary condition. Taking ũ = u− g, the problem we consider in this section is given by:

𝜕𝑡 ũ𝛼 + 𝑓 ũ⊥
𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑧, 𝑢∗ (𝑡))𝜕𝑧ũ𝛼) = −𝜕𝑡g𝛼 + 𝜕𝑧 (𝜈𝛼 (𝑧, 𝑢∗ (𝑡))𝜕𝑧g𝛼) on Ω𝛼 × ]0, 𝑇 [

ũ𝛼 (Z∞
𝛼 , 𝑡) = 0 on ]0, 𝑇 [

ũ𝛼 (𝑧, 𝑡 = 0) = ũ0 on Ω𝑜 ∪Ω𝑎

𝜈𝑜 𝜕𝑧ũ𝑜 (𝛿𝑜, 𝑡) + 𝜈𝑜 𝜕𝑧g𝑜 (𝛿𝑜, 𝑡) = 𝜆2𝜈𝑎 𝜕𝑧ũ𝑎 (𝛿𝑎, 𝑡) + 𝜈𝑎 𝜕𝑧g𝑎 on ]0, 𝑇 [
𝜈𝑎 𝜕𝑧ũ𝑎 (𝛿𝑎, 𝑡) + 𝜈𝑎 𝜕𝑧ũ𝑔𝑎 = 𝐶𝐷

�� [ũ + g
]𝑎
𝑜

�� [ũ + g
]𝑎
𝑜

on ]0, 𝑇 [

The weak formulation of the local problem L(𝑢∗) is : for a given 𝑢∗ ∈ H1 (0, 𝑇) find ũ
solution of

⟨𝜕𝑡 ũ, v⟩OA + 𝑓
〈
ũ⊥, v

〉
OA + ⟨𝜈(𝑢∗)𝜕𝑧ũ, 𝜕𝑧v⟩OA + 𝐶𝐷

�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
·
[
v
]𝑎
𝑜

(3.16)
= − ⟨𝜈𝜕𝑧g, 𝜕𝑧v⟩OA − ⟨𝜕𝑡g, ṽ⟩OA (3.17)

for all v ∈ V with u = ũ + g. Proof is given in Appendix A.2. □
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For any solution of L(𝑢∗), the norm in L∞ (0, 𝑇 ;V) would depends on 𝜕𝑡𝑢∗. In the
application of the fixed point method, 𝑢∗ will be obtained from the trace of a previous
solution on the local problem, so that, we need to control the norm of the trace of the
solution for all 𝑢∗ in a given space. We prove in Proposition 3.9 that this would be possible
by controlling ∥𝜕𝑡𝑢∗∥L2 and we give a necessary condition to apply the fixed point method
used in Theorem 3.10.

Proposition 3.9 (Existence of bound global bound in L∞ (0, 𝑇 ;V)). We define V∗
𝐵

:={
𝑢∗ ∈ C1 (0, 𝑇), ∥𝜕𝑡𝑢∗∥L2 (0,𝑇 ) ≤ 𝐵

}
for given 𝐵 ≥ 0. Suppose g ∈ H2 (0, 𝑇 ; H1 (Ω)) and

u0 ∈ H2 (Ω) a solution a solution of the stationary state P𝑒. We define

M := sup
𝑢∗∈V∗

𝐵

sup
𝑡∈]0,𝑇 [

√𝜈𝜕𝑧u2
OA with u the unique solution of L(𝑢∗) (3.18)

If 𝜈 ∈ C1 (Ω × R), there exist a constant 𝐷 depending on 𝑇 and bound on 𝜈 such that

M ≤ 𝐷 (𝑇, ∥𝜈∥L∞ )
(
∥g∥2

H2 (0,𝑇;H1 (Ω) ) +
u02

H2 (Ω) )

)
𝑒𝑁

2𝐵2
:= G (3.19)

with 𝑁 = max𝛼∈{𝑜,𝑎} ∥𝜕𝑢∗𝜈𝛼/𝜈𝛼∥2
L∞ (Ω×R) . Moreover, there exist condition linking source

term g, u0, viscosity profile 𝜈, 𝐵 and 𝑇 such that for all 𝑢∗ ∈ V∗
𝐵
, the unique solution u

of L(𝑢∗) verify
√
𝐶𝐷

[
u
]𝑎
𝑜
∈ V∗

𝐵
. This condition can take the form as a upper bound on

norm on g and u0 like

𝐷 (𝑇, ∥𝜈∥L∞ )
(
∥g∥2

H2 (0,𝑇;H1 (Ω) ) +
u02

H2 (Ω) )

)
≤ 𝐵2

1 + 2𝐵2𝑁2𝑒𝐵
2𝑁 2 (3.20)

with 𝐶2 = max𝛼∈{𝑜,𝑎}
√

2 |Ω𝛼 |
𝜈𝑚𝛼

.

Proof. Suppose 𝑢∗ ∈ V∗
𝐵

for given 𝐵. From weak formulation (3.16), taking v = u − g it
gives

∥𝜕𝑡u∥2
OA + 𝑓 ⟨̃u𝑚, 𝜕𝑡 ũ𝑚⟩OA +

〈√
𝜈𝜕𝑧u, 𝜕𝑧,𝑡u

〉
OA + 𝐶𝐷

�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
·
[
𝜕𝑡u

]𝑎
𝑜

= 𝐶𝐷
�� [u]𝑎

𝑜

�� [u𝑚]𝑎
𝑜
·
[
𝜕𝑡g

]𝑎
𝑜
+

〈
𝜈𝜕𝑧,𝑡g, 𝜕𝑧u

〉
OA + ⟨𝜕𝑡g, 𝜕𝑡u⟩OA

Integrating in time and using same strategy than in Appendix A.2 to obtain (A.3), would
gives √𝜈𝜕𝑧u2

OA ≤ 𝐵1 +
∫ 𝑡

0
∥𝜇∥2

L∞ (Ω)
√𝜈𝜕𝑧u2

OA

Using Gronwall theorem we have
√𝜈𝜕𝑧ũ2

OA ≤ 𝐵1 exp
(∫ 𝑡

0 ∥𝜇∥2
L∞ (Ω)

)
. By hypothesis

we have
∫ 𝑡
0 ∥𝜇∥2

L∞ (Ω) ≤ 𝐵2𝑁2 and then M ≤ 𝐵1𝑒
𝑁 2𝐵2 . Now using equation (A.4) on u
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gives : ∫ 𝑡

0

√𝜈𝜕𝑧,𝑡 ũ2
OA ≤ 𝐵2 +

∫ 𝑡

0
∥𝜇∥2

L∞ (Ω)

(√𝜈𝜕𝑧u2
OA

)
≤ 𝐵2 + 𝑁2𝐵2M

with 𝐵2 depending on g and u0 and bound on 𝜈. Then we can bound
�� [𝜕𝑡u]𝑎

𝑜

��2 ≤
2
�� [𝜕𝑡 ũ]𝑎

𝑜

��2 + 2
�� [𝜕𝑡g]𝑎𝑜 ��2 ≤ 2𝐶2

√𝜈𝜕𝑧ũ2
OA + 2

�� [𝜕𝑡g]𝑎𝑜 ��2 that gives∫ 𝑡

0
𝐶𝐷

�� [𝜕𝑡u]𝑎
𝑜

��2 ≤ 𝐵2 + 2
∫ 𝑡

0
∥𝜇∥2

L∞ (Ω)

(√𝜈𝜕𝑧u2
OA

)
≤ 𝐵3 + 2𝑁2𝐵2M

with 𝐵3 = 2𝐶2𝐵2 + 2
�� [𝜕𝑡g]𝑎𝑜 ��2.Taking the expression of 𝐵2 given in (A.4), there exist

𝐷𝑖 > 0 depending on𝑇 and bound on 𝜈 such that 𝐵𝑖 ≤ 𝐷𝑖

(
∥g∥2

H2 (0,𝑇;H1 (Ω) ) +
u0

2
H2 (Ω) )

)
for 𝑖 ∈ {1, 2, 3} and

𝐵3 + 2𝑁2𝐵2M ≤ 𝐷3

(
∥g∥2

H2 (0,𝑇;H1 (Ω) ) +
u02

H2 (Ω)

) (
1 + 2𝐵2𝑁2𝑒𝑁

2𝐵2
)

Taking 𝐷 = max𝑖∈{1,2} 𝐷𝑖 , if we have (3.20) then
(
𝐵3 + 2𝑁2𝐵2 (M2) ) ≤ 𝐵2 and√︃

𝐶𝐷
∫ 𝑡
0

�� [𝜕𝑡u]𝑎
𝑜

��2 ≤ 𝐵. □

Remark the condition (3.20) is not optimal and can be improved for specific g. Generally
speaking the product between the variation on 𝜈 and global norm on the source term have
to be small enough. This condition is of same nature as uniqueness criteria previously
established in the stationary state. Consequently, the condition (3.20) is an additional
criterion to the well-posedness criteria that we will be establish in Proposition 3.9. We
now have all the tools necessary to apply the fixed point method on the non-stationary
and non-local problem.

Theorem 3.10 (Existence and uniqueness of the non local problem). Let g ∈ H2 (0, 𝑇 ;
H1 (Ω)) ∩ L∞ (0, 𝑇 ; H2 (Ω)) and u0 ∈ H2 (Ω) a solution of the stationary state P𝑒 with
source term g(𝑡 = 0). We suppose 𝜈(𝑧, 𝑢∗) ∈ C1 (Ω × R+

)
. We suppose g, and 𝜈 such that

there exist 𝐵 ≥ 0 satisfying condition (3.20). If 𝜈𝛼 also satisfy 𝜈(𝑧, 𝑎) − 𝜈(𝑧, 𝑏)√︁
𝜈(𝑧, 𝑎)𝜈(𝑧, 𝑏)


L∞

(
Ω

) ≤ (
𝐶
√︁
𝐶𝐷M

)−1
|𝑎 − 𝑏 | ∀ 𝑎, 𝑏 ≥ 0 (3.21)

withM define in Proposition 3.9, then there exist a unique solution of P given by (2.9) such
that (u, 𝑢∗) ∈ L2 (0, 𝑇 ; H2 (Ω)) ∩ H1 (0, 𝑇 ; H1 (Ω) × C1 [0, 𝑇]), and ∥𝜕𝑡𝑢∗∥L2 (0,𝑇 ) ≤ 𝐵. A
Lipschitz condition depending on source term that implies (3.21) is

∥𝜈(𝑧, 𝑎) − 𝜈(𝑧, 𝑏)∥
L∞

(
Ω

) ≤ 𝜈𝑚𝛼

𝐶
√
𝐶𝐷G

|𝑎 − 𝑏 | ∀ 𝑎, 𝑏 ≥ 0 (3.22)

141



S. Thery

with G given by (3.19). The condition (3.20) imply that G is decreasing when
∥g∥H2 (0,𝑇;H1 (Ω) )∩H1 (0,𝑇;H2 (Ω) ) , and 𝐵 decrease.

Proof. The proof follow the same step than in the stationary state. We consider the map

𝐹 :=

{
V∗
𝐵 −→ V∗

𝐵 where u is the solution of

𝑢∗ −→
√︁
𝐶𝐷

�� [u]𝑎
𝑜

�� L(𝑢∗) given by Definition 3.1

According to Theorem 3.4, there exist solution of the stationary problem (u0, 𝑢∗𝑒) ∈
H2 (Ω)×R+with source term g0 ∈ H2 (Ω). If g ∈ H1 (0, 𝑇 ; H2 (Ω)) then g(𝑡 = 0) ∈ H2 (Ω))
and (u0, 𝑢∗𝑒) satisfy the compatibility solution. According to Proposition 3.9 if 𝑢∗ ∈ V∗

𝑀,𝐵

with 𝑢∗ (0) = 𝑢∗𝑒 then the unique solution u of L(𝑢∗) is such that
√
𝐶𝐷

�� [u + g
]𝑎
𝑜

�� ∈ V∗
𝑀,𝐵

.
We want to show that 𝐹 is a contracting mapping and the proof follow the step for the
stationary state. We pose 𝑢∗, 𝑣∗ ∈ C1 [0, 𝑇] and u the unique solution of P𝑒 (𝑢∗) and v
the unique solution of P𝑒 (𝑣∗). We define w := u − v. We want to find a condition to
ensure that 𝐹 is a contracting mapping, which means

√
𝐶𝐷

���� [u]𝑎
𝑜

�� − �� [v]𝑎
𝑜

���� < |𝑢∗ − 𝑣∗ |.
Subtracting equation on u and v gives:

∥u − v∥2
OA (𝑡) +

∫ 𝑡

0

√︁𝜈(𝑢∗)𝜕𝑧 (u − v)
2

OA
+

∫ 𝑡

0
𝐴1

= −
∫ 𝑡

0

〈√︁
𝜈(𝑢∗) (u − v), 𝜂

√︁
𝜈(𝑣∗)v

〉
OA

𝐴1 = 𝐶𝐷

( [
ũ
]𝑎
𝑜
−

[̃
v
]𝑎
𝑜

)
·
(�� [ũ]𝑎

𝑜

�� [ũ]𝑎
𝑜
−

�� [̃v]𝑎
𝑜

�� [̃v]𝑎
𝑜

)
with 𝜂 = (𝜈(𝑢∗) − 𝜈(𝑣∗))/

√︁
𝜈(𝑢∗)𝜈(𝑣∗). Remark that 𝐶𝐷 |

�� [ũ]𝑎
𝑜

�� − �� [̃v]𝑎
𝑜

�� |3 ≤ 𝐴1. Us-

ing (3.11) we have
∫ 𝑡
0

���� [ũ]𝑎
𝑜

�� − �� [̃v]𝑎
𝑜

����2 ≤ 𝐶2
∫ 𝑡
0

√︁𝜈(𝑢∗)𝜕𝑧 (u − v)
2

OA
and then∫ 𝑡

0

√︁𝜈(𝑢∗)𝜕𝑧 (u − v)
2

OA
≤ M max

𝛼∈{𝑜,𝑎}

∫ 𝑡

0
∥𝜂𝛼∥2

L∞ (Ω𝛼 )

Injecting (3.21) it conclude the proof. Criterion (3.22) is obtained using 𝜈𝛼 (𝑧, 𝑢∗) ≥ 𝜈𝑚𝛼
for all 𝑧, 𝑢∗ and definition on G. □

As the Banach’s fixed point method is applied in the same way in the stationary and
the non stationary state, well-posedness criteria for the non stationary state contain the
same ingredients as uniqueness criteria for the stationary state. Generally speaking, the
product between ∥𝜕𝑢∗𝜈∥L∞ and norm on source term g have to be small compare to the
minimum of 𝜈. In the non-stationary state, an additional condition of the same nature
have to be verified to apply the fixed-point method. Note that uniqueness criteria given
Propositions 3.3 and 3.8 are sufficient criteria. Then for viscosity profile with large
variations these conditions can be too restrictive and it not properly answer the question of
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the uniqueness of solution. We will see in Section 4.1 that this is the case with viscosity
profile specific to the OA framework and will give another method to answer the question
of the uniqueness of solution in the stationary state for this specific viscosity profile.

4. Well-posedness for KPP viscosty profiles

4.1. No Uniqueness for OA order of magnitude

In Section 3.1, the existence of a solution in the stationary state has been proved for a
general parametrized viscosity profile 𝜈(𝑧, 𝑢∗). However the uniqueness of the solution
is proved only for very smooth profiles of 𝜈. In this section, we discuss the uniqueness
of a solution for viscosity profiles used in realistic OA coupled models as given by
Definition 2.1. We will see in Section 4.2 that the criteria given in the general case
cannot ensure the uniqueness of solution for parameters with orders of magnitude of OA
coupling models. To answer the question of uniqueness, we give a necessary and sufficient
condition in the stationary state in Section 4.3. This condition can be computed by solving
the stationary problem analytically. This is done in Section 4.4 for approximated KPP
viscosity profiles. We will see that there is non uniqueness of solutions because the size of
the buffer zone (delimited by [𝛿𝑜, 𝛿𝑎]) is fixed. Throughout this section, we define values
of 𝑢∗ that are considered as physically acceptable in the context of OA coupling.

Definition 4.1 (Interval of 𝑢∗). Since 𝑢∗ is related to the thickness of the turbulent
layer |ℎ𝛼 |, values of 𝑢∗ are limited by their physical definitions and by the constraint
ℎ𝛼 ∈ (𝛿𝛼,Z∞

𝛼 ). Under these constraints, we define 𝐼∗ as the interval of 𝑢∗ corresponding
to physically acceptable values

𝐼∗ :=
]
max

(
𝛿𝑎

𝑐𝑎
,
𝛿𝑜

𝑐𝑜

)
,min

(
Z∞
𝑎

𝑐𝑎
,
Z∞
𝑜

𝑐𝑜

) [
=

]
𝑢∗min, 𝑢

∗
max

[
(4.1)

Depending on the reference values given by Definition 2.2, this gives 𝐼∗ ≈ ]0.001, 0.7[.

4.2. Non-uniqueness for OA order of magnitude

In Section 3 we have established criteria to ensure the well-posedness of the non-local
problem in a general framework. In this paragraph, we wish to apply these results
considering parameters of the order of magnitude of realistic OA coupling. As a first
approximation, we suppose g to be constant in each domain.

Remark 4.2 (Bound on the viscosity profile). Before applying the different criteria, note
that KPP vicosites are not bounded from their parametrisation, (∥𝜈∥L∞ (Ω) can tend to
infinity when 𝑢∗ goes to 0 or infinity) but since we assume a bounded interval of 𝑢∗ ∈ 𝐼∗,
we can define 𝜈 outside on 𝐼∗ as constant and ensure that 𝜈 and 𝜕∗𝑢𝜈 are bounded.
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Here we want to test the existence criterion given in Theorem 3.4 and the uniqueness
criterion given in Theorem 3.6 for a specific KPP viscosity profile. It depend on quantity
G𝑒 which can be express in terms of the source terms g.

Proposition 4.3 (Criteria of uniqueness for constant source terms). We suppose g𝛼 to be
constant and 𝑢∗max is given by Definition 4.1.

M𝑒 ≤ 1
3
𝐶𝐷

�� [ug]𝑎
𝑜

��3 := G𝑒 (4.2)

If

G𝑒 ≤ min

(
(𝑢∗max)3

3
√
𝐶𝐷

; min
𝛼∈{𝑜,𝑎}

(𝜈𝑚𝛼 )2

𝐶𝐷𝐶
2 ∥𝜕𝑢∗𝜈𝛼∥2

L∞ (Ω)×[0,𝑢∗max ]

)
(4.3)

then we have a unique solution of the non local problem P𝑒 satisfying 𝑢∗ ≤ 𝑢∗max.

Proof. Applying weak formulation (3.2) to 𝜕𝑧g = 0 would provides (4.2). Then the
first minimizer in (4.3) ensure existence of solution such that 𝑢∗ ≤ 𝑢∗max, moreover it
would provide

√
𝐶𝐷

�� [u]𝑎
𝑜

�� ≤ 𝑢∗max. The second minimizer would imply the uniqueness
criterion (3.10) for 𝑢∗ ≤ 𝑢∗max. □

Existence of solution in OA framework. According to Theorem 3.4, there exist (at
least one) solution of the stationary problem such that 𝑢∗ ≤

√
𝐶𝐷

�� [g]𝑎
𝑜

��. Considering
the order of magnitude of realistic OA coupling we have

�� [g]𝑎
𝑜

�� ≈ 10 ms−1, that gives
𝑢∗ ≤ 0.3 ms−1 which is consistent the value expected by Definition 4.1. We can now
test the existence of non-stationary solution in the neighbour of stationary solution
given by the Theorem 3.7. Considering KPP viscosity profiles given by Definition 2.2,
we compute numerically 𝑁 = ∥𝜕𝑢𝜈𝛼 (𝑢∗)/(𝜈𝛼 (𝑢∗))∥L∞ (Ω) which turns out to be of the
order of, at least, 104 (see Figure 4.2). The criterion (3.13) would be equivalent to�� [g]𝑎

𝑜

�� ≤ (
6𝑢∗𝑒/(𝐶

3/2
𝐷
𝑁2)

)1/3 ≈ 0.1(𝑢∗𝑒)1/3 ∈ ]4 × 10−5, 7 × 10−2 [ ms−1 that would be
much more smaller than the value expected in the OA framework.

Application of uniqueness criteria in OA framework. From the Definition 4.1 we
have 𝑢∗max ≈ 0.7. The first bound in (4.3) enquires

�� [g]𝑎
𝑜

�� ≤ 𝑢∗max/
√
𝐶𝐷 that is consistent

with the OA order of magnitude. However, the second bound depend on variation on 𝜈.
Taking O’Brien viscosity profile given by (2.2) we have ∥𝜕𝑢𝜈𝛼∥∞ = 2𝜅 |𝑐𝛼 |𝑢∗/3

√
3, its

values for the atmosphere domain are draw in Figure 4.2 and turn out to be of the order
of, at least, 105. For example in the atmosphere domain, criterion (2.2) can be rewrite as

max
𝛼∈{𝑜,𝑎}

∥𝜕𝑢𝜈𝛼 (𝑢∗)∥L∞ (Ω)

√
𝐶𝐷G𝑒𝐶
𝜈𝑚𝛼

≈ 3.6 × 105 �� [g]𝑎
𝑜

��3/2 𝑢∗ ≤ 1. (4.4)
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Then order of magnitude for
�� [g]𝑎

𝑜

�� of for 𝑢∗ such that we have uniqueness of solution
have to be much more smaller than the value expected in the OA framework.

Non-uniqueness in the OA framework. In general, the viscosity profile conditions
required to guarantee solution uniqueness are very restrictive and cannot be expected in
the context of OA coupling. Here the criteria are sufficient but not necessary, and the
bounds on the V norms to illustrate the purpose are taken broadly as a function of the
source term. Therefore the fixed-point method as proposed here does not seem to be well
adapted to fully answer the question of the well-posedness of the coupled problem. Either
the bounds are too large, or the problem arises from the nature of the viscosity profiles
with the constraints given by the model (see Section 2.2). To answer this question, we
solve the non-local problem in the stationary state for some specific viscosity profiles.

4.3. A necessary and sufficient condition for the stationary problem

Section 3 was considering the coupled system as a fixed-point problem, and the obtained
well-posedness criteria are too restrictive to be used in the OA context. Let assume that,
in the stationary case, the problem can be solved with some given viscosity profiles that
allow us to compute explicit solution of (2.9), and thus lead to a necessary and sufficient
well-posedness criterion for existence and uniqueness of solutions. We seek to compute
the explicit stationary solution considering constant in time and space geostrophic currents.
Considering KPP viscosities leads us to consider values of 𝑢∗ ∈ 𝐼∗ for which viscosity
profiles have a physical meaning. Note that we will rewrite the interface condition as
𝜈𝑎 (𝛿𝑎, 𝑢∗)𝜕𝑧u𝑎 (𝛿, 𝑡) =

√
𝐶𝐷𝑢

∗ [u]𝑎
𝑜
. The obtained system is equivalent to (2.9) and the

following results will also hold to the original system (2.9) since the criterion given here
is a necessary and sufficient condition for the well-posedness.

In the following, we will use the following change of variable to reduce the system (2.9)
to a complex-variable system. Let us pose

Φ𝛼 :=
1
√

2

(
1 𝑖

1 −𝑖

) (
𝑢𝛼

𝑣𝛼

)
=:

(
𝜙𝛼,1
𝜙𝛼,2

)
and Φ

𝑔
𝛼 :=

1
√

2

(
1 𝑖

1 −𝑖

)
g𝛼

Using this change of variable in (2.9) gives(
𝑖 𝑓 0
0 −𝑖 𝑓

)
Φ𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑧, 𝑢∗) 𝜕𝑧Φ𝛼) =

(
𝑖 𝑓 0
0 −𝑖 𝑓

)
Φ
𝑔
𝛼 on Ω𝛼, (4.5a)

Φ𝛼 (Z∞
𝛼 ) = Φ

𝑔
𝛼 (Z∞

𝛼 ) (4.5b)

𝜈𝑜 𝜕𝑧Φ𝑜 (𝛿𝑜, 𝑡) = 𝜆2𝜈𝑎 Φ𝑎 (𝛿𝑎, 𝑡) (4.5c)
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𝜈𝛿𝑎 𝜕𝑧Φ𝑎 (𝛿𝑎, 𝑡) = 𝑢∗
√︁
𝐶𝐷 (Φ𝑎 (𝛿𝑎, 𝑡) −Φ𝑜 (𝛿𝑜, 𝑡)) (4.5d)

𝑢∗ =
√︁
𝐶𝐷

Φ𝛿
𝑎 −Φ𝛿

𝑜

 (4.5e)

with 𝛼 ∈ {𝑜, 𝑎} and ∥Φ∥ =

√︃
Φ
𝑇
Φ. Note that the change of variable conserves the

norm i.e. ∥u∥2 = ∥Φ∥2. We have a pair of equation systems that can be translated as
𝜙𝛼,1 = 𝜙𝛼,2 and ∥u∥ = ∥Φ∥ =

√
2|𝜙𝛼,1 | =

√
2|𝜙𝛼,2 |. Finally system (4.5) can be split in

two independent system, one on 𝜙𝛼,1 and one 𝜙𝛼,2. Considering 𝑓 > 0 and 𝑓 < 0 to
taking into account the two systems of equations on 𝜙𝛼,1 and 𝜙𝛼,2 we obtain the system

𝑖 𝑓 𝜙𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑢∗, 𝑧)𝜕𝑧𝜙𝛼 (𝑧)) = 𝑖 𝑓 𝜙𝑔𝛼 on (𝛿𝛼,Z∞
𝛼 ) (4.6a)

𝜙𝛼 (Z∞
𝛼 ) = 𝜙

𝑔
𝛼 (Z∞

𝛼 ) (4.6b)

𝜈𝑜 (𝑢∗, 𝛿𝑜) 𝜕𝑧𝜙𝑜 (𝛿𝑜) = 𝜆2𝜈𝑎 (𝑢∗, 𝛿𝑎) 𝜕𝑧𝜙𝑎 (𝛿𝑎) (4.6c)

𝜈𝑎 (𝑢∗, 𝛿𝑎) 𝜕𝑧𝜙𝑎 (𝛿𝑎) =
√︁
𝐶𝐷𝑢

∗ (𝜙𝑎 (𝛿𝑎) − 𝜙𝑜 (𝛿𝑜)) (4.6d)

𝑢∗ =
√︁

2𝐶𝐷 |𝜙𝑎 (𝛿𝑎) − 𝜙𝑜 (𝛿𝑜) | (4.6e)

Definition 4.4 (Definition of S𝛼). For a given 𝜈(𝑢∗, 𝑧), solutions of{
𝑖 𝑓 𝜙𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑢∗, 𝑧)𝜕𝑧𝜙𝛼 (𝑧)) = 0 on (𝛿𝛼,Z∞

𝛼 )
𝜙𝛼 (Z∞

𝛼 ) = 0
(4.7)

are given by 𝐴𝛼 (𝑢∗)𝜓𝛼 (𝑧, 𝑢∗), where 𝐴𝛼 does not depend on 𝑧 and 𝜓 is composed by
generating solution of the first line of (4.7). We define

S𝛼 (𝑢∗) :=
𝜓(𝛿𝛼, 𝑢∗)

𝜈𝛼 (𝛿𝛼, 𝑢∗)𝜕𝑧𝜓(𝛿𝛼, 𝑢∗)
(4.8)

Some profiles of S𝛼 have been given in [26] for different types of viscosity profiles.

Theorem 4.5 (Well-posedness criterion). Let define

𝐹 :

𝐼∗ × [2𝜋[ −→ C

(𝑢, 𝜃) −→ 𝑢𝑒𝑖 𝜃
√

2𝐶𝐷

(
1 − 𝑢

√︁
𝐶𝐷S𝑎 (𝑢) + 𝜆2𝑢

√︁
𝐶𝐷S𝑜 (𝑢)

) (4.9)

Then problem (4.6) is well-posed on 𝐼 ⊂ 𝐼∗ if and only if 𝐹 is injective on 𝐼 × [2𝜋[. This
amounts to determine the largest interval 𝐼 ⊂ 𝐼∗ such that����𝜕𝑢 (����𝑢√︃𝐶−1

𝐷
− 𝑢2S𝑎 (𝑢) + 𝜆2𝑢2S𝑜 (𝑢)

����) ���� > 0 ∀ 𝑢 ∈ 𝐼 ⊂ 𝐼∗ (4.10)

If 𝜙𝑔𝛼 are constant we have the equality:

𝜙
𝑔
𝑎 − 𝜙𝑔𝑜 = 𝐹 (𝑢∗, arg(𝜙𝑎 (𝛿𝑎) − 𝜙𝑜 (𝛿𝑜))) (4.11)
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Proof. Let pose 𝜓𝑝𝛼 a particular solution of the main equation (4.6a)–(4.6b) and solutions
in each domain can be written as 𝜙𝛼 (𝑧) = 𝐴𝛼𝜓𝛼 (𝑧) + 𝜓𝑝𝛼 (𝑧). Using interface conditions
and definitions of S𝛼, we have:

𝜙𝑎 (𝛿𝑎) − 𝜙𝑜 (𝛿𝑜) = 𝜓𝑝𝑎 (𝛿𝑎) − 𝜓𝑝𝑜 (𝛿𝑜) + 𝐴𝑎𝜓𝑎 (𝛿𝑎) (1 − 𝜆2S−1
𝑎 S𝑜)

= 𝜓
𝑝
𝑎 (𝛿𝑎) − 𝜓𝑝𝑜 (𝛿𝑜) + 𝑢∗

√︁
𝐶𝐷

(
𝜙𝛿𝑎 − 𝜙𝛿𝑜

)
S𝑎 (1 − 𝜆2S−1

𝑎 S𝑜)

𝜓
𝑝
𝑎 (𝛿𝑎) − 𝜓𝑝𝑜 (𝛿𝑜) = (𝜙𝛿𝑎 − 𝜙𝛿𝑜 ) (1 −

√︁
𝐶𝐷𝑢

∗S𝑎 + 𝜆2
√︁
𝐶𝐷𝑢

∗S𝑜) (4.12)

Let 𝑢∗ =
√

2𝐶𝐷 |𝜙𝛿𝑎 − 𝜙𝛿𝑜 | and 𝜃 = arg(𝜙𝛿𝑎 − 𝜙𝛿𝑜 ), which gives (4.11). Define 𝐺 the
application from R2 into R2 as 𝐺 : (𝑢∗, 𝜃) → (|𝐹 (𝑢∗, 𝜃) |, arg(𝐹 (𝑢∗, 𝜃))). Then 𝐺 is
a diffeomorphism from 𝐼 ⊂ 𝐼∗ × [0, 2𝜋[ to 𝐹 (𝐼, [0, 2𝜋[) if det(𝐽𝐺 (𝑢∗, 𝜃)) ≠ 0 for all
(𝑢∗, 𝜃) ∈ 𝐼 × [0, 2𝜋[ with 𝐽𝐺 the Jacobian matrix of 𝐺. Then

𝐽𝐺 (𝑢, 𝜃) =
(

𝜕𝑢 |𝐹 (𝑢, 𝜃) | 𝜕𝜃 |𝐹 (𝑢, 𝜃) |
𝜕𝑢 (arg(𝐹 (𝑢, 𝜃))) 𝜕𝜃 (arg(𝐹 (𝑢, 𝜃)))

)
=

(
𝜕𝑢 |𝐹 (𝑢, 𝜃) | 0

𝜕𝑢 (arg(𝐹 (𝑢, 𝜃))) 1

)
Then det(𝐽𝐺) (𝑢, 𝜃) = 𝜕𝑢 |𝐹 (𝑢, 𝜃) |. If 𝜙𝑔𝛼 is constant, it is a particular solution of
(4.6a)–(4.6b) and we obtain (4.11) from (4.12). □

Proposition 4.6 (Particular case with no Coriolis force ( 𝑓 = 0)). Let consider the simpler
case where the Coriolis force is neglected ( 𝑓 = 0) in the system (4.6). Then (4.6a)–(4.6b)
can be solved3 for every 𝜈 with

S𝛼 = −X𝛼
∫
Ω𝛼

𝜈−1
𝛼 d𝑧 where X𝑎 = 1 and X𝑜 = −1 (4.13)

and the well-posedness criterion (4.10) is an analytic expression on 𝑢∗. Under the
hypothesis of KPP viscosity profiles (Definition 2.1), we find that the problem (4.6) is
well-posed on the interval

𝐼 =

]
𝑢∗min,min

(
𝑢∗max,

2
3
𝑤∗

) [
(4.14)

with 𝑤∗ ≈ Z∞
𝑎 −𝜆Z∞

𝑜

𝑐𝑎−𝜆𝑐𝑜 , and in the context of OA coupling 𝑤∗ ≈ Z∞
𝑎

𝑐𝑎
= 𝑢∗max.

Proof. If 𝑓 = 0 the resolution of (4.6a)–(4.6b) gives 𝜈𝛼 (𝑧, 𝑢∗)𝜕𝑧u𝛼 = 𝐶𝛼 with 𝐶𝛼 a
constant in 𝑧. The interface condition can be written as 𝜆−2𝐶𝑜 = 𝐶𝑎. Then 𝜙𝛼 (𝑧) =

−X𝛼
∫
(𝑧,Z∞

𝛼 )
𝐶𝛼𝜈

−1
𝛼 (𝑧′)𝑑𝑧′ where X𝑎 = 1 and X𝑜 = −1, which leads to (4.13). Under the

3Remark that we consider 𝑓 = 0 in the equation, but ℎ𝛼 still depending on 𝑓 and we use a realistic value of
𝑓 for ℎ𝛼 definition
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Figure 4.1. Left panel: computedS𝛼 (plain lines) for O’Brien KPP vis-
cosity profile (Definition 2.2) and their approximations given by (4.13)
(dashed lines). Curves are superimposed. Right panel: corresponding
profile of

�� [𝜙𝑔]𝑎
𝑜

�� = |𝐹 (𝑢∗) |

hypotheses of Definition 2.1, and especially 𝜈𝑚𝛼 ≪ 𝐷𝛼 (𝑢∗, 𝑧) for all 𝑧 ∈ (𝛿𝛼, ℎ𝛼 (1 − 𝜖)),
and using 𝜈𝑚𝑜 = 𝜆𝜈𝑚𝑎 , we can approximate:

S𝛼 ≈ −X𝑎
|Z∞
𝛼 − ℎ𝛼 |
𝜈𝑚𝛼

− S𝑎 + 𝜆2S𝑜 ≈
Z∞
𝑎 − 𝜆Z∞

𝑜 − (ℎ𝑎 − 𝜆ℎ𝑜)
𝜈𝑚𝑎

𝜕𝑢

(
−S𝑎 + 𝜆2S𝑜

)
≈ −𝑐𝑎 − 𝜆𝑐𝑜

𝜈𝑚𝑎

Note S = −S𝑎 + 𝜆2S𝑜 > 0 and condition (4.10) can be rewritten as���√︁𝐶𝐷−1
+ 𝜕𝑢

(
(𝑢∗)2S(𝑢∗)

)��� > 0.

Then the problem is well-posed if 𝜕𝑢
(
(𝑢∗)2S(𝑢∗)

)
> 0 or

��𝜕𝑢 (
(𝑢∗)2S(𝑢∗)

) �� < √
𝐶𝐷

−1.
Since 𝜈𝑚𝑎 ≪ 𝑢∗

√
𝐶𝐷 , we can consider only 𝜕𝑢

(
(𝑢∗)2S(𝑢∗)

)
> 0. The expression of S

gives us the root 2
3𝑤

∗. □

This result illustrates the fact that there is non-uniqueness of solutions, and this
non-uniqueness is inherent in the OA order of magnitude (with a global shape such that
𝜈𝛼 ≫ 𝜈𝑚𝛼 on (𝛿𝛼, ℎ𝛼)). For viscosity profiles given by Definition 2.1, Figure 4.1 presents
the computed S𝛼, the profile of

�� [𝜙𝑔]𝑎
𝑜

�� = |𝐹 (𝑢∗) | for 𝑢∗ ∈ 𝐼∗, and their respective
approximations given by (4.13).
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Figure 4.2. Left panel: O’Brien KPP viscotity profile 𝜈Obrien
𝑎 given

by (2.8) (plain line), 𝜈1,𝑎 (dashed line) and 𝜈2,𝑎 (dotted line) given
by Definition 4.7 for different values of 𝑢∗. Right panel: the cor-
responding values of ∥𝜕𝑢𝜈∥L∞ (Ω𝑎 ) /𝜈𝑚𝑎 (black lines) and 𝑁𝑎 (𝑢∗) =

∥𝜕𝑢𝜈(𝑢∗)/𝜈(𝑢∗)∥L∞ (Ω𝑎 ) (grey line) for 𝜈Obrien
𝑎 only.

4.4. Application to KPP viscosity profiles

The resolution of (4.6a) cannot be explicitly computed for a general viscosity profile if
𝑓 ≠ 0. Here we propose to consider KPP viscosity profiles as given by Definition 2.2. The
parameterization of 𝜈 in the context of OA coupling is generally given by a third-order
polynomial in 𝑧 to suit the hypotheses of the KPP viscosity profile. In order to simplify
the resolution of (4.6a), we propose to approximate the viscosity by a second-order
polynomial. This approximation can be justified by the concave profile of the viscosity
profiles in the turbulent zone (𝛿𝛼, ℎ𝛼). However, a third-order viscosity profile being
necessary to ensure C1 regularity of 𝜈 in ℎ𝛼, we will assume here that considering only
C0 regularity on 𝜈 to compute S is not significant (indeed 𝜈 is not C1 but 𝜕𝑢𝜈 is bounded).
To remain consistent with the OA context, we build a viscosity profile that verifies the
KPP viscosity profile hypotheses (see Definition 2.1) except the C1 continuity in ℎ𝛼.

Definition 4.7 (Definition and hypotheses on approximation of 𝜈). To guarantee that the
assumptions of Definition 2.1 are satisfied, and to ensure a relevant approximation, we will
make the approximation that 𝜈approx

𝛼 (ℎ𝛼) = 𝜈𝛼 (ℎ𝛼) = 𝜈approx
𝛼 (𝑧 = 0) = 𝜈𝛼 (𝑧 = 0) = 𝜈𝑚𝛼 .

One degree of freedom remains to approximate 𝜈, which must guarantee the concave
shape of 𝜈approx, and thus we add the condition 𝜈approx (𝛿𝛼) ≈ 𝜈(𝛿𝛼). We denote this last
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degree of freedom 𝐴𝛼 such that:

𝜈
approx
𝛼 =


𝜈𝛼 = 𝜈𝑚𝛼 on (ℎ𝛼,Z∞

𝛼 )

𝐷𝛼 (𝑧) Heaviside
(
1 − 𝑧

ℎ𝛼

)
+ 𝜈𝑚𝛼 ∈ 𝑃2 (R) on (0, ℎ𝛼)

(4.15a)

with 𝐷𝛼 (𝑧) = 𝐾𝛼𝑧(𝑧 − ℎ𝛼) > 0, 𝐷𝛼 (𝛿) in the order of magnitude of 𝜅𝑢∗𝛿𝛼 (4.15b)

Two examples of such approximations of 𝜈Obrien (given by (2.8)) are proposed here:

(1) to ensure 𝜈1,𝛼 (𝛿𝛼) = 𝜈Obrien
𝛼 (𝛿𝛼) for all 𝑢∗, we take 𝐾1,𝛼 = −𝜅𝑢∗ |𝛿𝛼 − ℎ𝛼 |/ℎ2

𝛼.

(2) to ensure
𝜈2,𝛼 (𝑢∗)


L∞ (Ω) =

𝜈Obrien (𝑢∗)


L∞ (Ω) for all 𝑢∗ we take 𝐾2,𝛼 =

−16𝜅/(27|𝑐𝛼 |)

According to Figure 4.2,
𝜕𝑢𝜈1,𝛼


L∞ (Ω) and

𝜕𝑢𝜈2,𝛼


L∞ (Ω) is of the same order of
magnitude than

𝜕𝑢𝜈Obrien
𝛼


L∞ (Ω) .

Proposition 4.8 (Resolution of the equations on each subdomain). Supposing 𝑓 ≠ 0,
then for KPP viscosity profiles given by Definition 4.7 with 𝐷𝛼 = 𝐾𝛼𝑧(𝑧 − ℎ𝛼) we have :

𝜈𝛼 (𝛿𝛼)𝑆𝛼 ≈ 𝛿𝛼
(
ln

(
𝛿𝛼

ℎ𝛼

)
− (1 + 𝜉𝛼)−1

)
𝜉 = −1

2

(
1 +

√︁
1 + 𝑖 𝑓 /𝐾𝛼

)
(4.16)

This result is an asymptotic approximation of an exact computation of S given in
Appendix A.3 by (A.5).

Proof. Using approximation (4.15), we can now solve the system (4.7). For each 𝑢∗, we
separate each domain into two parts:

• the free zones, where interface turbulence has no impact, (𝑧 ∈ (ℎ𝛼,Z∞
𝛼 )) :

𝜑𝛼 (𝑧) = 𝐵𝛼,𝑙
(
𝑒𝜍𝛼𝑧 − 𝑒𝜍𝛼 (2Z∞

𝛼−𝑧)
)

𝜕𝑧𝜑𝛼 = 𝜍𝛼𝐵𝛼,𝑙

(
𝑒𝜍𝛼𝑧 + 𝑒𝜍𝛼 (2Z∞

𝛼−𝑧)
)

with 𝜍𝛼 =

√︃
𝑖 𝑓

𝜈𝑚𝛼

• the turbulent zone, close to the interface (𝑧 ∈ (𝛿𝛼, ℎ∗𝛼)) :

𝜑𝛼 (𝑧) = 𝐶𝛼,𝑡𝑃𝛼 (𝑟𝛼 (𝑧)) + 𝐵𝛼,𝑡𝑃𝛼 (−𝑟𝛼 (𝑧))

𝜕𝑧𝜑𝛼 (𝑧) =
X𝛼𝜉𝛼 (𝜉𝛼 + 1)
ℎ𝛼

√︁
1 + 4𝜇𝛼

(
𝐶𝛼,𝑡𝐺𝛼 (𝑟𝛼 (𝑧)) − 𝐵𝛼,𝑡𝐺𝛼 (−𝑟𝛼 (𝑧))

)
with X𝑜 = −1, X𝑎 = 1, 𝑟𝛼 (𝑧) = X𝛼 (1 − 2𝑧/ℎ𝛼)/

√︁
1 + 4𝜇𝛼, 𝜇𝛼 = 𝜈𝑚𝛼 /(|𝐾𝛼 |ℎ2

𝛼).
𝑃 and 𝐺 are Legendre polynomials which can also be written in terms of
hypergeometric function 𝑃𝛼 (𝑟 (𝑧)) = 2𝐹1 (𝜉𝛼 + 1,−𝜉𝛼, 1, (1 − 𝑟 (𝑧))/2), and
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𝐺𝛼 (𝜂(𝑧)) = 2𝐹1 (𝜉𝛼 + 2, 1− 𝜉𝛼, 2, (1− 𝑟 (𝑧))/2). For a justification of this result
see [26].

Results in Proposition 4.8 are then obtained by considering a solution in C1 (Ω𝛼) and
using some asymptotic expansions mostly based on the fact that 𝜇 ≪ 1. See Appendix A.3
for the full computation to obtain (A.5) and (4.16). □

Theorem 4.9 (Non-uniqueness for KPP viscosity profiles). The well-posedness crite-
rion (4.10) applied to the problem (4.6), gives the following well-posedness properties for
every viscosity profiles as given in Definition 4.7:

• There exists a unique solution to the problem (4.6) on ]2𝑢∗min, 𝑢
∗
max] if

1 − 𝜅

2
√
𝐶𝐷

≤ 𝑢∗𝜕𝑢𝜈𝛼 (𝛿𝛼, 𝑢∗)
𝜈𝛼 (𝛿𝛼, 𝑢∗)

≤ 2 + 𝜅

2
√
𝐶𝐷

����ln (
𝛿𝛼

𝐻𝛼

)
+ 1

����−1
(4.18)

In OA order of magnitude we have 𝜅

2
√
𝐶𝐷

≈ 5.8 and 𝜅

2
√
𝐶𝐷

���ln (
𝛿𝛼
𝐻𝛼

)���−1
≈ 2.

• There exists a root 𝑤∗ ≈ 2𝑢∗min to (4.10) therefore problem (4.6) has least two
solutions on any interval containing 𝑤∗.

Proof. The proof is given in Appendix A.4 and use result (4.16). It is based on the study
of the sign of 𝜕𝑢 |𝐹 | given by (4.9). It shows that assuming (4.18) for 𝑢∗ ∈ 𝐼 allows to
ensure that 𝜕𝑢 |𝐹 | > 0 whatever the sign of 𝑓 . Also we show that the sign of 𝜕𝑢 |𝐹 | changes
for a 𝑤∗ ≈ 2𝑢∗min which gives non-uniqueness of solution. □

Theorem 4.9 shows that, for KPP viscosity profiles, we have the non-uniqueness of
solution for physically relevant values of 𝑢∗. Even if an approximation is made on viscosity
profiles for the computations, it seems that the well-posedness issues are inherent to the
global KPP viscosity profiles and the OA orders of magnitude. For the reference OA values
from Definition 2.2, we plot in Figure 4.3 the S𝛼 as given by (A.5) and their respective
approximations given by (4.16). The corresponding profile of

�� [𝜙𝑔]𝑎
𝑜

�� = |𝐹 (𝑢∗) | for
𝑢∗ ∈ 𝐼∗ drawn black in the right panel of Figure 4.3, shows an inflexion point of |𝐹 (𝑢∗) |
close to 2𝑢∗min. Note that, according to the computation in Appendix A.3, the inflection
point 𝑤∗ goes to 0 if |𝛿𝛼 | goes to 0, and then the equivalent problem considering an
interface with zero thickness would be well-posed. Theorem 4.9 highlights the role of
boundary layer parameterization and uniqueness issues appears for low values of 𝑢∗.
Indeed, by asymptotics, if 𝑢∗ → 𝑢∗min the parametrization at the interface which gives
𝜈 = 𝜅𝑢∗𝑧 + 𝜈𝑚𝛼 is not consistent with the parametrization in the ocean or atmosphere
domains 𝜈 → 𝜈𝑚𝛼 and the boundary layer becomes more important than the turbulent
layer. Non-uniqueness issues is consequently inherent to the nature of the KPP viscosity
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Figure 4.3. For KPP viscosity profiles with reference values (see
Definition 2.2). Left panel: S𝛼 given for, 𝜈𝛼,1 in continuous line, 𝜈𝛼,2
in dashed line. Black lines correspond to the atmospheric part and grey
lines to the oceanic part. Right panel: the corresponding profiles of���� [𝜙𝑔] ��𝑎

𝑜

�� = |𝐹 (𝑢∗) | with the same line style. Dot-dashed line and doted
line are superimposed. Black lines correspond to the case of fixed 𝛿𝛼
and grey lines to the case 𝛿𝛼 = ℎ𝛼/4.

profile with fixed boundary layer thickness. Therefore, from a mathematical point of view,
we can solve the problem by assuming that the buffer zone varies as a function of 𝑢∗.
Under these conditions, we can show that the problem is generally well posed for viscosity
profiles compatible with KPP viscosity profiles.

Theorem 4.10 (Uniqueness for non-fixed buffer zone). Let consider (4.6) and suppose
𝛿𝛼 = 𝛽ℎ𝛼 for a constant 𝛽 < 𝑒−1 ≈ 0.3. Then, there exists an unique solution to (4.6) in
𝑢∗ ∈ [𝑢∗min, 𝑢

∗
max] if

𝑢∗𝜕𝑢𝜈𝛼 (𝛿𝛼, 𝑢∗)
𝜈𝛼 (𝛿𝛼, 𝑢∗)

≤ 2 + 𝜅

2
√
𝐶𝐷

|ln (𝛽) + 1|−1 (4.19)

As an example with 𝛽 = 1/4 we have 𝜅

2
√
𝐶𝐷

|ln (𝛽) + 1|−1 ≈ 12

Proof. Replacing 𝛿𝛼 by 𝛽ℎ𝛼 in the equation (A.5) then asymptotic (4.16) remains true.
The proof given in Appendix A.4 shows that 𝜕𝑢 |𝐹 | > 0 for all 𝑢∗ if 𝜈 statisfy (4.19). □

To illustrate Theorem 4.10, the profile of
�� [𝜙𝑔]𝑎

𝑜

�� = |𝐹 (𝑢∗) | considering 𝛿𝑎 =

min(ℎ𝑎/4, 10) is drawn in grey in Figure 4.3 right panel for the two examples 𝜈𝛼,1
and 𝜈𝛼,2. Graphs illustrate that, indeed, |𝐹 (𝑢∗) | is monotoneous on 𝐼∗. Adapting the
thickness of the buffer zone to the thickness of the turbulent layer is thus a solution to
guaranty the well-posedness of the stationary problem. However, in numerical models
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the buffer zone size in fixed by vertical grid and this assumption could not be directly
applied in practice. Nevertheless this example shows that buffer zone parameterizations
have a significant impact on the well-posedness of the problem for low values of 𝑢∗ and
that adapting these parameterizations could solve the uniqueness issue encountered with
KPP viscosity profiles.

5. Conclusion

To summarize, we constructed here a global OA coupled model considering realistic
boundary conditions and taking into account the numerical strategy used by the actual
implemented models. Our coupled model can be described as a non-local Ekman boundary
layer problem with parameterized turbulent viscosity profiles and nonlinear interface
conditions. The non-local property lies in the dependency of the turbulent viscosity
profiles to the jump of the solution around the interface. The interface is described by
a buffer zone where solutions are parametrized as it is done in realistic OA numerical
models. The existence of solutions has been proved on a close problem in the stationary
case, and it was shown that the uniqueness of the solution is possible only for viscosity
profiles with low variations. We adapted this method, based on a fixed-point problem,
to our model and discussed on the application in the OA context. Criteria on viscosity
profiles that ensure well-posedness in the stationary and non-stationary cases was given.
These criteria imply that the uniqueness of the solution can be guarantee for viscosity
profiles with slow variations, which it is not relevant in the OA framework. For the
stationary problem, when it is possible to solve the main equation, we gave a sufficient and
necessary well-posedness criterion that ensures existence and uniqueness of a solution.
We first applied this criterion to the problem without Coriolis force leading to a well-
posedness criterion for every parameterized turbulent viscosities. Finally, we applied this
well-posedness criterion considering the Coriolis effect and KPP viscosity profiles. We
show that there is non-uniqueness of the solution for an interval of physically relevant
solutions. This non-uniqueness is valid not only for a specific viscosity profile but for
a general viscosity profile which follows the hypothesis imposed in OA context. This
uniqueness issue was solved by adapting the thickness of the interface buffer zone.

This paper is a synthetic work on the well-posedness properties on a simplified but
somewhat realistic OA coupled problem. It confirms that, even in a simplified model,
the regularity issues involved by the non-local behavior of the problem remain valid,
both for the stationary and the non-stationary cases. By giving a sufficient condition on
the viscosity profiles to ensure the well-posedness, it highlights that the naive resolution
based on a fixed-point problem is not adapted to the OA framework. Indeed the regularity
of the viscosity profiles considered in this framework does not satisfy the given necessary
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condition. Also, on the stationary problem where some more precise computation can be
made, results show that the consideration of the Coriolis effect is indispensable and can
change the nature of the solution. The non uniqueness issues are also relevant for viscosity
profiles derived from oceanic and atmospheric models. The non-uniqueness of solution is
related to the combination between the viscosity profiles, the interface condition and the
parametrisation in the interface zone, as used in the realistic OA coupled models. Generally
speaking, the non-uniqueness issues appear because of a incompatibility between the
boundary layer parametrisation and the parametrised viscosity profile when the turbulent
layer is small. In this paper, we have tried to stay within the hypotheses considered close
to the realistic models, but improve the compatibility between the viscosity profile and the
interface parametrisations would be a key to ensure the well-posedness of the non-local
OA coupling model.
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Appendix

A.1. Existence of solution of the stationary state

Well-posedness of the stationary weak formulation of the local problem, proof of
Proposition 3.3. We define V := V𝑎 ∪ V𝑜 such that V𝛼 :=

{
v ∈ H1 (Ω𝛼), v(Z∞

𝛼 ) = 0
}

and we define (V𝑚)𝑚≥0 the increasing sequence of finite-dimensional Hilbert subspaces
such that V =

⋃
𝑚≥0 V𝑚 and the continuous mapping Φ𝑚 : V𝑚 → V𝑚 such that

⟨Φ𝑚 (ũ𝑚), v𝑚⟩ =
〈√
𝜈ũ𝑚,

√
𝜈v𝑚

〉
OA + 𝑓

〈
ũ⊥
𝑚, v𝑚

〉
OA

+ 𝐶𝐷
�� [u𝑚]𝑎

𝑜

�� [u𝑚]𝑎
𝑜
·
[
v𝑚

]𝑎
𝑜
+ ⟨𝜕𝑧g, 𝜕𝑧v𝑚⟩OA (A.1)

with u𝑚 = ũ𝑚 + g The existence of solution ũ𝑚 of Φ𝑚 (ũ𝑚) = 0 is proved using a
monotonicity method, see [10] chapter 9 for more details. We need to prove that there
exists 𝑟 > 0 such that ⟨Φ𝑚 (ũ𝑚), ũ𝑚)⟩ ≥ 0 for ∥ũ𝑚∥ = 𝑟 . We first minimize ⟨Φ𝑚 (ũ𝑚), ũ𝑚⟩
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trace theorem we have

Φ𝑚 (ũ𝑚, ũ𝑚)

=
√𝜈𝜕𝑧ũ𝑚2

OA + 𝐶𝐷
�� [u𝑚]𝑎

𝑜

��3 + ⟨𝜈𝜕𝑧g, 𝜕𝑧ũ𝑚⟩OA − 𝐶𝐷
�� [u𝑚]𝑎

𝑜

�� [u𝑚]𝑎
𝑜
·
[
g
]𝑎
𝑜

≥
√𝜈𝜕𝑧ũ𝑚

OA

(√𝜈𝜕𝑧ũ𝑚
OA −

√𝜈𝜕𝑧gOA

)
+ 𝐶𝐷

�� [u]𝑎
𝑜

��2 (�� [ũ + g
]𝑎
𝑜

�� − �� [g𝑚]𝑎
𝑜

��)
Taking ũ𝑚 = g then

�� [ũ]𝑎
𝑜

�� = 2
�� [g]𝑎

𝑜

�� and ⟨Φ𝑚 (g), g)⟩ ≥ 0. Applying the Brouwer’s
fixed point, there exists a solution in ũ𝑚 ∈ V𝑚 such that ∥ũ𝑚∥OA + ∥𝜕𝑧ũ𝑚∥OA ≤
∥g∥OA + ∥𝜕𝑧g∥OA.

Existence of solution of the non local stationary problem, proof of Theorem 3.4.
We use the same step that the proof of the well-posedness of the local problem above,
with the additional constraint 𝑢∗ =

√
𝐶𝐷

�� [ũ]𝑎
𝑜

��. Let us note Ψ𝑚 : V𝑚 × R → V𝑚 × R
withV𝑚 ⊂ V and given by Ψ𝑚 (ũ𝑚, 𝑢∗) =

(
Φ𝑚,𝑢∗ (ũ𝑚), 𝑢∗ −

√
𝐶𝐷

�� [ũ𝑚]𝑎
𝑜

��) and such that
Ψ𝑚 (ũ𝑚, 𝑢∗) · (v𝑚, 𝑣∗) =

〈
Φ𝑚,𝑢∗ (ũ𝑚), v𝑚

〉
+ 𝑣∗ (𝑢∗ −

√
𝐶𝐷

�� [ũ𝑚]𝑎
𝑜

��)) with Φ𝑚,𝑢∗ is Φ𝑚
by (A.1) with 𝜈𝛼 = 𝜈𝛼 (𝑢∗). Then using same bounding than previous proof we have:

Ψ𝑚 (ũ𝑚, 𝑢∗) · (ũ𝑚, 𝑢∗)

≥
√𝜈𝜕𝑧ũ𝑚

OA

(√𝜈𝜕𝑧ũ𝑚
OA −

√𝜈𝜕𝑧gOA

)
+ 𝐶𝐷

�� [u]𝑎
𝑜

��2 (�� [ũ + g
]𝑎
𝑜

�� − �� [g]𝑎
𝑜

��) + 𝑢∗ (
𝑢∗ −

√︁
𝐶𝐷

�� [ũ𝑚 + g
]𝑎
𝑜

��)
with 𝜈𝛼 = ∥𝜈𝛼∥∞ Taking ũ = g then first term in the r.h.s is zero and so second term in the
r.h.s is positive. Also taking 𝑢∗max =

√
𝐶𝐷

�� [g]𝑎
𝑜

��. then Ψ𝑚 (g, 𝑢∗max) · (g, 𝑢∗max) ≥ 0. Thus
there exists a solution Ψ𝑚 (ũ𝑚, 𝑢∗𝑚) = 0 with V𝑚 × [0, 𝑢∗max] and such that ∥ũ𝑚∥H1 ≤
∥g𝑚∥H1 .

Recall step to prove existence in the neighborhood of stationary state, proof of
Theorem 3.7. We adapt from [7] the method to our non-local problem and briefly recall
the steps:

(1) Suppose a stationary solution (u𝑒, 𝑢∗𝑒) ∈ H1 (Ω) × R+ for a source term u𝑒,𝑔

(2) Define

Ψ(u, 𝑢∗) =


𝜕𝑡u𝛼 + 𝑓 u⊥

𝛼 − 𝜕𝑧 (𝜈(𝑧)𝜕𝑧u𝛼), u𝛼 (𝑡 = 0) − u𝑒𝛼, u𝛼 (Z∞
𝛼 ) − u𝑒𝛼 (Z∞

𝛼 )
𝜆2𝜈𝑎𝜕𝑧u𝑎 (𝛿𝑎) − 𝜈𝑜𝜕𝑧u𝑜 (𝛿𝑜),
𝜈𝑎 (𝛿𝑎)𝜕𝑧u𝑎 (𝛿𝑎) − 𝐶𝐷

�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
, 𝑢∗ −

√︁
𝐶𝐷

�� [u]𝑎
𝑜

��
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then Ψ is continuous from X := L2 (
0, 𝑇 ; H2 (Ω)

)
∩ H1 (

0, 𝑇 ; L2 (Ω)
)
× L2 (0, 𝑇)

to Y := L2 (
0, 𝑇,L2 (Ω)

)
× H1 (Ω) × L2 (0, 𝑇)4 and differentiable, noted

𝑫Ψ(u𝑒, 𝑢∗𝑒).

(3) Prove that

𝑫Ψ(u𝑒, 𝑢∗𝑒) (v, 𝑣∗) =



𝜕𝑡v𝛼 + 𝑓 v⊥𝛼 − 𝜕𝑧 (𝜈𝛼 (𝑧, 𝑢∗𝑒)𝜕𝑧v𝛼 + 𝑣∗𝜈′𝛼 (𝑧, 𝑢∗𝑒)𝜕𝑧u𝑒𝛼),
v𝛼 (𝑡 = 0), v𝛼 (Z∞

𝛼 ), 𝜆2𝜈𝑎𝜕𝑧v𝑎 (𝛿𝑎) − 𝜈𝑜𝜕𝑧v𝑜 (𝛿𝑜)
+ 𝑣∗ (𝜈′𝑎 (𝑢∗𝑒)𝜕𝑧u𝑒𝑎 (𝛿𝑎) − 𝜆2𝜈′𝑜 (𝑢∗𝑒)𝜕𝑧v𝑒𝑜 (𝛿𝑜)), 𝜈𝑎 (𝛿𝑎)𝜕𝑧u𝑎 (𝛿𝑎)

+ 𝑣∗𝜈′𝑎 (𝑢∗𝑒)𝜕𝑧u𝑒𝑎 (𝛿𝑎) −
√︁
𝐶𝐷𝑢

∗
𝑒

(( [
v
]𝑎
𝑜
· e𝜏

)
e𝜏 +

[
v
]𝑎
𝑜

)
,

𝑣∗ −
√︁
𝐶𝐷

�� [v]𝑎
𝑜

�� · e𝜏


with u𝜏 =

[
u𝑒

]𝑎
𝑜
/
�� [u𝑒]𝑎

𝑜

�� and 𝜈′ = 𝜕𝑢∗𝜈(𝑢∗), is continuous and invertible from
X to Y

(4) Use the inverse theorem to obtain the existence of the solution around (u𝑒, 𝑢∗𝑒).

Finally, we have to show that the differential of Ψ is continuous and invertible from X to
Y. To ensure the continuity of 𝑫Ψ we have to suppose 𝜈′𝛼/𝜈𝛼 ∈ L∞ (Ω) that is given by
hypothesis. To show the invertibility of 𝑫Ψ, we have to prove that the linear model given
by (3.14a) is well-posed.

A.2. Well-posedness of the local weak formulation

We prove here the Proposition 3.8. Suppose first g ∈ H1 (0, 𝑇 ; H1 (Ω), and ũ0 ∈ H1 (Ω)
and 𝜈 ∈ C1 (Ω × [0, 𝑇]). Because we suppose Ω is one-dimensional space, during all
the proof we will use that g ∈ C(Ω × [0, 𝑇]) and g𝛼 (𝛿𝛼) ∈ H1 (0, 𝑇) for 𝛼 ∈ {𝑜, 𝑎}. We
prove the existence of solution for the weak formulation:

⟨𝜕𝑡 ũ, v⟩OA + 𝑓
〈
ũ⊥, v

〉
OA + ⟨𝜈𝜕𝑧ũ, 𝜕𝑧v⟩OA + 𝐶𝐷

�� [u]𝑎
𝑜

�� [u]𝑎
𝑜
·
[
v
]𝑎
𝑜

= − ⟨𝜈𝜕𝑧g, 𝜕𝑧v⟩OA − ⟨𝜕𝑡g, v⟩OA

with u = ũ + g. Using Galerkin method, we can prove that there exists a unique solution
of the weak formulation ũ ∈ C( [0, 𝑇]; L2 (Ω)) ∩ L2 (0, 𝑇,V) and ũ(𝑡 = 0) = ũ0. We
define (V𝑚)𝑚≥0 the increasing sequence of finite-dimensional Hilbert subspaces such that
V =

⋃
𝑚≥0 V𝑚. Suppose ũ𝑚 = (∑ 𝑐𝑘 (𝑡)𝑒𝑘 ,

∑
𝑑𝑘 (𝑡)𝑒𝑘)𝑇 ∈ V𝑚 with e𝑘 and orthogonal

basis ofV𝑚. Then the weak formulation becomes a nonlinear ODE on 𝑐𝑘 and 𝑑𝑘 . Since all
terms are continuous, by Cauchy–Lipschitz theorem, there exists a unique set of solutions
with 𝑐𝑘 , 𝑑𝑘 ∈ C[0, 𝑇]. Let us suppose ũ𝑚 ∈ V𝑚 is a solution of the weak formulation.
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Taking v = ũ𝑚, integrating on ]0, 𝑡 [, and applying Cauchy–Schwarz, Young inequality
and Poincaré inquality on each term on the r.h.s, we finally have the apriori estimate:

∥ũ∥2
OA (𝑡) + 1

2

∫ 𝑡

0

√𝜈𝜕𝑧ũ2
OA + 𝐶𝐷

3

∫ 𝑡

0

�� [u]𝑎
𝑜

��3
≤ 𝐶𝐷

3

∫ 𝑡

0

�� [g]𝑎
𝑜

��3 + ∫ 𝑡

0

√𝜈𝜕𝑟g2
OA + 4

∫ 𝑡

0
∥𝜕𝑡g∥2

OA +
ũ02

OA (A.2)

Since g ∈ H1 (0, 𝑇 ; H1 (Ω)) using Morrey inequality we have g𝛼 (𝛿𝛼) ∈ C[0, 𝑇]. Accord-
ing to (A.2), ũ𝑚 ∈ L∞ (0, 𝑇 ; L2 (Ω)) ∩ L2 (0, 𝑇 ;V) and 𝜕𝑡 ũ𝑚 ∈ L2 (0, 𝑇 ; H−1 (Ω)). Using
Sobolev embedding convergence results, there exists ũ ∈ L2 (0, 𝑇 ;V) ∩C0 ( [0, 𝑇]; L2 (Ω))
with 𝜕𝑡 ũ ∈ L2 (0, 𝑇 ; H−1 (Ω)) and a X ∈ L3/2 (0, 𝑇) such that

• ũ𝑚 converges weakly to ũ in L2 (0, 𝑇,V)

• 𝜕𝑡 ũ𝑚 converges weakly to 𝜕𝑡 ũ in L2 (0, 𝑇 ; H−1 (Ω))

•
�� [ũ𝑚]𝑎

𝑜

�� [ũ𝑚]𝑎
𝑜

converges weakly to X in L3/2 (0, 𝑇)

• ũ𝑚 converges to ũ in L2 (0, 𝑇 ; L2 (Ω)).

To prove that ũ is the solution of the weak formulation, we have to prove that X is the term
𝐶𝐷

�� [ũ]𝑎
𝑜

�� [ũ]𝑎
𝑜
. Because we are in 1D, ũ ∈ L2 (0, 𝑇,C0 (Ω)) and then ũ𝑚 (𝛿) converges

to ũ(𝛿) in L2 ( [0, 𝑇]). It implies that
�� [u𝑚]𝑎

𝑜

�� [u𝑚]𝑎
𝑜

converges weakly to
�� [u]𝑎

𝑜

�� [u]𝑎
𝑜

in
L3/2 ( [0, 𝑇]). Finally, since 𝜈(𝑡) is continuous and bounded ũ is a solution of the weak
formulation with ũ(𝑡 = 0) = ũ0. The proof of the uniqueness of the solution is based on the
same argument than in the stationary case to treate the non-linear terms (see (3.4)). Now,
we want a bound for

√𝜈𝜕𝑧ũ2
OA in L∞ (0, 𝑇) that will be necessary for Theorem 3.10.

Taking v = 𝜕𝑡 ũ𝑚 in the weak formulation:

∥𝜕𝑡 ũ𝑚∥2
OA + 𝑓 ⟨̃u𝑚, 𝜕𝑡 ũ𝑚⟩OA +

〈√
𝜈𝜕𝑧ũ𝑚, 𝜕𝑧,𝑡 ũ𝑚

〉
OA + 𝐶𝐷

�� [u𝑚]𝑎
𝑜

�� [u𝑚]𝑎
𝑜
·
[
𝜕𝑡u𝑚

]𝑎
𝑜

= 𝐶𝐷
�� [u𝑚]𝑎

𝑜

�� [u𝑚]𝑎
𝑜
·
[
𝜕𝑡g𝑚

]𝑎
𝑜
−

〈
𝜈𝜕𝑧g, 𝜕𝑧,𝑡 ũ𝑚

〉
OA − ⟨𝜕𝑡g, 𝜕𝑡 ũ𝑚⟩OA

The term in 𝑓 will disappear after integrating in time, indeed
∫ 𝑡
0

〈
ũ⊥
𝑚, 𝜕𝑡 ũ𝑚

〉
OA =〈

ũ⊥
𝑚, ũ𝑚

〉
OA (𝑡) −

〈
ũ⊥
𝑚, ũ𝑚

〉
OA (𝑡 = 0) −

∫ 𝑡
0

〈
𝜕𝑡 ũ⊥

𝑚, ũ𝑚
〉

OA = −
∫ 𝑡
0

〈
𝜕𝑡 ũ⊥

𝑚, ũ𝑚
〉

OA and by
symmetry

∫ 𝑡
0

〈
ũ⊥
𝑚, 𝜕𝑡 ũ𝑚

〉
OA =

∫ 𝑡
0

〈
𝜕𝑡 ũ⊥

𝑚, ũ𝑚
〉

OA so the term is null. Also using∫ 𝑡

0

(
𝜕𝑡

[
u𝑚

]𝑎
𝑜

)
·
[
u𝑚

]𝑎
𝑜

�� [u𝑚]𝑎
𝑜

�� = [
1
3

�� [u𝑚]𝑎
𝑜

��3] 𝑡
0

2
∫ 𝑡

0
⟨𝜕𝑡𝜕𝑧ũ𝑚, 𝜈𝜕𝑧ũ𝑚⟩ =

[√𝜈𝜕𝑧ũ𝑚2
2

] 𝑡
0
−

∫ 𝑡

0
⟨𝜕𝑧ũ𝑚, 𝜕𝑡𝜈𝜕𝑧ũ𝑚⟩
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it gives:

∫ 𝑡

0
∥𝜕𝑡 ũ𝑚∥2

OA + 1
2

√𝜈𝜕𝑧ũ𝑚2
OA (𝑡) + 𝐶𝐷

3
�� [u𝑚]𝑎

𝑜

��3 (𝑡)
= 𝐴0 +

∫ 𝑡

0

〈
𝜈𝜕𝑡 ,𝑧g, 𝜕𝑧ũ𝑚

〉
OA +

∫ 𝑡

0
⟨𝜕𝑧ũ𝑚 + 𝜕𝑧g, 𝜕𝑡𝜈𝜕𝑧ũ𝑚⟩OA

+ 𝐶𝐷
∫ 𝑡

0

�� [ũ𝑚]𝑎
𝑜

�� [ũ𝑚]𝑎
𝑜
·
[
𝜕𝑡g

]𝑎
𝑜
− ⟨𝜕𝑡g, 𝜕𝑡 ũ𝑚⟩OA − ⟨𝜕𝑧g, 𝜈𝜕𝑧ũ𝑚⟩OA

with 𝐴0 = 1
2
√𝜈𝜕𝑧ũ0

2
OA + 𝐶𝐷

3
�� [u0

]𝑎
𝑜

��3. We introduce the notation 𝜇 = 𝜕𝑡𝜈/𝜈. Using
Cauchy–Schwarz inequality and Young inequality on terms on the right hand side, there
exist 𝐶2 > 0 such that :

∫ 𝑡

0
∥𝜕𝑡 ũ𝑚∥2

OA +
√𝜈𝜕𝑧ũ𝑚2

OA + 𝐶𝐷
3

�� [ũ𝑚]𝑎
𝑜

��3
≤

∫ 𝑡

0
∥𝜇∥2

L∞ (Ω)
√𝜈𝜕𝑧ũ𝑚2

OA

+ 𝐶2

(
∥g∥2

OA +
∫ 𝑡

0

√𝜈𝜕𝑧,𝑡g2
OA + 𝐶𝐷

∫ 𝑡

0

�� [𝜕𝑡g]𝑎𝑜 ��3 + 𝐴0 + 𝐴1

)
(A.3)

with 𝐴1 the r.h.s of (A.2). By hypothesis 𝜈 ∈ C1 (Ω× [0, 𝑇]) then ∥𝜇∥L∞ (Ω) ∈ C0 ( [0, 𝑇])
and g ∈ H1 (0, 𝑇 ; H1 (Ω)), if we had the hypothesis 𝜕𝑡g ∈ L3 (0, 𝑇 ; H1 (Ω)) so all term
in the r.h.s exist. By Gronwall Theorem, we have

√𝜈𝜕𝑧ũ2
OA ∈ C0 [0, 𝑇] and ũ ∈

L2 (0, 𝑇 ; H2 (Ω)) ∩ L∞ (0, 𝑇 ; H1 (Ω)) ∩ H1 (0, 𝑇 ; L2 (Ω)). To obtain better regularity on
𝜕𝑡 ũ, we suppose ũ0 ∈ H2 (Ω) and g ∈ H2 (0, 𝑇,H1 (Ω)). We proceed in a similar way
by first deriving the equation w.r.t. 𝑡, then potentially problematic terms are the term
in 𝜈 and the boundary term. Using 𝜕𝑡𝜕𝑧𝑢𝜕𝑡 (𝜈𝜕𝑧𝑢) = 𝜈(𝜕𝑡𝜕𝑧𝑢)2 + 1

2𝜕𝑡𝜈𝜕𝑡 𝑧𝑢𝜕𝑧𝑢 and
𝜕𝑡𝑢𝜕𝑡 ( |𝑢 |𝑢) = 𝜕𝑡 |𝑢 | 12𝜕𝑡 (𝑢

2) + |𝑢 | (𝜕𝑡𝑢)2 = (𝜕𝑡 |𝑢 |)2 |𝑢 | + |𝑢 | (𝜕𝑡𝑢)2 we have:

1
2
𝜕𝑡 ∥𝜕𝑡 ũ∥2

OA +
√𝜈𝜕𝑡𝜕𝑧ũ2

OA +
�� [u]𝑎

𝑜

�� ( (𝜕𝑡 �� [u]𝑎
𝑜

��)2
+

�� [𝜕𝑡u]𝑎
𝑜

��2)
=

〈
𝜕2
𝑡 g, 𝜕𝑡 ũ

〉
OA +

〈√
𝜈𝜕𝑧ũ, 𝜇

√
𝜈𝜕𝑡𝜕𝑧ũ

〉
OA +

[
𝜕𝑡g

]𝑎
𝑜

(
𝜕𝑡

[
u
]𝑎
𝑜

�� [u]𝑎
𝑜

��)
−

〈√
𝜈𝜕𝑧g, 𝜇

√
𝜈𝜕𝑡𝜕𝑧ũ

〉
OA −

〈√
𝜈𝜕𝑧𝜕𝑡g,

√
𝜈𝜕𝑡𝜕𝑧ũ

〉
OA
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We integrate on [0, 𝑡] and apply Young’s inequality on all r.h.s terms, especially∫ 𝑡

0

��� [𝜕𝑡g]𝑎𝑜𝜕𝑡 ( [u]𝑎
𝑜

�� [u]𝑎
𝑜

��) ���
=

∫ 𝑡

0

���� [𝜕𝑡g]𝑎𝑜√︃��[u]𝑎
𝑜

������ ����√︃��[u]𝑎
𝑜

�� (𝜕𝑡 �� [u]𝑎
𝑜

�� + �� [𝜕𝑡u]𝑎
𝑜

��) ����
≤

∫ 𝑡

0

�� [𝜕𝑡g]𝑎𝑜 ��2 �� [u]𝑎
𝑜

�� + 1
2

∫ 𝑡

0

�� [u]𝑎
𝑜

�� ( (𝜕𝑡 �� [u]𝑎
𝑜

��)2
+

�� [𝜕𝑡u]𝑎
𝑜

��2)
≤

∫ 𝑡

0

2
3

�� [𝜕𝑡g]𝑎𝑜 ��3 + ∫ 𝑡

0

1
3

�� [u]𝑎
𝑜

��3 + 1
2

∫ 𝑡

0

�� [u]𝑎
𝑜

�� ( (𝜕𝑡 �� [u]𝑎
𝑜

��)2
+

�� [𝜕𝑡u]𝑎
𝑜

��2)
We conclude there exist constant 𝐶3 such that

∥𝜕𝑡 ũ∥2
OA (𝑡) +

∫ 𝑡

0

√𝜈𝜕𝑡𝜕𝑧ũ2
OA +

∫ 𝑡

0

�� [ũ]𝑎
𝑜

�� ( (𝜕𝑡 �� [u]𝑎
𝑜

��)2
+

�� [𝜕𝑡u]𝑎
𝑜

��2)
≤

∫ 𝑡

0
∥𝜇∥2

L∞ (Ω)

(√𝜈𝜕𝑧ũ2
OA +

√𝜈𝜕𝑧g2
OA

)
+ 𝐴2

+ 𝐶3

(∫ 𝑡

0

𝜕2
𝑡 g

2
OA +

∫ 𝑡

0

�� [𝜕𝑡g]𝑎𝑜 ��3 + ∫ 𝑡

0

√𝜈𝜕𝑧,𝑡g2
OA

+ ∥𝜕𝑡 ũ∥2
OA (𝑡 = 0) + 𝐴0 + 𝐴1

)
(A.4)

with 𝐴2 the r.h.s of (A.3). Since 𝜈 is bound there exist a 𝐶4 > 0 such that ∥𝜕𝑡 ũ∥2
OA (𝑡 =

0) ≤ 𝐶4

(𝜕𝑡 ,𝑧g2
OA +

ũ0


H2 (Ω)

)
(see [10, Chapter 7] for details). We obtain (using

bound (A.4)) in particular 𝜕𝑡 ũ ∈ L2 (0, 𝑇 ; H1 (Ω)) and 𝜕2
𝑡 ũ ∈ L2 (0, 𝑇 ; H−1 (Ω)) that gives

𝜕𝑡
[
u
]𝑎
𝑜
∈ C0 [0, 𝑇].

A.3. Computations for the stationary problem with KPP viscosity profiles,
proof of Proposition 4.8

Resolution of the equation on each subdomain. Considering the equation in the
proof of Proposition 4.8, to have C1 (Ω𝛼) regularity, especially in ℎ∗𝛼, we have to add the
constraints:

𝐶𝛼,𝑙 =
𝐴𝛼,𝑡𝑃𝛼 (𝑟𝛼 (ℎ𝛼)) + 𝐵𝛼,𝑡𝑃𝛼 (−𝑟𝛼 (ℎ𝛼))

𝑒𝜍𝛼ℎ𝛼 − 𝑒𝜍𝛼 (2Z∞
𝛼−ℎ𝛼 )

with 𝐵𝛼,𝑡 = Π𝛼𝐶𝛼,𝑡

Π𝛼 =
𝐺𝛼 (𝑟𝛼 (ℎ𝛼)) − 𝛽𝛼𝑃𝛼 (𝑟𝛼 (ℎ𝛼))
𝐺𝛼 (−𝑟𝛼 (ℎ𝛼)) + 𝛽𝛼𝑃𝛼 (−𝑟𝛼 (ℎ𝛼))

𝛽𝛼 =
𝜍𝛼

tanh(𝜍𝛼 (Z∞
𝛼 − ℎ𝛼))

ℎ𝛼
√︁

1 + 4𝜇𝛼
X𝛼𝜉𝛼 (𝜉𝛼 + 1)
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Finally:

𝜑𝛼 (𝑧) = 𝐶𝛼,𝑡 [𝑃𝛼 (𝑟𝛼 (𝑧)) + Π𝛼𝑃𝛼 (−𝑟𝛼 (𝑧))]

𝜕𝑧𝜑𝛼 (𝑧) =
X𝛼𝜉𝛼 (𝜉𝛼 + 1)
ℎ∗𝛼

√︁
1 + 4𝜇𝛼

[𝐺𝛼 (𝑟𝛼 (𝑧)) − Π𝛼𝐺𝛼 (−𝑟𝛼 (𝑧))]

noting 𝜂 = 𝑟 (ℎ) = −𝑟 (0), 𝑃+ = 𝑃(𝜂) and 𝑃− = 𝑃(−𝜂):

𝜈𝛼 (𝛿𝛼)S𝛼 = X𝛼
ℎ𝛼

√︁
1 + 4𝜇𝛼

𝜉𝛼 (1 + 𝜉𝛼)
(𝐺−

𝛼 + 𝛽𝛼𝑃−
𝛼)𝑃𝛿𝛼 + (𝐺+

𝛼 − 𝛽𝛼𝑃+
𝛼)𝑃−𝛿

𝛼

(𝐺−
𝛼 + 𝛽𝛼𝑃−

𝛼)𝐺 𝛿
𝛼 − (𝐺+

𝛼 − 𝛽𝛼𝑃+
𝛼)𝐺−𝛿

𝛼

(A.5)

with X𝑎 = 1, X𝑜 = −1, and

𝜂𝛼 = X𝛼

(√︄
1 + 4𝜈𝑚𝛼

ℎ2
𝛼 |𝐾𝛼 |

)−1

𝜉 = −1
2

(
1 +

√︁
1 + 𝑖 𝑓 /𝐾𝛼

)
𝛽𝛼 =

𝜍𝛼

tanh(𝜍𝛼 (Z∞
𝛼 − ℎ∗𝛼))

ℎ∗𝛼
𝜂𝛼𝜉𝛼 (𝜉𝛼 + 1) 𝜁 =

√︁
𝑖 𝑓 /𝜈𝑚𝛼

𝑃±
𝛼 = 2𝐹1 (𝜉 + 1,−𝜉, 1, (1 − ±𝜂)/2) 𝐺±

𝛼 = 2𝐹1 (𝜉 + 2, 1 − 𝜉, 2, (1 − ±𝜂)/2)

where 2𝐹1 is the hypergeometric function (see [21]).

Asymptotics on hypergeometric function. Considering KPP viscosity profiles as in
Definition 2.1 and approximation (4.15), we get the order of magnitude:

• 4𝜇 =
4𝜈𝑚𝛼
ℎ2
𝛼 |𝐾𝛼 |

≈ 4𝜈𝑚𝛼 |ℎ−𝛿 |
ℎ2
𝛼𝜅𝑢

∗ ≪ 1.

• | 𝑓 |
|𝐾𝛼 | ≈

𝑓 |ℎ𝛼−𝛿𝛼 |
𝜅𝑢∗ < 4 for reasonable value of 𝑓 < 7 × 10−5 s−1 or 𝑢∗ not too

close from 𝑢∗min. Then we can pose 𝜉𝛼 ≈ −1 + 𝜖𝛼 with 𝜖𝛼 ∈ C and |𝜖𝛼 | < 1.

The first inequality allows to write 𝜂𝛼 ≈ −X𝛼 (1 − 2𝜇𝛼) and 𝑟𝛼 (𝛿𝛼) = −𝜂𝛼 (1 − 2𝛿𝛼
ℎ𝛼

).
We focus on the computation on the oceanic part; by symmetry the atmospheric part
follows the same principle. In the rest of the proof, indices 𝑜 are omitted. We can use the
following asymptotic taken from [2] and [21]:

𝑃+ = 𝐹 (1 + 𝜉,−𝜉, 1, 𝜇) ≈ 1 − 𝜉 (1 + 𝜉)𝜇

𝑃− = 𝐹 (1 + 𝜉,−𝜉, 1, 1 − 𝜇) ≈ 𝜎 − ln(𝜇)
Γ(𝜉 + 1)Γ(−𝜉)

𝑃𝛿 = 𝐹 (1 + 𝜉,−𝜉, 1, 1 − 𝛿/ℎ) ≈ 𝜎 − ln(𝛿/ℎ)
Γ(𝜉 + 1)Γ(𝜉)

𝑃−𝛿 = 𝐹 (1 + 𝜉,−𝜉, 1, 𝛿/ℎ) ≈ 1 − 𝜉 (1 + 𝜉) 𝛿
ℎ
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𝐺+ = 𝐹 (2 + 𝜉, 1 − 𝜉, 2, 𝜇) ≈ 1 + (1 − 𝜉) (2 + 𝜉) 𝜇
2

𝐺− = 𝐹 (2 + 𝜉, 1 − 𝜉, 2, 1 − 𝜇) ≈ Γ(2)
𝜇Γ(𝜉 + 2)Γ(1 − 𝜉)

𝐺 𝛿 = 𝐹 (2 + 𝜉, 1 − 𝜉, 2, 1 − 𝛿/ℎ) ≈ ℎΓ(2)
𝛿Γ(𝜉 + 2)Γ(1 − 𝜉)

𝐺−𝛿 = 𝐹 (2 + 𝜉, 1 − 𝜉, 2, 𝛿/ℎ∗) ≈ 1 + (1 − 𝜉) (2 + 𝜉) 𝛿
2ℎ

with 𝜎 = 2Ψ(1) −Ψ(1+ 𝜉) −Ψ(−𝜉) and Ψ the digamma function. The second inequality
implies |𝜉 | ≪ 2 thus term Γ(𝜉 + 2), Γ(1 − 𝜉) and 𝜎 in the order of magnitude of
1. The term

(
𝜇−1 + 𝛽𝜉 (𝜉 + 1) (ln(𝜇) − 𝜎)

)
(𝜎 − ln (𝛿/ℎ)) is much more bigger than

(1 − 𝛽) (1/(𝜉 (1 + 𝜉)) − 𝛿/ℎ), so terms with (𝐺− + 𝛽𝑃−) are much more bigger than
terms with (𝐺+ − 𝛽𝑃+). Finally

𝜑(𝑧)
𝜕𝑧𝜑(𝑧)

≈ ℎ
√︁

1 + 4𝜇
𝛿

ℎ
(ln(𝛿/ℎ) − 𝜎) ≈ 𝛿 (ln(𝛿/ℎ) − 𝜎)

Using the properties from [21] and Ψ(1+ 𝜉) = Ψ(𝜖) = Ψ(1+ 𝜖) − 𝜖−1, Ψ(−𝜉) = Ψ(1− 𝜖)
and Ψ(1 + 𝜖) = ∑∞

𝑘=2 (−1)𝑘𝜁 (𝑘) (𝜖)𝑘−1 we can simplify 𝜎 as:

𝜎 = 2Ψ(1) + 𝜖−1 − Ψ(1 + 𝜖) − Ψ(1 − 𝜖) = 𝜖−1 + 2
∞∑︁
𝑘=1

𝜁 (2𝑘 + 1)𝜖2𝑘

which gives the asymptotic 𝜎 ≈ (1 + 𝜉)−1.

A.4. Well-posedness criteria for KPP viscosty profile

Research of an inflexion point, proof of Theorem 4.9. We pose 𝑌𝛼 =
4𝐾𝛼

𝑓
then

𝜉𝛼 ≈ −1 − 𝑖𝑌−1
𝛼 − 𝑌−2

𝛼 , with and 𝜎𝛼 ≈ −1 + 𝑖𝑌𝛼. According to the well-posedness
criteria (4.10), we are searching for a solution of����𝜕𝑢 (

𝑢2
(√︁
𝐶𝐷

−1
− 𝑁𝑎𝑋𝑎 − 𝑁𝑜𝑋𝑜

)2
+ 𝑢2 (𝑁𝑎𝑌𝑎 + 𝑁𝑜𝑌𝑜)2

)���� = 0 (A.6)

with 𝑋𝛼 = ln(𝛿𝛼/ℎ𝛼) + 1, 𝑁𝑎 = 𝑢∗ |𝛿𝑎 |/𝜈𝛿𝑎 and 𝑁𝑜 = 𝜆2𝑢∗ |𝛿𝑜 |/𝜈𝛿𝑜 where 𝜈𝛿𝛼 = 𝜈𝛼 (𝛿𝛼).
By definition of 𝐾𝛼 we have 𝑌𝛼 = 4

(
𝜈𝛿𝛼 − 𝜈𝑚𝛼

)
/( 𝑓 𝛿(𝛿 − ℎ𝛼)). By hypothesys 𝜈𝑚𝛼 ≪ 𝜈𝛿𝛼

and we neglect 𝜈𝑚𝛼 from the computation. Then 𝑁𝑎𝑌𝑎 = 4𝑢∗/( 𝑓 (𝛿𝑎 − ℎ𝑎)) and
𝑁𝑜𝑌𝑜 = −4𝜆2𝑢∗/( 𝑓 (𝛿𝑜 − ℎ𝑜)). The derivative on 𝑢∗ gives 𝑢∗𝑁 ′

𝛼 = 𝑁𝛼𝑅𝛼 with
𝑅𝛼 = 1 − 𝑢∗

(
𝜈𝛿𝛼

) ′ /𝜈𝛿𝛼, 𝑋 ′
𝛼 = −1/𝑢∗ and 𝑢∗ (𝑁𝛼𝑌𝛼)′ = 𝑁𝛼𝑌𝛼 (1 + ℎ𝛼/(𝛿 − 𝛼 − ℎ𝛼)).

Equation (A.6) can be rewritten as 𝜕𝑢∗
(
(𝑢∗)2X2 + (𝑢∗)2Y2) = 0 with X =

√︃
𝐶−1
𝐷

−𝑁𝑎𝑋𝑎−
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𝑁𝑜𝑋𝑜, and Y = 𝑁𝑎𝑌𝑎+𝑁𝑜𝑌𝑜. Then we look for a solution of X (X + 𝑢X′)+Y (Y + 𝑢Y′) =
0. We have

X + 𝑢∗X′ =
√︃
𝐶−1
𝐷

− 𝑁𝑎𝑋𝑎 + 𝑁𝑎 (1 − 𝑋𝑎𝑅𝑎) − 𝑁𝑜𝑋𝑜 + 𝑁𝑜 (1 − 𝑋𝑜𝑅𝑜)

and Y + 𝑢∗Y′ = 𝑁𝑎𝑌𝑎

(
2 − ℎ𝑎

ℎ𝑎 − 𝛿𝑎

)
+ 𝑁𝑜𝑌𝑜

(
2 − ℎ𝑜

ℎ𝑜 − 𝛿𝑜

)
First remark that the sign of 𝑓 does not impact the sign of Y (Y + 𝑢Y). It comes
Y (Y + 𝑢Y) > 0 if ℎ𝛼 > 2𝛿𝛼 and negative if ℎ𝛼 < 2𝛿𝛼 for 𝛼 ∈ {𝑜, 𝑎}. Because of the
scale 𝜆2 ≪ 1 on 𝑁𝑜, the root of Y + 𝑢Y is close to 2𝛿𝑎/𝑐𝑎 = 2𝑢∗min. We will show that,
under assumption that 𝑢∗is not too large, the order of magnitude of X (X + 𝑢∗X′) is much
more small compare to the order of magnitude of Y (Y + 𝑢∗Y′). And so there exist a root
close to the root of Y + 𝑢∗Y′ that is in the order of magnitude of 2𝑢∗min.

• The order of magnitude of |𝑁𝑎𝑌𝑎 | = 4𝑢∗ |ℎ𝑎 − 𝛿𝑎 |−1 | 𝑓 |−1 ∈ [24,∞[. Especially,
when 𝑢∗ is not too large, the order of magnitude of |𝑁𝑎𝑌𝑎 | (for example,
ℎ𝑎 < Z∞

𝑎 /2 gives |𝑁𝑎𝑌𝑎 | > 103).

• We have 𝑋𝛼 ∈ [1 + ln(𝛿/Z∞), 1] ≈] − 5, 1[ and 𝑁𝛼 ≈ 𝜅−1 for reasonable value
of 𝑢∗ so X > 0.

• we have X + 𝑢∗X′ =
√︃
𝐶−1
𝐷

+ 𝑁𝑎 (1 − 𝑋𝑎 (1 + 𝑅𝑎)) + 𝑁𝑜 (1 − 𝑋𝑜 (1 + 𝑅𝑜)) and
𝑋𝛼 (1+𝑅𝛼) < 0 then X+𝑢∗X′ > 0. If 𝑋𝛼 < 0 (i.e ℎ𝛼 > 3𝛿𝛼) and 1+𝑅𝑎 < 0 then
a condition to have positivity would be 1 + 𝑅𝛼 ≥

(
2
√
𝐶𝐷𝑁𝛼

)−1 ln(𝛿𝛼/𝐻𝛼)−1 ≈
−1.7. If 0 < 𝑋𝛼 < 1 and 1 + 𝑅𝛼 > 0, a condition to have positivity would be
1−𝑋𝛼 (1+𝑅𝛼) ≥ −𝑅𝛼 ≥ −

(
2
√
𝐶𝐷𝑁𝛼

)−1 ≈ −5.8. These gives conditions (4.18)

No inflexion point for buffer zone with variating thinckness, proof of Theorem 4.10.
Suppose 𝛿𝛼 = 𝛽ℎ𝛼 with 𝛽 < 𝑒−1 a constant. Then using previous notation we would
have 𝑋𝛼 = ln(𝛽) + 1 < 0 that is constant, 𝑢∗𝑁 ′

𝛼 = 𝑁𝛼 (𝑅𝛼 + 1), and 𝑁𝛼𝑌𝛼 =

4/( 𝑓 𝑐𝛼 (𝛽−1)) is constant. Thus 𝜕𝑢
(
𝑢2X2 + (𝑢∗)2Y2) = 0 has an inflexion point for roots

of X (X + 𝑢∗X′) + Y2. In the order of magnitude of OA framework, order of magnitude
of Y2 compare to the order of magnitude of X and X′ and it would be enough to obtain
X (X + 𝑢∗X′) + Y2 > 0 for a large possibility of viscosity profile. Generally speaking,
we have X > 0 because 𝑋𝛼 < 0. Using the same king of argument than previously,
X + 𝑢∗X′ =

√︃
𝐶−1
𝐷

− 𝑋𝑎𝑁𝑎 (2 + 𝑅𝑎) − 𝑋𝑜𝑁𝑜 (2 + 𝑅𝑜) > 0 if 2 + 𝑅𝛼 >
(
2
√
𝐶𝐷𝑁𝛼𝑋𝛼

)−1

and imposing this will guaranty the uniqueness.
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