Topologies on split Kac–Moody groups over valued fields
[Topologies sur les groupes de Kac–Moody déployés sur les corps valués]
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 77-121.

Let $G$ be a minimal split Kac–Moody group over a valued field $\mathcal{K}$. Motivated by the representation theory of $G$, we define two topologies of topological group on $G$, which take into account the topology on $\mathcal{K}$.

Soit $G$ un groupe de Kac–Moody déployé sur un corps local $\mathcal{K}$. Motivés par la théorie des représentation de $G$, nous introduisons deux topologies de groupe topologique sur $G$.

Publié le :
DOI : 10.5802/ambp.434
Keywords: Kac–Moody groups, valued fields, masures

Auguste Hébert 1

1 Université de Lorraine Institut Élie Cartan de Lorraine F-54000 Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_1_77_0,
     author = {Auguste H\'ebert},
     title = {Topologies on split {Kac{\textendash}Moody} groups over valued fields},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {77--121},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {1},
     year = {2025},
     doi = {10.5802/ambp.434},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.434/}
}
TY  - JOUR
AU  - Auguste Hébert
TI  - Topologies on split Kac–Moody groups over valued fields
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 77
EP  - 121
VL  - 32
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.434/
DO  - 10.5802/ambp.434
LA  - en
ID  - AMBP_2025__32_1_77_0
ER  - 
%0 Journal Article
%A Auguste Hébert
%T Topologies on split Kac–Moody groups over valued fields
%J Annales mathématiques Blaise Pascal
%D 2025
%P 77-121
%V 32
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.434/
%R 10.5802/ambp.434
%G en
%F AMBP_2025__32_1_77_0
Auguste Hébert. Topologies on split Kac–Moody groups over valued fields. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 77-121. doi : 10.5802/ambp.434. https://ambp.centre-mersenne.org/articles/10.5802/ambp.434/

[1] Ramla Abdellatif; Auguste Hébert Completed Iwahori–Hecke algebras and parahoric Hecke algebras for Kac–Moody groups over local fields, J. Éc. Polytech., Math., Volume 6 (2019), pp. 79-118 | DOI | Numdam | MR | Zbl

[2] Nicole Bardy-Panse; Stéphane Gaussent; Guy Rousseau Iwahori–Hecke algebras for Kac–Moody groups over local fields, Pac. J. Math., Volume 285 (2016) no. 1, pp. 1-61 | DOI | MR | Zbl

[3] Nicole Bardy-Panse; Auguste Hébert; Guy Rousseau Twin masures associated with Kac–Moody groups over Laurent polynomials, Ann. Represent. Theory, Volume 2 (2025) no. 3, pp. 281-353 | DOI | Zbl

[4] Armand Borel Linear algebraic groups., Graduate Texts in Mathematics, 126, Springer, 1991 | MR | Zbl

[5] Alexander Braverman; David Kazhdan The spherical Hecke algebra for affine Kac–Moody groups. I, Ann. Math. (2), Volume 174 (2011) no. 3, pp. 1603-1642 | DOI | MR | Zbl

[6] Alexander Braverman; David Kazhdan; Manish M. Patnaik Iwahori–Hecke algebras for p-adic loop groups, Invent. Math., Volume 204 (2016) no. 2, pp. 347-442 | DOI | MR | Zbl

[7] François Bruhat; Jacques Tits Groupes réductifs sur un corps local, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | MR | Zbl

[8] Pierre-Emmanuel Caprace; Bertrand Rémy Groups with a root group datum., Innov. Incidence Geom., Volume 9 (2009), pp. 5-77 | DOI | MR | Zbl

[9] Corina Ciobotaru; Bernhard Mühlherr; Guy Rousseau The cone topology on masures, Adv. Geom., Volume 20 (2020) no. 1, pp. 1-28 | DOI | MR | Zbl

[10] Stéphane Gaussent; Guy Rousseau Kac-Moody groups, hovels and Littelmann paths, Ann. Inst. Fourier, Volume 58 (2008) no. 7, pp. 2605-2657 | DOI | Numdam | MR | Zbl

[11] Stéphane Gaussent; Guy Rousseau Spherical Hecke algebras for Kac–Moody groups over local fields, Ann. Math., Volume 180 (2014) no. 3, pp. 1051-1087 | DOI | Zbl

[12] M. J. Greenberg Rational points in Henselian discrete valuation rings, Publ. Math., Inst. Hautes Étud. Sci., Volume 31 (1966), pp. 59-64 | DOI | Numdam | MR | Zbl

[13] Alexander J. Hahn; O. Timothy O’Meara The classical groups and K-theory, Grundlehren der Mathematischen Wissenschaften, 291, Springer, 1989, xvi+576 pages (with a foreword by J. Dieudonné) | DOI | MR | Zbl

[14] Tobias Hartnick; Ralf Köhl; Andreas Mars On topological twin buildings and topological split Kac–Moody groups, Innov. Incidence Geom., Volume 13 (2013), pp. 1-71 | DOI | MR | Zbl

[15] Auguste Hébert Study of masures and of their applications in arithmetic, Ph. D. Thesis, Université de Lyon, France (2018) (https://hal.science/tel-01856620v1)

[16] Auguste Hébert A New Axiomatics for Masures, Can. J. Math., Volume 72 (2020) no. 3, pp. 732-773 | DOI | MR | Zbl

[17] Auguste Hébert Decompositions of principal series representations of Iwahori–Hecke algebras for Kac–Moody groups over local fields, Pac. J. Math., Volume 310 (2021) no. 2, pp. 303-353 | DOI | MR | Zbl

[18] Auguste Hébert A new axiomatics for masures. II, Adv. Geom., Volume 22 (2022) no. 4, pp. 513-522 | DOI | MR | Zbl

[19] Auguste Hébert Principal series representations of Iwahori–Hecke algebras for Kac–Moody groups over local fields, Ann. Inst. Fourier, Volume 72 (2022) no. 1, pp. 187-259 | DOI | Numdam | MR | Zbl

[20] Auguste Hébert Kato’s irreducibility criterion for Kac–Moody groups over local fields, Represent. Theory, Volume 27 (2023), pp. 1208-1227 | DOI | MR | Zbl

[21] Victor G. Kac Infinite-dimensional Lie algebras, Cambridge University Press, 1994 | MR

[22] Victor G. Kac; Dale H. Peterson Regular functions on certain infinite-dimensional groups, Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. Vol. II: Geometry (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 141-166 | Zbl

[23] Shrawan Kumar Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser, 2002, xvi+606 pages | DOI | MR | Zbl

[24] Timothée Marquis An introduction to Kac–Moody groups over fields, EMS Textbooks in Mathematics, European Mathematical Society, 2018 | DOI | MR | Zbl

[25] Olivier Mathieu Construction d’un groupe de Kac–Moody et applications, Compos. Math., Volume 69 (1989) no. 1, pp. 37-60 | Numdam | MR | Zbl

[26] Bertrand Rémy Groupes de Kac–Moody déployés et presque déployés, Astérisque, 277, Société Mathématique de France, 2002, viii+348 pages | Numdam | MR | Zbl

[27] Guy Rousseau Immeubles des groupes reductifs sur les corps locaux, Publications Mathématiques d’Orsay, 77-68, Université de Paris-Sud, 1977, 207 pages | MR | Zbl

[28] Guy Rousseau Groupes de Kac–Moody déployés sur un corps local, immeubles microaffines, Compos. Math., Volume 142 (2006) no. 2, pp. 501-528 | DOI | MR | Zbl

[29] Guy Rousseau Masures affines, Pure Appl. Math. Q., Volume 7 (2011) no. 3, pp. 859-921 | DOI | Zbl

[30] Guy Rousseau Groupes de Kac–Moody déployés sur un corps local II. Masures ordonnées, Bull. Soc. Math. Fr., Volume 144 (2016) no. 4, pp. 613-692 | DOI | MR | Zbl

[31] Jacques Tits Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987) no. 2, pp. 542-573 | DOI | MR | Zbl

Cité par Sources :