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Topologies on split Kac–Moody groups over valued fields

Auguste Hébert

Abstract

Let 𝐺 be a minimal split Kac–Moody group over a valued field K. Motivated by the representation
theory of 𝐺, we define two topologies of topological group on 𝐺, which take into account the topology
on K.

Topologies sur les groupes de Kac–Moody déployés sur les corps valués
Résumé

Soit 𝐺 un groupe de Kac–Moody déployé sur un corps local K. Motivés par la théorie des
représentation de 𝐺, nous introduisons deux topologies de groupe topologique sur 𝐺.

1. Introduction

1.1. Motivation from representation theory

Let𝐺 be a reductive group over a nonArchimedean local fieldK . As𝐺 is finite dimensional
over K, 𝐺 is naturally equipped with a topological group structure. Its admits a basis
of neighbourhood of the identity consisting of open compact subgroups. A complex
representation 𝑉 of 𝐺 is called smooth if for every 𝑣 ∈ 𝑉 , the fixator of 𝑣 in 𝐺 is open.
To every compact open subgroup 𝐾 of 𝐺 is associated a Hecke algebra H𝐾 , which is
the space of 𝐾-bi-invariant functions from 𝐺 to C which have compact support. Let 𝑉
be a smooth representation of 𝐺. Then the space of 𝐾-invariant vectors 𝑉𝐾 is naturally
equipped with the structure of an H𝐾 -module, and we can prove that this assignment
induces a bĳection between the irreducible smooth representations of 𝐺 admitting a non
zero 𝐾-invariant vector and the irreducible representations of H𝐾 .

Kac–Moody groups are infinite dimensional generalizations of reductive groups. For
example, if �̊� is a split reductive group and F is a field, then the associated affine Kac–
Moody group is a central extension of �̊�(F [𝑢, 𝑢−1]) ⋊ F ∗, where 𝑢 is an indeterminate.
Let now 𝐺 = 𝔊(K) be a split Kac–Moody group over K. Recently, Hecke algebras
were associated to 𝐺. In [5] and [11], Braverman and Kazhdan (in the affine case) and
Gaussent and Rousseau (in the general case) associated a spherical Hecke algebra H𝑠

to 𝐺, i.e. an algebra associated to the spherical subgroup 𝔊(O) of 𝐺, where O is the
ring of integers of K. In [6] and [2], Braverman, Kazhdan and Patnaik and Bardy-Panse,
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A. Hébert

Gaussent and Rousseau defined the Iwahori–Hecke algebra H𝐼 of 𝐺 (associated to
the Iwahori subgroup 𝐾𝐼 of 𝐺). In [1], together with Abdellatif, we associated Hecke
algebras to certain parahoric subgroups of 𝐺, which generalizes the construction of the
Iwahori–Hecke algebra of 𝐺. In [17], [20] and [19], we associated and studied principal
series representations of H𝐼 .

For the moment, there is no link between the representations of𝐺 and the representations
of its Hecke algebras. It seems natural to try to attach an irreducible representation of 𝐺
to each irreducible representation of H𝐼 . A more modest task would be to associate to
each principal series representation 𝐼𝜏 of H𝐼 a principal series representation 𝐼 (𝜏) of 𝐺,
which is irreducible when 𝐼𝜏 is.

Let 𝑇 be a maximal split torus of 𝐺 and𝑌 be the cocharacter lattice of (𝐺,𝑇). Let 𝐵 be
a Borel subgroup of 𝐺 containing 𝑇 . Let 𝑇C = HomGr (𝑌,C∗) and 𝜏 ∈ 𝑇C. Then 𝜏 can be
extended to a character 𝜏 : 𝐵 → C∗. Assume that 𝐺 is reductive. Then the principal series
representation 𝐼 (𝜏) of 𝐺 is the induction of 𝜏𝛿1/2 from 𝐵 to 𝐺, where 𝛿 : 𝐵 → R∗+ is the
modulus character of 𝐵. More explicitly, this is the space of locally constant functions
𝑓 : 𝐺 → C such that 𝑓 (𝑏𝑔) = 𝜏𝛿1/2 (𝑏) 𝑓 (𝑔) for every 𝑔 ∈ 𝐺 and 𝑏 ∈ 𝐵. Then 𝐺 acts
on 𝐼 (𝜏) by right translation. Then 𝐼𝜏 := 𝐼 (𝜏)𝐾𝐼 is a representation of H𝐼 . Assume now
that 𝐺 is a Kac–Moody group. Then we do not know what “locally constant” mean, but
we can define the representation 𝐼 (𝜏) of 𝐺 as the set of functions 𝑓 : 𝐺 → C such that
𝑓 (𝑏𝑔) = 𝜏𝛿1/2 (𝑏) 𝑓 (𝑔) for every 𝑔 ∈ 𝐺 and 𝑏 ∈ 𝐵. Let 𝒯𝐺 be a topology of topological
group on 𝐺 such that 𝐾𝐼 is open. Then

𝐼 (𝜏)𝒯𝐺
:= { 𝑓 ∈ 𝐼 (𝜏) | 𝑓 is locally constant for 𝒯𝐺} (1.1)

is a subrepresentation of 𝐺 containing 𝐼 (𝜏)
𝐾𝐼 . Thus if we look for an irreducible

representation containing 𝐼 (𝜏)
𝐾𝐼 it is natural to search it inside 𝐼 (𝜏)𝒯𝐺

. Moreover, the
more 𝒯𝐺 is coarse, the smaller 𝐼 (𝜏)𝒯𝐺

is. We thus look for the coarsest topology of
topological group on 𝐺 for which 𝐾𝐼 is open.

1.2. Topology on 𝐺, masure and main results

We now assume that K is any field equipped with a valuation 𝜔 : K → R ∪ {+∞} such
that 𝜔(K∗) ⊃ Z. We no longer assume K to be local, and 𝜔(K∗) can be dense in R.
Let O be its ring of integers. Let 𝔊 be a split Kac–Moody group (à la Tits, as defined
in [31]) and 𝐺 = 𝔊(K). In [10] and [30], Gaussent and Rousseau associated to 𝐺 a kind
of Bruhat–Tits building, called a masure, on which 𝐺 acts (when 𝐺 is reductive, I is
the usual Bruhat–Tits building). They defined the spherical subgroup 𝐾𝑠 as the fixator
of some vertex 0 in the masure (we prove in Proposition 3.1 that 𝐾𝑠 = 𝔊min (O), where
𝔊min is the minimal Kac–Moody group defined by Marquis in [24]). They also define the
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Iwahori subgroup 𝐾𝐼 as the fixator of some alcove 𝐶+
0 of I. Then we define the topology

𝒯Fix on 𝐺 as follows. A subset 𝑉 of 𝐺 is open if for every 𝑔 ∈ 𝑉 , there exists a finite
subset 𝐹 of I such that 𝐺𝐹 .𝑔 ⊂ 𝑉 , where 𝐺𝐹 is the fixator of 𝐹 in 𝐺. Then we prove
that 𝒯Fix is the coarsest topology of topological group on 𝐺 for which 𝐾𝐼 is open (see
Proposition 4.14). However, it is not Hausdorff in general. Indeed, let Z ⊂ 𝑇 be the center
of 𝐺 and ZO = Z ∩ 𝔗(O). Then ZO is the fixator of I in 𝐺 and when ZO is nontrivial
(which already happens for SL2 (K)), 𝒯Fix is not Hausdorff.

To address this issue, we define an other topology,𝒯, finer than𝒯Fix and Hausdorff. Let
A = 𝑌 ⊗ R be the standard apartment of I and Φ ⊂ A∗ be the set of roots of (𝐺,𝑇). Then
I =

⋃
𝑔∈𝐺 𝑔.A. Let us begin with the case where 𝐺 = SL2 (K). Let 𝜛 ∈ O be such that

𝜔(𝜛) = 1. For 𝑛 ∈ N∗, let 𝜋𝑛 : SL2 (O) → SL2 (O/𝜛𝑛O) be the natural projection. Then
a basis of the neighbourhood of the identity is given by the (ker 𝜋𝑛)𝑛∈N∗ . Let𝑈+ =

( 1 ∗
0 1

)
and𝑈− =

( 1 0
∗ 1

)
. Then one can prove that ker 𝜋𝑛 = (𝑈+∩ker 𝜋𝑛).(𝑈−∩ker 𝜋𝑛).(𝑇∩ker 𝜋𝑛).

Let 𝛼,−𝛼 be the two roots of (𝐺,𝑇). Let 𝑥𝛼 : 𝑎 ↦→
( 1 𝑎

0 1
)

and 𝑥−𝛼 : 𝑎 ↦→
( 1 0
𝑎 1

)
. Then

𝑥𝛼 (𝜛𝑛O) fixes {𝑎 ∈ A | 𝛼(𝑎) ≥ −𝑛} and 𝑥−𝛼 (𝜛𝑛O) fixes {𝑎 ∈ A | 𝛼(𝑎) ≤ 𝑛}.
Therefore if 𝜆 ∈ A is such that 𝛼(𝜆) = 1 and [−𝑛𝜆, 𝑛𝜆] = 𝛼−1 ( [−𝑛, 𝑛]), we have

ker 𝜋𝑛 =
(
𝑈+ ∩ Fix𝐺 ( [−𝑛𝜆, 𝑛𝜆])

)
. (𝑈− ∩ Fix𝐺 ( [−𝑛𝜆, 𝑛𝜆])) .(𝑇 ∩ ker 𝜋𝑛).

We now return to the general case for 𝐺. We prove that the topology associated to
(ker 𝜋𝑛)𝑛∈N∗ is not a topology of topological group if 𝐺 is not reductive (see Lemma 3.3).
Let (𝛼𝑖)𝑖∈𝐼 be the set of simple roots of (𝐺,𝑇) and 𝐶𝑣

𝑓
= {𝑥 ∈ A | 𝛼𝑖 (𝑥) > 0,∀ 𝑖 ∈ 𝐼}.

Let𝑊𝑣 be the Weyl group of (𝐺,𝑇) and 𝜆 ∈ 𝑌 ∩ ⊔
𝑤∈𝑊𝑣 𝑤.𝐶𝑣

𝑓
. We define the following

subset V𝑛𝜆 of 𝐺, for 𝑛 ∈ N∗:

V𝑛𝜆 =
(
𝑈+ ∩ Fix𝐺 ( [−𝑛𝜆, 𝑛𝜆])

)
. (𝑈− ∩ Fix𝐺 ( [−𝑛𝜆, 𝑛𝜆])) .(𝑇 ∩ ker 𝜋2𝑁 (𝜆) ),

where 𝑁 (𝜆) = min{|𝛼(𝜆) | | 𝛼 ∈ Φ+}. We prove the following theorem:

Theorem 1.1 (see Theorem 4.8, Lemma 4.2, Proposition 4.21 and Proposition 5.13).

(1) For 𝑛 ∈ N∗ and 𝜆 ∈ 𝑌 ∩ ⊔
𝑤∈𝑊𝑣 𝑤.𝐶𝑣

𝑓
, V𝑛𝜆 is a subgroup of 𝔊min (O).

(2) The topology 𝒯 associated with (V𝑛𝜆)𝑛∈N∗ is Hausdorff, independent of the
choice of 𝜆 and equips 𝐺 with the structure of a topological group.

(3) The topology 𝒯 is finer than 𝒯Fix and if K is Henselian, we have 𝒯 = 𝒯Fix if
and only if ZO = {1}.

(4) Every compact subset of 𝐺 has empty interior (for 𝒯).
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Note that 𝒯 and 𝒯Fix induce the same topologies on𝑈+ and𝑈− . The main difference
comes from what happens in 𝑇 . As the elements of 𝐼 (𝜏)𝒯 and 𝐼 (𝜏)𝒯Fix are left 𝔗(O)-
invariant, these two spaces are actually equal (see Remark 4.22).

In [14], based on works of Kac and Peterson on the topology of 𝔊(C), Hartnick, Köhl
and Mars defined a Kac–Peterson topology on 𝔊(F ), for any local field F (Archimedean
or not). Assume that K is local and let 𝒯𝐾𝑃 be the Kac–Peterson topology on𝐺. We prove
that when 𝐺 is not reductive, then 𝒯 is strictly coarser than 𝒯𝐾𝑃 (see Proposition 5.4)
and thus 𝒯 seems more adapted for our purpose.

Assume that 𝔊 is affine SL2 (with a nonfree set of simple coroots). Then 𝐺 =

SL2 (K[𝑢, 𝑢−1])⋊K∗. Up to the assumption that ker 𝜋𝑛 ⊂
(

1+𝜛𝑛O[𝑢,𝑢−1 ] 𝜛𝑛O[𝑢,𝑢−1 ]
𝜛𝑛O[𝑢,𝑢−1 ] 1+𝜛𝑛O[𝑢,𝑢−1 ]

)
⋊

(1 +𝜛𝑛O), for 𝑛 ∈ N∗, we prove that the topology 𝒯 on 𝐺 is associated to the filtration
(𝐻𝑛)𝑛∈N∗ , where 𝐻𝑛 = ker(𝜋𝑛) ∩

((
O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ] O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ]
O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ] O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ]

)
,K∗

)
.

The paper is organized as follows. In Section 2, we define Kac–Moody groups (as
defined by Tits, Mathieu and Marquis) and the masures.

In Section 3, we define and study the subgroups ker 𝜋𝑛 of 𝔊min (O).
In Section 4, we define the topologies 𝒯 and 𝒯Fix, and compare them.
In Section 5, we study the properties of 𝒯 and 𝒯Fix: we prove that 𝒯𝐾𝑃 is strictly

finer than 𝒯, we describe the topology in the case of affine SL2, and we prove that usual
subgroups of 𝐺 (i.e. 𝑇 , 𝑁 , 𝐵, etc.) are closed for 𝒯.

Acknowledgements

I would like to thank Nicole Bardy-Panse and Guy Rousseau for the very helpful
discussions we had on the subject. I also thank Stéphane Gaussent, Timothée Marquis
and Dinakar Muthiah for useful conversations and suggestions and the anonymous referee
for their very careful reading and useful comments.

2. Kac–Moody groups and masures

In this section, we define Kac–Moody groups and masures. Let K be a field. There are
several possible definitions of Kac–Moody groups and we are interested in the minimal one
𝔊(K), as defined by Tits in [31]. However, because of the lack of commutation relations
in 𝔊(K), it is convenient to embed it in its Mathieu’s positive and negative completions
𝔊pma (K) and 𝔊nma (K). Then one define certain subgroups of 𝔊(K) as the intersection
of a subgroup of 𝔊pma (K) and 𝔊(K). For example if 𝔊 is affine SL2 (with a nonfree set
of simple roots and coroots), then 𝔊(K) = SL2 (K[𝑢, 𝑢−1]), 𝔊pma (K) = SL2 (K ((𝑢)))
and 𝔊nma (K) = SL2

(
K((𝑢−1))

)
.
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Topologies on Kac–Moody groups

As we want to define congruence subgroups in our framework, we also need to work
with Kac–Moody groups over rings: if K is equipped with a valuation𝜔 and𝜛 is such that
𝜔(𝜛) = 1, then we want to define ker 𝜋𝑛 ⊂ 𝔊(O), where 𝜋𝑛 : 𝔊(O) → 𝔊(O/𝜛𝑛O)
is the natural projection. The functor defined by Tits in [31] goes from the category of
rings to the category of groups. However the fact that it satisfies the axioms defined
by Tits is proved only for fields (see [31, 3.9 Theorem 1]) and we do not know if it is
“well-behaved” on rings, so we will consider it only as a functor from the category of
fields to the category of groups. In [24, 8.8], Marquis introduces a functor 𝔊min which
goes from the category of rings to the category of groups and he proves that it has nice
properties (see [24, Proposition 8.128]), especially on Bézout domains. We will use its
functor 𝔊min. We have 𝔊min (F ) ≃ 𝔊(F ) for any field F . This functor is defined as a
subfunctor of 𝔊pma, so we first define Tits’s functor, then Mathieu’s functors and then
Marquis’s functor.

2.1. Standard apartment of a masure

2.1.1. Root generating system

A Kac–Moody matrix (or generalized Cartan matrix) is a square matrix 𝐴 = (𝑎𝑖, 𝑗 )𝑖, 𝑗∈𝐼
indexed by a finite set 𝐼, with integral coefficients, and such that :

(i) ∀ 𝑖 ∈ 𝐼, 𝑎𝑖,𝑖 = 2;

(ii) ∀ (𝑖, 𝑗) ∈ 𝐼2, (𝑖 ≠ 𝑗) ⇒ (𝑎𝑖, 𝑗 ≤ 0);

(iii) ∀ (𝑖, 𝑗) ∈ 𝐼2, (𝑎𝑖, 𝑗 = 0) ⇔ (𝑎 𝑗 ,𝑖 = 0).

A root generating system is a 5-tuple S = (𝐴, 𝑋,𝑌, (𝛼𝑖)𝑖∈𝐼 , (𝛼∨𝑖 )𝑖∈𝐼 ) made of a Kac–
Moody matrix 𝐴 indexed by the finite set 𝐼, of two dual free Z-modules 𝑋 and 𝑌 of finite
rank, and of a family (𝛼𝑖)𝑖∈𝐼 (respectively (𝛼∨

𝑖
)𝑖∈𝐼 ) of elements in 𝑋 (resp. 𝑌 ) called

simple roots (resp. simple coroots) that satisfy 𝑎𝑖, 𝑗 = 𝛼 𝑗 (𝛼∨𝑖 ) for all 𝑖, 𝑗 in 𝐼. Elements of
𝑋 (respectively of 𝑌 ) are called characters (resp. cocharacters).

Fix such a root generating system S = (𝐴, 𝑋,𝑌, (𝛼𝑖)𝑖∈𝐼 , (𝛼∨𝑖 )𝑖∈𝐼 ) and set A := 𝑌 ⊗ R.
Each element of 𝑋 induces a linear form on A, hence 𝑋 can be seen as a subset of the
dual A∗. In particular, the 𝛼𝑖’s (with 𝑖 ∈ 𝐼) will be seen as linear forms on A. This allows
us to define, for any 𝑖 ∈ 𝐼, a simple reflection 𝑟𝑖 of A by setting 𝑟𝑖 .𝑣 := 𝑣 − 𝛼𝑖 (𝑣)𝛼∨𝑖 for
any 𝑣 ∈ A. One defines the Weyl group of S as the subgroup𝑊𝑣 of GL(A) generated by
{𝑟𝑖 | 𝑖 ∈ 𝐼}. The pair (𝑊𝑣 , {𝑟𝑖 | 𝑖 ∈ 𝐼}) is a Coxeter system, hence we can consider the
length ℓ(𝑤) with respect to {𝑟𝑖 | 𝑖 ∈ 𝐼} of any element 𝑤 of𝑊𝑣 .
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The following formula defines an action of the Weyl group𝑊𝑣 on A∗:

∀ 𝑥 ∈ A, 𝑤 ∈ 𝑊𝑣 , 𝛼 ∈ A∗, (𝑤.𝛼) (𝑥) := 𝛼(𝑤−1.𝑥).
LetΦ := {𝑤.𝛼𝑖 | (𝑤, 𝑖) ∈ 𝑊𝑣× 𝐼} (resp.Φ∨ = {𝑤.𝛼∨

𝑖
| (𝑤, 𝑖) ∈ 𝑊𝑣× 𝐼}) be the set of real

roots (resp. real coroots): then Φ (resp. Φ∨) is a subset of the root lattice 𝑄 :=
⊕

𝑖∈𝐼 Z𝛼𝑖
(resp. coroot lattice 𝑄∨ =

⊕
𝑖∈𝐼 Z𝛼

∨
𝑖
). By [23, 1.2.2(2)], one has R𝛼∨ ∩ Φ∨ = {±𝛼∨}

and R𝛼 ∩Φ = {±𝛼} for all 𝛼∨ ∈ Φ∨ and 𝛼 ∈ Φ.
We define the height ht : 𝑄 → Z by ht(∑𝑖∈𝐼 𝑛𝑖𝛼𝑖) =

∑
𝑖∈𝐼 𝑛𝑖 , for (𝑛𝑖) ∈ Z𝐼 .

2.1.2. Vectorial apartment

As in the reductive case, define the fundamental chamber as 𝐶𝑣
𝑓

:= {𝑣 ∈ A | ∀ 𝑖 ∈
𝐼, 𝛼𝑖 (𝑣) > 0}.

Let T :=
⋃
𝑤∈𝑊𝑣 𝑤.𝐶𝑣

𝑓
be the Tits cone. This is a convex cone (see [23, 1.4]).

For 𝐽 ⊂ 𝐼, set 𝐹𝑣 (𝐽) = {𝑥 ∈ A | 𝛼 𝑗 (𝑥) = 0, ∀ 𝑗 ∈ 𝐽 and 𝛼 𝑗 (𝑥) > 0, ∀ 𝑗 ∈ 𝐼 \ 𝐽}. A
positive vectorial face (resp. negative) is a set of the form 𝑤.𝐹𝑣 (𝐽) (−𝑤.𝐹𝑣 (𝐽)) for some
𝑤 ∈ 𝑊𝑣 and 𝐽 ⊂ 𝐼. Then by [26, 5.1 Théorème (ii)], the family of positive vectorial faces
of A is a partition of T and the stabilizer of 𝐹𝑣 (𝐽) is𝑊𝐽 = ⟨𝐽⟩.

One sets 𝑌++ = 𝑌 ∩ 𝐶𝑣
𝑓

and 𝑌+ = 𝑌 ∩ T . An element of 𝑌+ is called regular if it does
not belong to any wall, i.e. if it belongs to

⊔
𝑤∈𝑊𝑣 𝑤.𝐶𝑣

𝑓
.

Remark 2.1. By [21, Section 4.9] and [21, Section 5.8] the following conditions are
equivalent:

(1) the Kac–Moody matrix 𝐴 is of finite type (i.e. is a Cartan matrix),

(2) A = T

(3) 𝑊𝑣 is finite.

2.2. Split Kac–Moody groups over fields

2.2.1. Minimal Kac–Moody groups over fields

Let 𝔊 = 𝔊S be the group functor associated in [31] with the root generating system S,
see also [26, 8]. Let K be a field. Let 𝐺 = 𝔊(K) be the split Kac–Moody group over K
associated with S. The group 𝐺 is generated by the following subgroups:

• the fundamental torus 𝑇 = 𝔗(K), where 𝔗 = Spec(Z[𝑋]),

• the root subgroups 𝑈𝛼 = 𝔘𝛼 (K), for 𝛼 ∈ Φ, each isomorphic to (K, +) by an
isomorphism 𝑥𝛼.
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The groups 𝑋 and 𝑌 correspond to the character lattice Hom(𝔗,G𝑚) and cocharacter
lattice Hom(G𝑚,𝔗) of 𝔗 respectively. One writes 𝔘± the subgroup of 𝔊 generated by
the 𝔘𝛼, for 𝛼 ∈ Φ± and𝑈± = 𝔘± (K).

By a simple computation in SL2, we have for 𝛼 ∈ Φ and 𝑎, 𝑏 ∈ K such that 𝑎𝑏 ≠ −1:

𝑥−𝛼 (𝑏)𝑥𝛼 (𝑎) = 𝑥𝛼 (𝑎(1 + 𝑎𝑏)−1)𝛼∨ (1 + 𝑎𝑏)𝑥−𝛼 (𝑏(1 + 𝑎𝑏)−1)

= 𝑥𝛼 (𝑎(1 + 𝑎𝑏)−1)𝑥−𝛼 (𝑏(1 + 𝑎𝑏))𝛼∨ (1 + 𝑎𝑏),
(2.1)

where 𝛼∨ = 𝑤.𝛼∨
𝑖

if 𝛼 = 𝑤.𝛼𝑖 , for 𝑖 ∈ 𝐼 and 𝑤 ∈ 𝑊𝑣 .
Let 𝔑 be the group functor on rings such that if ℛ′ is a ring, 𝔑(ℛ′) is the subgroup

of 𝔊(ℛ′) generated by 𝔗(ℛ′) and the �̃� 𝑖 , for 𝑖 ∈ 𝐼, where

�̃� 𝑖 = 𝑥𝛼𝑖 (1)𝑥−𝛼𝑖 (−1)𝑥𝛼𝑖 (1). (2.2)

Then if ℛ′ is a field with at least 4 elements, 𝔑(ℛ′) is the normalizer of 𝔗(ℛ′) in
𝔊(ℛ′).

Let 𝑁 = 𝔑(K) and Aut(A) be the group of affine automorphisms of A. Then by [28,
1.4 Lemme], there exists a group morphism 𝜈𝑣 : 𝑁 → GL(A) such that:

(1) for 𝑖 ∈ 𝐼, 𝜈𝑣 (�̃� 𝑖) is the simple reflection 𝑟𝑖 ∈ 𝑊𝑣 ,

(2) ker 𝜈𝑣 = 𝑇 .

The aim of the next two subsubsections is to define Mathieu’s Kac–Moody group. This
group is defined by assembling three ingredients: the group 𝔘pma, which corresponds to a
maximal positive unipotent subgroup of 𝔊pma, the torus 𝔗 and copies of SL2, one for
each simple root 𝛼𝑖 , 𝑖 ∈ 𝐼.

2.2.2. The affine group scheme 𝔘pma

In this subsubsection, we define 𝔘pma. Let 𝔤 be the Kac–Moody Lie algebra over C
associated withS (see [23, 1.2]) andUC (𝔤) be its enveloping algebra. The group𝔘pma (C),
will be defined as a subgroup of a completion of UC (𝔤). As we want to define 𝔘pma (ℛ),
for any ring ℛ, we will also consider Z-forms of 𝔤 and UC (𝔤).

The Lie algebra 𝔤 decomposes as 𝔤 =
⊕

𝛼∈Δ 𝔤𝛼, where Δ ⊂ 𝑄 is the set of roots and
𝔤𝛼 is the proper space associated with 𝛼, for 𝛼 ∈ Δ (see [23, 1.2]). We have Δ = Δ+ ⊔Δ− ,
where Δ+ = Δ ∩𝑄+ and Δ− = −Δ+. We have Φ ⊂ Δ. The elements of Φ = Δ𝑟𝑒 are called
real roots and the elements of Δ𝑖𝑚 = Δ \Φ are called imaginary roots.

Following [31, 4] one defines U as the Z-subalgebra of UC (𝔤) generated by
𝑒
(𝑛)
𝑖

:= 𝑒𝑛
𝑖

𝑛! , 𝑓 (𝑛)
𝑖

:= 𝑓 𝑛
𝑖

𝑛! ,
(ℎ
𝑛

)
, for 𝑖 ∈ 𝐼 and ℎ ∈ 𝑌 (where the 𝑒𝑖 , 𝑓𝑖 are the genera-

tors of 𝔤, see [23, 1.1]). This is a Z-form of UC (𝔤). The algebra UC (𝔤) decomposes as
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UC (𝔤) =
⊕

𝛼∈𝑄UC (𝔤)𝛼 where we use the standard 𝑄-graduation on UC (𝔤) induced
by the 𝑄-graduation of 𝔤 (for 𝑖 ∈ 𝐼, deg(𝑒𝑖) = 𝛼𝑖 , deg( 𝑓𝑖) = −𝛼𝑖 , deg(ℎ) = 0, for ℎ ∈ 𝑌 ,
deg(𝑥𝑦) = deg(𝑥) + deg(𝑦) for all 𝑥, 𝑦 ∈ UC (𝔤) which can be written as a product of
nonzero elements of 𝔤). For 𝛼 ∈ 𝑄, one sets U𝛼 = UC (𝔤)𝛼 ∩U and U𝛼,ℛ = U𝛼 ⊗ ℛ.

For a ring ℛ, we set Uℛ = U ⊗Z ℛ. One sets Û+ =
∏
𝛼∈𝑄+ U𝛼 and Û+

ℛ
=∏

𝛼∈𝑄+ U𝛼,ℛ. This is the completion of U+ with respect to the 𝑄+-gradation.
If (𝑢𝛼) ∈

∏
𝛼∈𝑄+ U𝛼,ℛ, we write

∑
𝛼∈𝑄+ 𝑢𝛼 the corresponding element of Û+

ℛ
. A

sequence (∑𝛼∈𝑄+ 𝑢
(𝑛)
𝛼 )𝑛∈N converges in Ûℛ if and only if for every 𝛼 ∈ Δ+, the sequence

(𝑢 (𝑛)𝛼 )𝑛∈N is stationary.
Let (𝐸, ≤) be a totally ordered set. Let (𝑢 (𝑒) ) ∈ (Ûℛ)𝐸 . For 𝑒 ∈ 𝐸 , write 𝑢 =∑
𝛼∈𝑄+ 𝑢

(𝑒)
𝛼 , with 𝑢

(𝑒)
𝛼 ∈ U𝛼,ℛ, for 𝛼 ∈ 𝑄+. We assume that for every 𝛼 ∈ 𝑄+,

{𝑒 ∈ 𝐸 | 𝑢 (𝑒)𝛼 ≠ 0} is finite. Then one sets
∏
𝑒∈𝐸 𝑢

(𝑒) =
∑
𝛼∈𝑄+ 𝑢𝛼, where

𝑢𝛼 =
∑︁

(𝛽1 ,...,𝛽𝑘 ) ∈𝑄
(N)
+ ,

𝛽1+···+𝛽𝑘=𝛼

∑︁
(𝑒1 ,...,𝑒𝑘 ) ∈𝐸,

𝑒1<· · ·<𝑒𝑘

𝑢
(𝑒1 )
𝛽1

. . . 𝑢
(𝑒𝑘 )
𝛽𝑘

∈ U𝛼,ℛ,

for 𝛼 ∈ Δ+. This is well-defined since in the sum defining 𝑢𝛼, only finitely many nonzero
terms appear.

Let A =
⊕

𝛼∈𝑄+
U∗
𝛼, where U∗

𝛼 denotes the dual of U𝛼 (as a Z-module). We have
a natural ℛ-modules isomorphism between Û+

ℛ
and HomZ-lin (A,ℛ), for any ring ℛ

(see [24, (8.26)]) and we now identify these two spaces. The algebra A is equipped with
a Hopf algebra structure (see [24, Definition 8.42]). This additional structure equips

𝔘pma (ℛ) := HomZ-Alg (A,ℛ)

with the structure of a group (see [24, Appendix A.2.2]). Otherwise said, A is the
representing algebra of the (infinite dimensional in general) affine group scheme 𝔘pma :
Z-Alg → Grp.

Let 𝛼 ∈ Δ ∪ {0} and 𝑥 ∈ 𝔤𝛼,Z. An exponential sequence for 𝑥 is a sequence (𝑥 [𝑛])𝑛∈N
of elements of U such that 𝑥 [0] = 1, 𝑥 [1] = 𝑥 and 𝑥 [𝑛] ∈ U𝑛𝛼 for 𝑛 ∈ Z≥1 and satisfying
the conditions of [24, Definition 8.45]. By [30, Proposition 2.7] or [24, Proposition 8.50],
such a sequence exists. Note that it is not unique in general. However, if 𝛼 ∈ Φ+, the
unique exponential sequence for 𝑥 is (𝑥 [𝑛])𝑛∈N = ( 1

𝑛!𝑥
𝑛) by [30, 2.9 2)] (this sequence is

often denoted (𝑥 (𝑛) )𝑛∈N in the literature).
For 𝑟 ∈ ℛ, one then sets

[exp] (𝑟𝑥) =:
∑︁
𝑛∈N

𝑥 [𝑛] ⊗ 𝑟𝑛 ∈ Û+
ℛ
.

This is the twisted exponential of 𝑟𝑥 associated with the sequence (𝑥 [𝑛])𝑛∈N.

84



Topologies on Kac–Moody groups

We fix for every 𝛼 ∈ Δ+ a Z-basis B𝛼 of 𝔤𝛼,Z := 𝔤𝛼 ∩U. Set B =
⋃
𝛼∈Δ+ B𝛼. We fix

an order on each B𝛼 and on Δ+. Let 𝛼 ∈ Δ+. One defines 𝑋𝛼 : 𝔤𝛼,Z ⊗ ℛ → 𝔘pma (ℛ)
by 𝑋𝛼 (

∑
𝑥∈B𝛼

𝜆𝑥 .𝑥) =
∏
𝑥∈B𝛼

[exp]𝜆𝑥 .𝑥, for (𝜆𝑥) ∈ ℛ
B𝛼 . When 𝛼 ∈ Φ+, we have

𝔤𝛼,Z = Z𝑒𝛼, where 𝑒𝛼 is defined in [24, Remark 7.6]. One sets 𝑥𝛼 (𝑟) = [exp] (𝑟𝑒𝛼), for
𝑟 ∈ ℛ. One has 𝑋𝛼 (𝔤𝛼,Z ⊗ ℛ) = 𝑥𝛼 (ℛ) := 𝔘𝛼 (ℛ). By [24, Theorem 8.5.1], every
𝑔 ∈ 𝔘pma (ℛ) can be written in a unique way as a product

𝑔 =
∏
𝛼∈Δ+

𝑋𝛼 (𝑐𝛼), (2.3)

where 𝑐𝛼 ∈ 𝔤𝛼,Z ⊗ ℛ, for 𝛼 ∈ Δ+, where the product is taken in the given order on Δ+.
Let Ψ ⊂ Δ+. We say that Ψ is closed if for all 𝛼, 𝛽 ∈ Ψ, for all 𝑝, 𝑞 ∈ N∗, 𝑝𝛼+𝑞𝛽 ∈ Δ+

implies 𝑝𝛼 + 𝑞𝛽 ∈ Ψ. Let Ψ ⊂ Δ+ be a closed subset. One sets

𝔘
pma
Ψ

(ℛ) =
∏
𝛼∈Ψ

𝑋𝛼 (𝔤𝛼,Z ⊗ ℛ) ⊂ 𝔘pma (ℛ).

This is a subgroup of 𝔘pma, which does not depend on the chosen order on Δ+ (for the
product). This is not the definition given in [30] or [24, p. 210], but it is equivalent by [24,
Theorem 8.51].

2.2.3. Mathieu’s group 𝔊pma

The Borel subgroup (it will be a subgroup of 𝔊pma) is 𝔅 = 𝔅S = 𝔗S ⋉ 𝔘
pma, where 𝔗

acts on 𝔘pma as follows. Let ℛ be a ring, 𝛼 ∈ Δ+, 𝑡 ∈ 𝔗(ℛ), 𝑟 ∈ ℛ and 𝑥 ∈ 𝔤𝛼,ℛ,

𝑡 [exp] (𝑟𝑥)𝑡−1 = [exp] (𝛼(𝑡)𝑟𝑥). (2.4)

In particular, if 𝛼 ∈ Φ, we have

𝑡𝑥𝛼 (𝑟)𝑡−1 = 𝑥𝛼 (𝛼(𝑡)𝑟).

For 𝑖 ∈ 𝐼, let 𝔘𝑌𝛼𝑖 be the reductive group associated with the root generating system(
(2), 𝑋,𝑌 , 𝛼𝑖 , 𝛼∨𝑖

)
. For each 𝑖 ∈ 𝐼, Mathieu defines an (infinite dimensional) affine group

scheme 𝔓𝑖 = 𝔘𝑌𝛼𝑖 ⋉ 𝔘
𝑚𝑎
Δ+\{𝛼𝑖 } (see [24, Definition 8.65] for the definition of the action

of 𝔘−𝛼𝑖 on 𝔘𝑚𝑎
Δ+\{𝛼𝑖 }), where 𝔘−𝛼𝑖 is an affine group scheme over Z isomorphic to G𝑎

(see [24, 7.4.3] for more details).
We do not detail the definition of 𝔊pma and we refer to [25], [24, 8.7] or [30, 3.6]. This

is an ind-group scheme containing the 𝔓𝑖 for every 𝑖 ∈ 𝐼. Let 𝑤 ∈ 𝑊𝑣 and write 𝑤 =

𝑟𝑖1 . . . 𝑟𝑖𝑘 , with 𝑘 = ℓ(𝑤) and 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼. Then the multiplication map𝔓𝑖1×· · ·×𝔓𝑖𝑘 →
𝔊pma is a scheme morphism, and we have 𝔊pma (ℛ) =

⋃
(𝑖1 ,...,𝑖𝑛 ) ∈Red(𝑊𝑣 ) 𝔓𝑖1 (ℛ) ×

· · · × 𝔓𝑖𝑘 (ℛ), where Red(𝑊𝑣) is the set of reduced words of 𝑊𝑣 (i.e. Red(𝑊𝑣) =

{(𝑖1, . . . , 𝑖𝑘) ∈ 𝐼 (N) | ℓ(𝑟𝑖1 . . . 𝑟𝑖𝑘 ) = 𝑘}).
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Let 𝑤 ∈ 𝑊𝑣 , 𝑖 ∈ 𝐼 and 𝛼 = 𝑤.𝛼𝑖 . One sets 𝔘𝛼 = 𝑤.𝔘𝛼𝑖 .𝑤
−1, where

𝑤 = �̃� 𝑖1 . . . �̃� 𝑖𝑘 , (2.5)

if 𝑤 = 𝑟𝑖1 . . . 𝑟𝑖𝑘 is a reduced decomposition of 𝑤. There is an isomorphism of group
schemes 𝑥𝛼 : G𝑎 → 𝔘𝛼 (see [24, p. 262]). The group 𝔊pma is generated by the 𝔓𝑖 , 𝑖 ∈ 𝐼.
Moreover, if 𝑖 ∈ 𝐼, then 𝔓𝑖 is generated by 𝔗, 𝔘±𝛼𝑖 and �̃� 𝑖 = 𝑥𝛼𝑖 (1)𝑥−𝛼𝑖 (1)𝑥𝛼𝑖 (1). Thus
𝔊pma is generated by 𝔘pma, 𝔗, 𝔘−𝛼𝑖 and the �̃� 𝑖 , for 𝑖 ∈ 𝐼 and thus we have:

𝔊pma = ⟨𝔘pma,𝔗,𝔘𝛼, 𝛼 ∈ Φ−⟩. (2.6)

There is a group functor morphism 𝜄 : 𝔊 → 𝔊pma such that for any ring ℛ, 𝜄ℛ maps
𝑥𝛼 (𝑟) to 𝑥𝛼 (𝑟) and 𝑡 to 𝑡, for each 𝛼 ∈ Φ, 𝑟 ∈ ℛ, 𝑡 ∈ 𝔗(ℛ). When ℛ is a field, this
morphism is injective (see [30, 3.12] or [24, Proposition 8.117]).

Proposition 2.2. Let ℛ and ℛ
′ be two rings and 𝜑 : ℛ → ℛ

′ be a ring morphism.
Let 𝑓 Û+

𝜑 : Û+
ℛ

→ Û+
ℛ′ and 𝑓𝜑 : 𝔊pma (ℛ) → 𝔊pma (ℛ′) be the induced morphisms.

Then 𝑓 Û
+

𝜑 (𝔘pma (ℛ)) ⊂ 𝔘pma (ℛ′) and we have:

(1) For every (𝑟𝑥) ∈ ℛ
B ,

𝑓 Û
+

𝜑

(∏
𝑥∈B

[exp] (𝑟𝑥𝑥)
)
=

∏
𝑥∈B

[exp] (𝜑(𝑟𝑥)𝑥).

(2) For 𝛼 ∈ Δ+ and (𝜆𝑥) ∈ ℛ
B𝛼 , we have

𝑓𝜑

(
𝑋𝛼

( ∑︁
𝑥∈B𝛼

𝜆𝑥𝑥

))
= 𝑋𝛼

( ∑︁
𝑥∈B𝛼

𝜑(𝜆𝑥)𝑥
)
.

(3) We have 𝑓𝜑 (𝑢) = 𝑓 Û
+

𝜑 (𝑢) for 𝑢 ∈ 𝔘pma (ℛ), 𝑓𝜑 (𝑥𝛼 (𝑟)) = 𝑥𝛼 (𝜑(𝑟)), for 𝛼 ∈ Φ

and 𝑟 ∈ ℛ, and 𝑓𝜑 (𝜒(𝑟)) = 𝜒(𝜑(𝑟)), for 𝜒 ∈ 𝑌 and 𝑟 ∈ ℛ
× .

(4) If 𝜑 is surjective, then 𝑓𝜑 is surjective.

Proof.

(1), (2). By definition, we have

𝑓 Û
+

𝜑

( ∑︁
𝛼∈𝑄+

∑︁
𝑗∈𝐽𝛼

𝑢𝛼, 𝑗 ⊗ 𝑟 𝑗

)
=

∑︁
𝛼∈𝑄+

∑︁
𝑗∈𝐽𝛼

𝑢𝛼, 𝑗 ⊗ 𝜑(𝑟 𝑗 )

if 𝐽𝛼 is a finite set and (𝑟 𝑗 ) ∈ ℛ
𝐽𝛼 and 𝑢𝛼, 𝑗 ∈ U𝛼,ℛ, for every 𝛼 ∈ 𝑄+. Thus 𝜑 commutes

with infinite sums and product, which proves (1) and (2).
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(3). Let 𝑖 ∈ 𝐼. Then the morphism 𝔓𝑖 (ℛ) → 𝔓𝑖 (ℛ′) induced by 𝜑 satisfies the formula
above. Using the fact that 𝑥𝛼 = 𝑤𝑥−𝛼𝑖𝑤

−1, for 𝛼 = −𝑤.𝛼𝑖 , with 𝑤 ∈ 𝑊𝑣 , 𝑖 ∈ 𝐼 and 𝑤
defined as in (2.5), we have (3).

(4). Assume 𝜑 is surjective. By (2.3) and (1), the restriction of 𝑓𝜑 to𝔘pma (ℛ) is surjective.
By (3), the restriction of 𝑓𝜑 (𝔘− (ℛ)) = 𝔘− (ℛ′) and 𝑓𝜑 (𝔗(ℛ)) = 𝔗(ℛ′). We conclude
by using the fact that 𝔊pma is generated by 𝔘pma, 𝔘− and 𝔗 (see (2.6)). □

2.2.4. Minimal Kac–Moody group over rings

For 𝑖 ∈ 𝐼, there is a natural group morphism 𝜑𝑖 : SL2 → 𝔘𝑌𝛼𝑖 .
For a ring ℛ, one sets

𝔊min (ℛ) = ⟨𝜑𝑖 (SL2 (ℛ)) ,𝔗(ℛ)⟩ ⊂ 𝔊pma (ℛ).

This group is introduced by Marquis in [24, Definition 8.126]. By [24, Proposition 8.129],
it is a nondegenerate Tits functor in the sense of [24, Definition 7.83] and we have
𝔊min (ℛ) ≃ 𝔊(ℛ), for any field ℛ.

Note that if 𝜑 is a ring morphism between two rings ℛ and ℛ
′, the induced morphism

𝔊pma (ℛ) → 𝔊pma (ℛ′) restricts to a morphism 𝔊min (ℛ) → 𝔊min (ℛ′).
Let ℛ be a semilocal ring, i.e. a ring with finitely many maximal ideals, then by [13,

4.3.9 Theorem], SL2 (ℛ) is generated by
( 1 ℛ

0 1
)

and
( 1 0
ℛ 1

)
. Therefore,

𝔊min (ℛ) = ⟨𝔘±𝛼𝑖 (ℛ),𝔗(ℛ) | 𝑖 ∈ 𝐼⟩ ⊂ 𝔊pma (ℛ). (2.7)

2.3. Split Kac–Moody groups over valued fields and masures

We now fix a field K equipped with a valuation𝜔 : K → R∪{+∞} such that Λ := 𝜔(K∗)
contains Z. Let O = {𝑥 ∈ K | 𝜔(𝑥) ≥ 0} be its ring of valuation. We defined Mathieu’s
positive completion 𝔊pma. Replacing Δ+ by 𝑤.Δ+, for 𝑤 ∈ 𝑊𝑣 , one can also define a
group 𝔊𝑝𝑚𝑎,𝑤 . Replacing Δ+ by Δ− or by 𝑤.Δ− , for 𝑤 ∈ 𝑊𝑣 , one can also define 𝔊nma

or 𝔊𝑛𝑚𝑎,𝑤 .
We set 𝐺 = 𝔊(K), 𝐺pma = 𝔊pma (K) and 𝐺nma = 𝔊nma (K).

2.3.1. Action of 𝑁 on A

Let 𝑁 = 𝔑(K) and Aut(A) be the group of affine automorphism of A. Then by [30, 4.2],
there exists a group morphism 𝜈 : 𝑁 → Aut(A) such that:

(1) for 𝑖 ∈ 𝐼, 𝜈(�̃� 𝑖) is the simple reflection 𝑟𝑖 ∈ 𝑊𝑣 , it fixes 0,
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(2) for 𝑡 ∈ 𝔗(K), 𝜈(𝑡) is the translation on A by the vector 𝜈(𝑡) defined by
𝜒(𝜈(𝑡)) = −𝜔(𝜒(𝑡)), for all 𝜒 ∈ 𝑋 .

(3) we have 𝜈(𝑁) = 𝑊𝑣 ⋉ (𝑌 ⊗ Λ) := 𝑊Λ.

2.3.2. Affine apartment

A local face inA is the germ 𝐹 (𝑥, 𝐹𝑣) = germ𝑥 (𝑥+𝐹𝑣) where 𝑥 ∈ A and 𝐹𝑣 is a vectorial
face (i.e., 𝐹 (𝑥, 𝐹𝑣) is the filter of all neighbourhoods of 𝑥 in 𝑥 + 𝐹𝑣). It is a local panel,
positive, or negative if 𝐹𝑣 is. If 𝐹𝑣 is a chamber, we call 𝐹 (𝑥, 𝐹𝑣) an alcove (or a local
chamber). We denote by 𝐶+

0 the fundamental alcove, i.e., 𝐶+
0 = germ0 (𝐶𝑣𝑓 ).

A sector in A is a subset 𝔮 = 𝑥 +𝐶𝑣 , for 𝑥 a point in A and 𝐶𝑣 a vectorial chamber. Its
sector germ (at infinity) is the filter 𝔔 = germ∞ (𝔮) of subsets of A containing another
sector 𝑥 + 𝑦 + 𝐶𝑣 , with 𝑦 ∈ 𝐶𝑣 . It is entirely determined by its direction 𝐶𝑣 . This sector
or sector germ is said positive (resp. negative) if 𝐶𝑣 has this property. We denote by ±∞
the germ at infinity of ±𝐶𝑣

𝑓
.

For 𝛼 ∈ Δ and 𝑘 ∈ Λ ∪ {+∞}, we set 𝐷 (𝛼, 𝑘) = {𝑥 ∈ A | 𝛼(𝑥) + 𝑘 ≥ 0}. A set of the
form 𝐷 (𝛼, 𝑘), for 𝛼 ∈ Δ and 𝑘 ∈ Λ is called a half-apartment.

2.3.3. Parahoric subgroups

In [10] and [30], the masure I of 𝐺 is constructed as follows. To each 𝑥 ∈ A is associated
a group 𝑃𝑥 = 𝐺𝑥 . Then I is defined in such a way that 𝐺𝑥 is the fixator of 𝑥 in 𝐺 for
the action on I. We actually associate to each filter Ω on A a subgroup 𝐺Ω ⊂ 𝐺 (with
𝐺 {𝑥} = 𝐺𝑥 for 𝑥 ∈ A). Even though the masure is not yet defined, we use the terminology
“fixator” to speak of𝐺Ω, as this will be the fixator of Ω in𝐺. The definition of𝐺Ω involves
the completed groups 𝐺pma and 𝐺nma.

If Ω is a non empty subset of A we sometimes regard it as a filter on A by identifying
it with the filter consisting of the subsets of A containing Ω. Let Ω ⊂ A be a non empty
set or filter. One defines a function 𝑓Ω : Δ → R by

𝑓Ω (𝛼) = inf{𝑟 ∈ R | Ω ⊂ 𝐷 (𝛼 + 𝑟)} = inf{𝑟 ∈ R | 𝛼(Ω) + 𝑟 ⊂ [0, +∞[},

for 𝛼 ∈ Δ. For 𝑟 ∈ R, one sets K𝜔≥𝑟 = {𝑥 ∈ K |𝜔(𝑥) ≥ 𝑟}, K𝜔=𝑟 = {𝑥 ∈ K |𝜔(𝑥) = 𝑟}.
If Ω is a set, we define the subgroup 𝑈pma

Ω
=

∏
𝛼∈Δ+ 𝑋𝛼 (𝔤𝛼,Z ⊗ K𝜔≥ 𝑓Ω (𝛼) ) ⊂ 𝐺pma.

Actually, for 𝛼 ∈ Φ+ = Δ+
𝑟𝑒, 𝑋𝛼 (𝔤𝛼,Z ⊗ K𝜔≥ 𝑓Ω (𝛼) ) = 𝑥𝛼 (K𝜔≥ 𝑓Ω (𝛼) ) =: 𝑈𝛼,Ω. We then

define
𝑈
𝑝𝑚+
Ω

= 𝑈
pma
Ω

∩ 𝐺 = 𝑈
pma
Ω

∩𝑈+,

see [30, 4.5.2, 4.5.3 and 4.5.7]. When Ω is a filter, we set 𝑈pma
Ω

:=
⋃
𝑆∈Ω𝑈

pma
𝑆

and
𝑈
𝑝𝑚+
Ω

:= 𝑈pma
Ω

∩ 𝐺
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We may also consider the negative completion 𝐺nma = 𝔊nma (K) of 𝐺, and define
the subgroup 𝑈𝑚𝑎−

Ω
=

∏
𝛼∈Δ− 𝑋𝛼 (𝔤𝛼,Z ⊗ K𝜔≥ 𝑓Ω (𝛼) ). For 𝛼 ∈ Φ− = Δ−

𝑟𝑒, 𝑋𝛼 (𝔤𝛼,Z ⊗
K𝜔≥ 𝑓Ω (𝛼) ) = 𝑥𝛼 (K𝜔≥ 𝑓Ω (𝛼) ) =: 𝑈𝛼,Ω. We then define𝑈𝑛𝑚−

Ω
= 𝑈𝑚𝑎−

Ω
∩𝐺 = 𝑈𝑚𝑎−

Ω
∩𝑈− .

Let Ψ be a closed subset of Δ+. One sets 𝑈 𝑝𝑚

Ω
(Ψ) = 𝔘

pma
Ψ

(K) ∩ 𝑈 𝑝𝑚+
Ω

. By the
uniqueness in the decomposition of the elements of 𝑈pma as a product, every element
of 𝑈 𝑝𝑚

Ω
(Ψ) belongs to

∏
𝛼∈Ψ 𝑋𝛼 (K𝜔≥ 𝑓Ω (𝛼) ). If Ψ is a closed subset of Δ− , one sets

𝑈𝑛𝑚
Ω

(Ψ) = 𝔘nma
Ψ

(K) ∩𝑈𝑛𝑚−
Ω

. Note that𝑈 𝑝𝑚+
Ω

= 𝑈
𝑝𝑚

Ω
(Δ+) and𝑈𝑛𝑚−

Ω
= 𝑈𝑛𝑚

Ω
(Δ−).

Let Ω be a filter on A. We denote by 𝑁Ω the fixator of Ω in 𝑁 (for the action of 𝑁 on
A). If Ω is not a set, we have 𝑁Ω =

⋃
𝑆∈Ω 𝑁𝑆 . Note that we drop the hats used in [30].

When Ω is open one has 𝑁Ω = 𝑁A = 𝔗(O) := 𝔗(K𝜔≥0) = 𝔗(K𝜔=0).
If 𝑥 ∈ A, we set 𝐺𝑥 = 𝑈

𝑝𝑚+
𝑥 .𝑈𝑛𝑚−

𝑥 .𝑁𝑥 . This is a subgroup of 𝐺. If Ω ⊂ A is a set,
we set 𝐺Ω =

⋂
𝑥∈Ω𝐺𝑥 and if Ω is a filter, we set 𝐺Ω =

⋃
𝑆∈Ω𝐺𝑆 . Note that in [30], the

definition of 𝐺𝑥 is much more complicated (see [30, Définition 4.13]). However it is
equivalent to this one by [30, Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [30, Définition 5.3]. There are
many examples of filters with good fixators (see [30, 5.7]): points, local faces, sectors,
sector germs, A, walls, half apartments. . . . For such a filter Ω, we have:

𝐺Ω = 𝑈
𝑝𝑚+
Ω

.𝑈𝑛𝑚−
Ω .𝑁Ω = 𝑈𝑛𝑚−

Ω .𝑈
𝑝𝑚+
Ω

.𝑁Ω. (2.8)

We then have:
𝑈
𝑝𝑚+
Ω

= 𝐺Ω ∩𝑈+ and𝑈𝑛𝑚−
Ω = 𝐺Ω ∩𝑈− , (2.9)

as𝑈− ∩𝑈+.𝑁 = 𝑈+ ∩ 𝑁 = {1}, by [30, Remarque 3.17] and [26, 1.2.1(RT3)].
When Ω = 𝐶+

0 = germ0 (𝐶𝑣𝑓 ) is the (fundamental) positive local chamber in A,
𝐾𝐼 := 𝐺Ω is called the (fundamental) Iwahori subgroup. When Ω is a face of 𝐶+

0 , 𝐺Ω is
called a parahoric subgroup.

For Ω a set or a filter, one defines:

𝑈Ω = ⟨𝑈𝛼,Ω | 𝛼 ∈ Φ⟩, 𝑈±
Ω = 𝑈Ω ∩𝑈± and 𝑈±±

Ω = ⟨𝑈𝛼,Ω | 𝛼 ∈ Φ±⟩.
Then one has 𝑈++

Ω
⊂ 𝑈+

Ω
⊂ 𝑈

𝑝𝑚+
Ω

, but these inclusions are not equalities in general,
contrary to the reductive case (see [30, 4.12.3a and 5.7(3)]).

Lemma 2.3. Let (𝑢+, 𝑢− , 𝑡), (𝑢′+, 𝑢′− , 𝑡′) ∈ 𝑈+ ×𝑈− ×𝑇 . Assume that 𝑢+𝑡𝑢− = 𝑢′+𝑡
′𝑢′− or

𝑢+𝑢−𝑡 = 𝑢′+𝑢
′
−𝑡

′ or 𝑡𝑢+𝑢− = 𝑡′𝑢′+𝑢
′
− . Then 𝑢− = 𝑢′− , 𝑢+ = 𝑢′+ and 𝑡 = 𝑡′.

Proof. Assume 𝑢+𝑡𝑢− = 𝑢′+𝑡
′𝑢′− . We have (𝑢′+)−1𝑢+𝑡 = 𝑡′𝑢− (𝑢′−)−1. As 𝑡 normalizes𝑈− ,

we deduce the existence of 𝑢′′− such that (𝑢′+)−1𝑢+𝑡𝑡′−1 = 𝑢′′− . By [28, Proposition 1.5
(DR5)] (there is a misprint in this proposition, 𝑍 is in fact𝑇), we deduce (𝑢′+)−1𝑢+𝑡𝑡′−1 = 1
and hence 𝑢′+ = 𝑢+ and 𝑡 = 𝑡′. Therefore 𝑢− = 𝑢′− . The other cases are similar. □

By [30, 4.10] and (2.4), we have the following lemma.
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Lemma 2.4. Let Ω be a filter on A, 𝑡 ∈ 𝑇 and Ψ be a closed subset of Δ+ (resp. Δ−).
Then 𝑡𝑈 𝑝𝑚+

Ω
𝑡−1 = 𝑈

𝑝𝑚+
𝑡 .Ω

, 𝑡𝑈 𝑝𝑚

Ω
(Ψ)𝑡−1 = 𝑈

𝑝𝑚

𝑡.Ω
(Ψ) (resp. 𝑡𝑈𝑛𝑚−

Ω
(Ψ)𝑡−1 = 𝑈𝑛𝑚−

𝑡 .Ω
(Ψ)).

2.3.4. Masure

We now define the masure I = I(𝔊,K, 𝜔). As a set, I = 𝐺 × A/∼, where ∼ is defined
as follows:

∀ (𝑔, 𝑥), (ℎ, 𝑦) ∈ 𝐺 × A, (𝑔, 𝑥) ∼ (ℎ, 𝑦) ⇐⇒ ∃ 𝑛 ∈ 𝑁 | 𝑦 = 𝜈(𝑛).𝑥 and 𝑔−1ℎ𝑛 ∈ 𝐺𝑥 .
We regardA as a subset of I by identifying 𝑥 and (1, 𝑥), for 𝑥 ∈ A. The group𝐺 acts on I
by 𝑔.(ℎ, 𝑥) = (𝑔ℎ, 𝑥), for 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ A. An apartment is a set of the form 𝑔.A, for
𝑔 ∈ 𝐺. The stabilizer of A in 𝐺 is 𝑁 and if 𝑥 ∈ A, then the fixator of 𝑥 in 𝐺 is 𝐺𝑥 . More
generally, when Ω ⊂ A, then 𝐺Ω is the fixator of Ω in 𝐺 and 𝐺Ω permutes transitively
the apartments containing Ω. If 𝐴 is an apartment, we transport all the notions that are
preserved by𝑊Λ (for example segments, walls, faces, chimneys, etc.) to 𝐴. Then by [18,
Corollary 3.7], if (𝛼𝑖)𝑖∈𝐼 and (𝛼∨

𝑖
)𝑖∈𝐼 are free, then I satisfies the following axioms:

MA II. Let 𝐴, 𝐴′ be two apartments. Then 𝐴∩𝐴′ is a finite intersection of half-apartments
and there exists 𝑔 ∈ 𝐺 such that 𝑔.𝐴 = 𝐴′ and 𝑔 fixes 𝐴 ∩ 𝐴′.

MA III. If ℜ is the germ of a splayed chimney and if 𝐹 is a local face or a germ of a
chimney, then there exists an apartment containing ℜ and 𝐹.

We did not recall the definition of a chimney and we refer to [29] for such a definition.
We will only use the fact that a sector-germ is a particular case of a germ of a splayed
chimney.

We also have:

• The stabilizer of A in 𝐺 is 𝑁 and 𝑁 acts on A ⊂ I via 𝜈.

• The group 𝑈𝛼,𝑟 := {𝑥𝛼 (𝑢) | 𝑢 ∈ K, 𝜔(𝑢) ≥ 𝑟}, for 𝛼 ∈ Φ, 𝑟 ∈ Λ, fixes the
half-apartment 𝐷 (𝛼, 𝑟). It acts simply transitively on the set of apartments in I
containing 𝐷 (𝛼, 𝑟).

The first point of the next proposition extends [7, Proposition 7.4.8] to masures.

Proposition 2.5.

(1) Let 𝑔 ∈ 𝐺. Then A ∩ 𝑔−1.A is a finite intersection of half-apartments and there
exists 𝑛 ∈ 𝑁 such that 𝑔.𝑥 = 𝑛.𝑥 for every 𝑥 ∈ A ∩ 𝑔−1.A.

(2) Let 𝑔 ∈ 𝐺. Then {𝑥 ∈ A | 𝑔.𝑥 = 𝑥} is convex. In particular if Ω is a subset of A,
then 𝐺Ω = 𝐺conv(Ω) , where conv(Ω) is the convex hull of Ω.
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Proof.

(1). Let 𝑔 ∈ 𝐺. We assume that A ∩ 𝑔−1.A is non-empty. Then it is a finite intersection
of half-apartments by (MA II) and there exists ℎ ∈ 𝐺 such that ℎ𝑔.A = A and ℎ fixes
A ∩ 𝑔.A. Then ℎ𝑔 stabilizes A and thus it belongs to 𝑁 , by [30, 5.7 5)]. We get (1) by
setting 𝑛 = ℎ𝑔.

(2). Let 𝑔 ∈ 𝐺, Ω1 = A ∩ 𝑔−1.A and Ω = {𝑥 ∈ A | 𝑔.𝑥 = 𝑥}. We have Ω ⊂ Ω1.
Let 𝑛 ∈ 𝑁 be such that 𝑔.𝑥 = 𝑛.𝑥 for all 𝑥 ∈ Ω1. Let 𝑓 = 𝜈(𝑛) : A → A. Then
Ω = Ω1 ∩ {𝑥 ∈ A | 𝑓 (𝑥) = 𝑥}. As 𝑓 is affine and Ω1 is convex, we have that Ω is
convex. □

Remark 2.6. In 2.1.1, we did not assume the freeness of the families (𝛼𝑖)𝑖∈𝐼 and (𝛼∨
𝑖
)𝑖∈𝐼 ,

since there are interesting Kac–Moody groups, which do not satisfy this assumption.
For example, 𝐺 := SL𝑛 (K[𝑢, 𝑢−1]) ⋊K∗ is naturally equipped with the structure of a
Kac–Moody group associated with a root generating system S having nonfree coroots.
This group is particularly interesting for examples, since it is one of the only Kac–Moody
groups in which we can make explicit computations. In [18], we proved that if (𝛼𝑖)𝑖∈𝐼
and (𝛼∨

𝑖
)𝑖∈𝐼 are free families, then the masure associated with 𝐺 satisfies (MA II) and

(MA III). Without this assumption we do not know. In [30, Théorème 5.16], Rousseau
proves that I satisfies the axioms (MA2) to (MA5) of [29]. We did not introduce these
axioms since they are more complicated and a bit less convenient. However it is easy
to adapt the proofs of this paper to use the axioms of [29] instead of those of [18], for
example, retractions are already available in [29].

2.3.5. Retraction centred at a sector-germ

Let 𝔔 be a sector-germ of A. If 𝑥 ∈ I, then by (MA III), there exists an apartment 𝐴 of I
containing 𝔔 and 𝑥. By (MA II), there exists 𝑔 ∈ 𝐺 such that 𝑔.𝐴 = A and 𝑔 fixes 𝐴 ∩ A.
One sets 𝜌𝔔 (𝑥) = 𝑔.𝑥 ∈ A. This is well-defined, independently of the choices of 𝐴 and
𝑔, by (MA II). This defines the retraction 𝜌𝔔 : I → A onto A and centred at 𝔔. When
𝔔 = +∞, we denote it 𝜌+∞. If 𝑥 ∈ I, then 𝜌+∞ (𝑥) is the unique element of𝑈+.𝑥 ∩ A.

2.3.6. Topology defined by a filtration

A filtration of 𝐺 by subgroups is a sequence (𝑉𝑛)𝑛∈N∗ of subgroups of 𝐺 such that
𝑉𝑛+1 ⊂ 𝑉𝑛 for all 𝑛 ∈ N∗. Let (𝑉𝑛) be a filtration of 𝐺 by subgroups. The associated
topology 𝒯 ((𝑉𝑛)) is the topology on 𝐺 for which a set 𝑉 is open if for all 𝑔 ∈ 𝑉 , there
exists 𝑛 ∈ N∗ such that 𝑔.𝑉𝑛 ⊂ 𝑉 .
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Let (𝑉𝑛), (𝑉𝑛) be two filtrations of 𝐺 by subgroups. We say that (𝑉𝑛) and (𝑉𝑛) are
equivalent if for all 𝑛 ∈ N, there exist 𝑚, 𝑚 ∈ N such that 𝑉𝑚 ⊂ 𝑉𝑛 and 𝑉 �̃� ⊂ 𝑉𝑛. This
defines an equivalence relation on the set of filtrations of 𝐺 by subgroups. Then (𝑉𝑛) and
(𝑉𝑛) are equivalent filtrations, if and only if 𝒯 ((𝑉𝑛)) = 𝒯

(
(𝑉𝑛)

)
.

We say that (𝑉𝑛) is conjugation-invariant if for all 𝑔 ∈ 𝐺, (𝑔𝑉𝑛𝑔−1) is equivalent to
(𝑉𝑛). Then 𝒯 ((𝑉𝑛)) equips 𝐺 with the structure of a topological group if and only if
(𝑉𝑛) is conjugation invariant, by [24, Exercise 8.5].

3. Congruence subgroups

In this section, we define and study the congruence subgroups. They will be a key tool
in order to define the topology 𝒯 in Section 4. We prove however that the filtration
(ker 𝜋𝑛)𝑛∈N∗ is not conjugation-invariant. We also study how they decompose.

3.1. Definition of the congruence subgroup

Proposition 3.1. The fixator 𝐺0 of 0 in 𝐺 is the group 𝔊min (O).

Proof. For 𝑖 ∈ 𝐼, 𝑥𝛼𝑖 (O), 𝑥−𝛼𝑖 (O) and 𝔗(O) fix 0. Therefore by (2.7), 𝔊min (O) ⊂ 𝐺0.
By [30, Proposition 4.14]

𝐺0 = 𝑈
𝑝𝑚+
0 𝑈𝑛𝑚−

0 𝑁0, (3.1)

where 𝑁0 = {𝑛 ∈ 𝑁 | 𝑛.0 = 0}. By [3, 2.4.1 2)], we have

𝑈
𝑝𝑚+
0 = 𝑈+

0 := ⟨𝑥𝛼 (𝑢) | 𝛼 ∈ Φ, 𝑢 ∈ O⟩ ∩𝑈+ ⊂ 𝔊min (O)

and
𝑈𝑛𝑚−

0 = 𝑈−
0 := ⟨𝑥𝛼 (𝑢) | 𝛼 ∈ Φ, 𝑢 ∈ O⟩ ∩𝑈− ⊂ 𝔊min (O).

For 𝑖 ∈ 𝐼, set �̃� 𝑖 = 𝑥𝛼𝑖 (1)𝑥−𝛼𝑖 (−1)𝑥𝛼𝑖 (1) ∈ 𝔊min (O). We have 𝑁 = ⟨𝔗(K), �̃� 𝑖 | 𝑖 ∈ 𝐼⟩.
Let 𝑛 ∈ 𝑁0. Write 𝜈𝑣 (𝑛) = 𝑤 ∈ 𝑊𝑣 , where 𝜈𝑣 was defined in 2.2.1. Write 𝑤 = 𝑟𝑖1 . . . 𝑟𝑖𝑘 ,
with 𝑘 = ℓ(𝑤) and 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼. Let 𝑛′ = �̃� 𝑖1 . . . �̃� 𝑖𝑘 ∈ 𝑁0. By [30, 1.6 4)] 𝜈𝑣 (𝑛′) = 𝑤
and 𝑡 := 𝑛′−1𝑛 ∈ 𝑇 ∩ ker(𝜈). By [30, 4.2 3)], 𝑡 ∈ 𝔗(O). Therefore

𝑁0 = ⟨̃𝑟 𝑖 | 𝑖 ∈ 𝐼⟩.𝔗(O). (3.2)

and in particular, 𝑁0 ⊂ 𝔊min (O). Proposition follows. □

Recall that we assumed that Λ = 𝜔(K∗) ⊃ Z. If 𝜔(K∗) is discrete, we can normalize
𝜔 so that Λ = Z. We fix 𝜛 ∈ O such that 𝜔(𝜛) = 1.

For 𝑛 ∈ N∗, we denote by 𝜋pma
𝑛 : 𝔊pma (O)→𝔊pma (O/𝜛𝑛O) and 𝜋nma

𝑛 : 𝔊nma (O)→
𝔊nma (O/𝜛𝑛O) the morphisms associated with the canonical projection O↠ O/𝜛𝑛O.
We denote by 𝜋𝑛 the restriction of 𝜋pma

𝑛 to 𝔊min (O). By Proposition 2.2, 𝜋𝑛 is also the
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restriction of 𝜋nma
𝑛 to 𝔊min (O) (it is also the restrictions of 𝜋𝑝𝑚𝑎,𝑤𝑛 : 𝔊𝑝𝑚𝑎,𝑤 (O) →

𝔊𝑝𝑚𝑎,𝑤 (O/𝜛𝑛O) and 𝜋𝑛𝑚𝑎,𝑤𝑛 : 𝔊𝑛𝑚𝑎,𝑤 (O) → 𝔊𝑛𝑚𝑎,𝑤 (O/𝜛𝑛O), for 𝑤 ∈ 𝑊𝑣). By
Proposition 2.2 and (2.7), 𝜋𝑛, 𝜋pma

𝑛 and 𝜋nma
𝑛 are surjective. Their kernels are respectively

called the 𝑛-th congruence subgroups of 𝔊min (O), 𝔊pma (O) and 𝔊nma (O).
The family (ker 𝜋𝑛)𝑛∈N∗ is a filtration of 𝐺. We prove below that it is not conjugation-

invariant when 𝑊𝑣 is infinite, which motivates the introduction of other filtrations
(V𝑛𝜆)𝑛∈N∗ , for 𝜆 ∈ 𝑌+ regular, in Section 4.

Lemma 3.2. Let 𝑥 ∈ A be such that 𝛼𝑖 (𝑥) > 0 for all 𝑖 ∈ 𝐼. Suppose that𝑊𝑣 is infinite.
Then for all 𝑛 ∈ N∗, there exists 𝑔 ∈ ker(𝜋𝑛) such that 𝑔.𝑥 ≠ 𝑥.

Proof. Let 𝑛 ∈ N∗. As Φ+ is infinite, there exists 𝛽 ∈ Φ+ such that ht(𝛽) > 𝑛
min𝑖∈𝐼 𝛼𝑖 (𝑥 ) .

Then 𝛽(𝑥) > 𝑛. Let 𝑔 = 𝑥−𝛽 (𝜛𝑛) ∈ ker 𝜋𝑛. Then the subset of A fixed by 𝑔 is
{𝑦 ∈ A | −𝛽(𝑦) + 𝑛 ≥ 0}, which does not contain 𝑥. □

Lemma 3.3. Assume that𝑊𝑣 is infinite. Then (ker(𝜋𝑛))𝑛∈N∗ is not conjugation-invariant.

Proof. Suppose that (ker(𝜋𝑛)) is conjugation-invariant. Then the topology 𝒯((ker(𝜋𝑛))
equips 𝐺 with the structure of a topological group. We have ker(𝜋1) ⊂ 𝔊min (O) = 𝐺0
and in particular𝐺0 =

⋃
𝑔∈𝐺0 𝑔. ker(𝜋1) is open. Let 𝜆 ∈ 𝑌+ be such that 𝛼𝑖 (𝜆) = 1 for all

𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇 be such that 𝑡.0 = 𝜆. Then 𝐻 := 𝑡𝐺0𝑡
−1 is open (since 𝐺 is a topological

group). As 1 ∈ 𝐻, we deduce the existence of 𝑛 ∈ N∗ such that ker(𝜋𝑛) ⊂ 𝐻. As 𝐻 fixes
𝜆, this implies that𝑊𝑣 is finite, by Lemma 3.2. □

3.2. On the decompositions of the congruence subgroups

Let 𝔪 = {𝑥 ∈ O | 𝜔(𝑥) > 0} be the maximal ideal of O and k = O/𝔪. Let 𝜋k :
𝔊min (O) → 𝔊min (k) be the morphism induced by the natural projection O ↠ k. When
𝜔(K∗) = Z, 𝜋k = 𝜋1.

In this subsection we study ker 𝜋k: we prove that it decomposes as the product of its
intersections with 𝑈− , 𝑈+ and 𝑇 (see Proposition 3.5), using the masure I of 𝐺. We
also describe𝑈− ∩ ker 𝜋k and𝑈+ ∩ ker 𝜋k through their actions on I and we deduce that
ker 𝜋k fixes 𝐶+

0 ∪𝐶−
0 . It would be interesting to prove similar properties for ker 𝜋𝑛 instead

of ker 𝜋k, for 𝑛 ∈ N∗. The difficulty is that when 𝜔 is not discrete or 𝑛 ≥ 2, O/𝜛𝑛O is no
longer a field and very few is known for Kac–Moody groups over rings.

Let 𝐶,𝐶′ be two alcoves of the same sign based at 0. By [16, Proposition 5.17],
there exists an apartment 𝐴 containing 𝐶 and 𝐶′. Let 𝑔 ∈ 𝐺 be such that 𝑔.𝐴 = A and
𝑔.𝐶 = 𝐶+

0 . Then 𝑔.𝐶′ is an alcove of A based at 0 and thus there exists 𝑤 ∈ 𝑊𝑣 such
that 𝑔.𝐶′ = 𝑤.𝐶+

0 . We set 𝑑𝑊+ (𝐶,𝐶′) = 𝑤, which is well-defined, independently of the
choices we made (note that in [2, 1.11] the “𝑊-distance” 𝑑𝑊+ is defined for more general
pairs of alcoves). Then 𝑑𝑊+ is 𝐺-invariant.
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Lemma 3.4. Let 𝐶 be a positive alcove of I based at 0 and 𝑤 ∈ 𝑊𝑣 . Write 𝑤 = 𝑟𝑖1 . . . 𝑟𝑖𝑘 ,
with 𝑘 = ℓ(𝑤) and 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼. Let 𝛽1 = 𝛼𝑖1 , 𝛽2 = 𝑟𝑖1 .𝛼𝑖2 , . . . , 𝛽𝑘 = 𝑟𝑖1 . . . 𝑟𝑖𝑘−1 .𝛼𝑖𝑘 .
Then 𝛽1, . . . , 𝛽𝑘 ∈ Φ+ and we have 𝜌+∞ (𝐶) = 𝑤.𝐶+

0 if and only if there exists 𝑎1, . . . , 𝑎𝑘 ∈
O such that 𝐶 = 𝑥𝛽1 (𝑎1) . . . 𝑥𝛽𝑘 (𝑎𝑘) .̃𝑟 𝑖1 . . . �̃� 𝑖𝑘 .𝐶+

0 .

Proof. As 𝑥𝛽1 (O). . . . .𝑥𝛽𝑘 (O) fixes 0, an element of 𝑥𝛽1 (O) . . . 𝑥𝛽𝑘 (O) .̃𝑟 𝑖1 . . . �̃� 𝑖𝑘 .𝐶+
0 is a

positive alcove based at 0. The fact that 𝛽1, . . . , 𝛽𝑘 ∈ Φ+ follows from [23, 1.3.14 Lemma].
Thus 𝑥𝛽1 (O). . . . .𝑥𝛽𝑘 (O) .̃𝑟 𝑖1 . . . �̃� 𝑖𝑘 .𝐶+

0 ⊂ 𝑈+.𝑤.𝐶+
0 and we have one implication.

We prove the reciprocal by induction on ℓ(𝑤). Assume 𝑤 = 1. Then 𝜌+∞ (𝐶) = 𝐶+
0 .

Let 𝐴 be an apartment containing +∞ and 𝐶. Let 𝑔 ∈ 𝐺 be such that 𝑔.𝐴 = A and 𝑔 fixes
𝐴 ∩A. Then 𝐶 = 𝑔−1.𝐶+

0 , by definition of 𝜌+∞. Moreover, 𝐴 contains 0 and +∞ and thus
it contains conv(0, +∞) ⊃ 𝐶+

0 . Therefore 𝐶 = 𝐶+
0 and the lemma is clear in this case.

Assume now that ℓ(𝑤) ≥ 1.
Let 𝐶′

0 = 𝐶+
0 , 𝐶′

1 = 𝑟𝑖1 .𝐶
+
0 , . . . , 𝐶′

𝑘
= 𝑟𝑖1 . . . 𝑟𝑖𝑘 .𝐶

+
0 = 𝐶′. Let 𝐶 be a positive alcove

based at 0 and such that 𝜌+∞ (𝐶) = 𝐶′
𝑘
. Let 𝐴 be an apartment containing 𝐶 and +∞.

Let 𝑔 ∈ 𝐺 be such that 𝑔.𝐴 = A and 𝑔 fixes 𝐴 ∩ A. Set 𝐶𝑖 = 𝑔−1.𝐶′
𝑖
, for 𝑖 ∈ ⟦0, 𝑘⟧.

Then 𝑔 fixes +∞ and hence 𝜌+∞ (𝑥) = 𝑔.𝑥 for every 𝑥 ∈ A. Therefore 𝜌+∞ (𝐶𝑖) = 𝐶′
𝑖
, for

𝑖 ∈ ⟦0, 𝑘⟧. In particular, 𝜌+∞ (𝐶𝑘−1) = 𝐶′
𝑘−1. By induction, we may assume that there

exist 𝑎1, . . . , 𝑎𝑘−1 ∈ O such that 𝐶𝑘−1 = 𝑢�̃�.𝐶+
0 , where 𝑢 = 𝑥𝛽1 (𝑎1) . . . 𝑥𝛽𝑘 (𝑎𝑘−1) and

�̃� = �̃� 𝑖1 . . . �̃� 𝑖𝑘−1 . Moreover we have

𝑑𝑊
+ (𝐶𝑘−1, 𝐶𝑘) = 𝑑𝑊

+ (𝐶′
𝑘−1, 𝐶

′
𝑘) = 𝑟𝑖𝑘
= 𝑑𝑊

+
(
𝑢−1.𝐶𝑘−1, 𝑢

−1.𝐶𝑘

)
= 𝑑𝑊

+
(
�̃�.𝐶+

0 , 𝑢
−1.𝐶𝑘

)
.

Let 𝑃 be the panel common to �̃�.𝐶+
0 and 𝑢−1.𝐶𝑘 . Then 𝑃 ⊂ 𝛽−1

𝑘
({0}). Let 𝐷 be

the half-apartment delimited by 𝛽−1
𝑘
({0}) and containing 𝐶𝑘−1. Then as 𝛽𝑘 (𝐶𝑘−1) =

𝑟𝑖1 . . . 𝑟𝑖𝑘−1 .𝛼𝑖𝑘 (𝑟𝑖1 . . . 𝑟𝑖𝑘−1 .𝐶
+
0 ) > 0, 𝐷 contains +∞. By [29, Proposition 2.9], there

exists an apartment 𝐵 containing 𝐷 and 𝑢−1.𝐶𝑘 . Let 𝑔′ ∈ 𝐺 be such that 𝑔′.𝐵 = A and
𝑔′ fixes A ∩ 𝐵. We have 𝑔′.𝑢−1.𝐶𝑘 = 𝜌+∞ (𝐶𝑘) = 𝐶′

𝑘
. By [30, 5.7 7)], 𝑔′ ∈ 𝔗(O)𝑈𝛽𝑘 ,0

and as 𝔗(O) fixes A, we can assume 𝑔′ ∈ 𝑈𝛽𝑘 ,0 = 𝑥𝛽𝑘 (O). Write 𝑔′ = 𝑥𝛽𝑘 (−𝑎𝑘), with
𝑎𝑘 ∈ O. Then 𝐶𝑘 = 𝑢.𝑥𝛽𝑘 (𝑎𝑘).𝐶𝑘 = 𝑥𝛽1 (𝑎1) . . . 𝑥𝛽𝑘 (𝑎𝑘) .̃𝑟 𝑖1 . . . �̃� 𝑖𝑘 .𝐶+

0 , which proves the
lemma. □

Proposition 3.5.

(1) We have𝑈𝑛𝑚−
𝐶+

0
= 𝑈− ∩ ker(𝜋k) and𝑈 𝑝𝑚+

−𝐶+
0
= 𝑈+ ∩ ker(𝜋k).

(2) We have ker(𝜋k) = (ker(𝜋k) ∩𝑈+) . (ker(𝜋k) ∩𝑈−) . (ker(𝜋k) ∩ 𝔗(O)) .

(3) We have ker(𝜋k) ⊂ 𝐺𝐶+
0 ∪𝐶

−
0
.
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Proof.

(2). Let 𝑢 ∈ 𝑈𝑛𝑚−
𝐶+

0
. By definition, there exists Ω ∈ 𝐶+

0 such that 𝑢 ∈ 𝑈𝑛𝑚−
Ω

. Let
𝑥 ∈ 𝐶𝑣

𝑓
∩ Ω. Then 𝑢 ∈ ∏

𝛼∈Δ− 𝑋𝛼 (𝔤𝛼,Z ⊗ K𝜔≥−𝛼(𝑥 ) ) ∩ 𝐺0. As −𝛼(𝑥) > 0 for every
𝛼 ∈ Δ− , Proposition 2.2 implies:

𝑈𝑛𝑚−
𝐶+

0
⊂ ker(𝜋k). (3.3)

Let 𝑔 ∈ ker(𝜋k) ⊂ 𝔊min (O). Then 𝑔 fixes 0 and 𝑔.𝐶+
0 is a positive alcove based at

0. Write 𝜌+∞ (𝑔.𝐶+
0 ) = 𝑤.𝐶

+
0 , with 𝑤 ∈ 𝑊𝑣 . Write 𝑤 = 𝑟𝑖1 . . . 𝑟𝑖𝑚 , with 𝑚 = ℓ(𝑤) and

𝑖1, . . . , 𝑖𝑚 ∈ 𝐼. Let �̃� = �̃� 𝑖1 . . . �̃� 𝑖𝑚 ∈ 𝔑(K). By Lemma 3.4, there exists 𝑢 ∈ ⟨𝑥𝛽 (O) | 𝛽 ∈
Φ+⟩ such that 𝑔.𝐶+

0 = 𝑢�̃�.𝐶+
0 . Then 𝑔 = 𝑢�̃�𝑖, with 𝑖 ∈ 𝐺𝐶+

0
. As 𝐶+

0 has a good fixator ([30,
5.7 2)]), we have (by (2.8):

𝐺𝐶+
0
= 𝑈

𝑝𝑚+
𝐶+

0
𝑈𝑛𝑚−
𝐶+

0
𝑁𝐶+

0
.

As every element of 𝐶+
0 has non empty interior, 𝑁𝐶+

0
= 𝔗(O). Moreover,𝑈 𝑝𝑚+

𝐶+
0

= 𝑈
𝑝𝑚+
0

and T (O) normalizes𝑈 𝑝𝑚+
0 and𝑈𝑛𝑚−

𝐶+
0

. Therefore,

𝐺𝐶+
0
= 𝔗(O).𝑈 𝑝𝑚+

0 .𝑈𝑛𝑚−
𝐶+

0
.

Write 𝑖 = 𝑡𝑢+𝑢− , with 𝑡 ∈ 𝔗(O), 𝑢+ ∈ 𝑈 𝑝𝑚+
0 and 𝑢− ∈ 𝑈𝑛𝑚−

𝐶+
0

.
Therefore by (3.3), we have

𝜋k (𝑔) = 1 = 𝜋k (𝑢�̃�𝑡𝑢+𝑢−) = 𝜋k (𝑢)𝜋k (�̃�𝑡)𝜋k (𝑢+)𝜋k (𝑢−) = 𝜋k (𝑢)𝜋k (�̃�𝑡)𝜋k (𝑢+).

By [30, 3.16 Proposition] or [24, Theorem 8.118],
(𝔊pma (k),𝔑(k),𝔘pma (k),𝔘− (k),𝔗(k), {𝑟𝑖 | 𝑖 ∈ 𝐼}) is a refined Tits system. By [30,

3.16 Remarque], we have the Birkhoff decomposition

𝔊pma (k) =
⊔

𝑛∈𝔑 (k)
𝔘+ (k)𝑛𝔘pma (k).

As 𝜋k (𝑢) ∈ 𝔘+ (k), 𝜋k (�̃�𝑡) ∈ 𝔑(k) and 𝜋k (𝑢+) ∈ 𝔘pma (k), we deduce 𝜋k (�̃�𝑡) = 1.
By [28, 1.4 Lemme and 1.6], there exists a group morphism 𝜈𝑣

k
: 𝔑(k) → 𝑊𝑣 such

that 𝜈𝑣
k
(�̃� 𝑖) = 𝑟𝑖 for 𝑖 ∈ 𝐼 and 𝜈𝑣

k
(𝔗(k)) = 1. Then 𝜈𝑣

k
(�̃�𝑡) = 𝑤 = 1. Therefore 𝑤 = 1 and

𝑔 = 𝑢𝑡𝑢+𝑢− = 𝑢′𝑡𝑢− , for some 𝑢′ ∈ 𝑈 𝑝𝑚+
0 , since 𝑡 normalizes𝑈 𝑝𝑚+

0 . By Lemma 2.3 and
by symmetry of the roles of 𝑈𝑛𝑚− and 𝑈 𝑝𝑚+, we have 𝑢′ ∈ 𝑈 𝑝𝑚+

−𝐶+
0

. By (3.3) applied to
𝑈
𝑝𝑚+
−𝐶+

0
, we have 𝜋k (𝑔) = 1 = 𝜋k (𝑢′)𝜋k (𝑡)𝜋k (𝑢−) = 𝜋k (𝑡) and thus

𝑔 ∈ 𝑈 𝑝𝑚+
−𝐶−

0
.(𝑇 ∩ ker 𝜋k).𝑈𝑛𝑚−

𝐶+
0

= 𝑈
𝑝𝑚+
−𝐶−

0
.𝑈𝑛𝑚−
𝐶+

0
.(𝑇 ∩ ker 𝜋k).

By (3.3), we deduce (2).
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(3). We have 𝑈 𝑝𝑚+
−𝐶+

0
= 𝑈

𝑝𝑚+
−𝐶+

0 ∪𝐶
𝑣
𝑓

⊂ 𝐺𝐶+
0 ∪−𝐶

+
0
, 𝑈𝑛𝑚−

𝐶+
0

= 𝑈𝑛𝑚−
𝐶+

0 ∪−𝐶
𝑣
𝑓

⊂ 𝐺𝐶+
0 ∪−𝐶

+
0

and
𝑇 ∩ ker 𝜋k ⊂ 𝑇 ∩ 𝐺0 ⊂ 𝐺A, which proves (3).

(1). We already proved one inclusion. Let 𝑢 ∈ ker 𝜋k ∩𝑈− . Then by what we proved
above, 𝑢 ∈ 𝑈 𝑝𝑚+

−𝐶−
0
.(𝑇 ∩ ker 𝜋k).𝑈𝑛𝑚−

𝐶+
0

. By Lemma 2.3, 𝑢 ∈ 𝑈𝑛𝑚−
𝐶+

0
, and the proposition

follows. □

Corollary 3.6. Let 𝑛 ∈ N∗. Then ker 𝜋𝑛 ⊂ 𝑈 𝑝𝑚+
−𝐶+

0
.𝔗(O).𝑈𝑛𝑚−

𝐶+
0

.

Remark 3.7. Let 𝑢 ∈ 𝑈− ∩ ker 𝜋k = 𝑈𝑛𝑚−
𝐶0

. Write 𝑢 =
∏
𝛼∈Δ− 𝑋𝛼 (𝑣𝛼), where 𝑣𝛼 ∈

𝔤𝛼,Z ⊗ O, for every 𝛼 ∈ Δ− . Define 𝜔 : 𝔤𝛼,Z ⊗ K → R ∪ {+∞} by 𝜔(𝑣) = inf{𝑥 ∈ R |
𝑣 ∈ 𝔤𝛼,Z ⊗ K𝜔≥𝑥}, for 𝑣 ∈ 𝔤𝛼,Z ⊗ K. Let 𝜆 ∈ 𝑌 be such that 𝛼𝑖 (𝜆) = 1 for every 𝑖 ∈ 𝐼.
Let Ω ∈ 𝐶+

0 be such that 𝑢 ∈ 𝑈𝑛𝑚−
Ω

and 𝜂 ∈ R∗+ be such 𝜂𝜆 ∈ Ω. Then 𝑢 ∈ 𝑈𝑛𝑚−
Ω

implies
𝜔(𝑣𝛼) ≥ |𝛼(𝜂𝜆) | = 𝜂ht(𝛼) for every 𝛼 ∈ Δ− . In particular, 𝜔(𝑣𝛼) goes to +∞ when
−ht(𝛼) goes to +∞.

4. Definition of topologies on 𝐺

In this section, we define two topologies 𝒯 and 𝒯Fix on 𝐺 and compare them. For the
first one, we proceed as follows. We define a set V𝜆 for every regular 𝜆 ∈ 𝑌+. We prove
that it is actually a subgroup of 𝔊min (O) (Lemma 4.2) and we define 𝒯 as the topology
associated with (V𝑛𝜆)𝑛∈N∗ . We then prove that 𝒯 does not depend on the choice of 𝜆 and
that it is conjugation-invariant (Theorem 4.8) and thus that (𝐺,𝒯) is a topological group.
We then introduce the topology 𝒯Fix associated with the fixators of finite subsets of I and
we end up by a comparison of 𝒯 and 𝒯Fix.

4.1. Subgroup V𝜆
For 𝑛 ∈ N∗, we set 𝑇𝑛 = ker 𝜋𝑛 ∩ 𝑇 ⊂ 𝔗(O). For 𝜆 ∈ 𝑌+ regular, we set

𝑁 (𝜆) = min{|𝛼(𝜆) | | 𝛼 ∈ Φ} ∈ N∗ and V𝜆 = 𝑈 𝑝𝑚+
[−𝜆,𝜆] .𝑈

𝑛𝑚−
[−𝜆,𝜆] .𝑇2𝑁 (𝜆) .

By (2.9), we have

V𝜆 = (𝑈+ ∩ 𝐺 [−𝜆,𝜆]).(𝑈− ∩ 𝐺 [−𝜆,𝜆]).(𝑇 ∩ ker 𝜋2𝑁 (𝜆) ) ⊂ 𝐺 [−𝜆,𝜆] . (4.1)

The 2𝑁 (𝜆) appearing comes from 𝑥−𝛼 (𝜛𝑛O).𝑥𝛼 (𝜛𝑛O) ⊂ 𝑥𝛼 (𝜛𝑛O)𝑥−𝛼 (𝜛𝑛O)
𝛼∨ (1 + 𝜛2𝑛O) for 𝛼 ∈ Φ and 𝑛 ∈ N∗, which follows from (2.1). To prove that V𝜆 is a
group, the main difficulty is to prove that it is stable by left multiplication by𝑈𝑛𝑚−

[−𝜆,𝜆] . If
𝐺 is reductive, we have 𝑈𝑛𝑚−

[−𝜆,𝜆] = 𝑈
−−
[−𝜆,𝜆] := ⟨𝑥𝛼 (𝑎) | 𝛼 ∈ Φ− , 𝑎 ∈ K, 𝜔(𝑎) ≥ |𝛼(𝜆) |⟩.

By induction, it then suffices to prove that 𝑥−𝛼 (𝜛 |𝛼(𝜆) |O)V𝜆 ⊂ V𝜆, for 𝛼 ∈ Φ+. When
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𝐺 is no longer reductive, we have𝑈−−
[−𝜆,𝜆] ⊊ 𝑈

𝑛𝑚−
[−𝜆,𝜆] in general (see [30, 4.12 3)]). The

group𝑈𝑛𝑚−
[−𝜆,𝜆] is defined as a set of infinite products and so its seems difficult to reason

by induction in our case. We could try to use the group𝑈−
[−𝜆,𝜆] := ⟨𝑥𝛼 (𝑎) | 𝛼 ∈ Φ, 𝑎 ∈

K, 𝜔 ≥ |𝛼(𝑎) |⟩ ∩𝑈− since it is sometimes equal to𝑈𝑛𝑚−
[−𝜆,𝜆] (for example when 𝜆 ∈ 𝐶𝑣

𝑓
,

𝑈𝑛𝑚−
[−𝜆,𝜆] = 𝑈

𝑛𝑚−
−𝜆 = 𝑈−

𝜆
= 𝑈−

[−𝜆,𝜆] by [3, 2.4.1 2)]). However it seems difficult since if
𝛼 ∈ Φ+, the condition 𝜔(𝑎) + 𝛼(𝜆) ≥ 0 allows elements with a negative valuation. In
order to overcome these difficulties, we use the morphisms 𝜋𝑛, for 𝑛 ∈ N.

By definition,

𝑈
𝑝𝑚+
[−𝜆,𝜆] = 𝐺 ∩

∏
𝛼∈Δ+

𝑋𝛼

(
𝔤𝛼,Z ⊗ K𝜔≥ 𝑓Ω ( [−𝜆,𝜆] )

)
⊂ 𝐺 ∩

∏
𝛼∈Δ+

𝑋𝛼

(
𝔤𝛼,Z ⊗ 𝜛𝑁 (𝜆)O

)
.

By Proposition 2.2 we deduce 𝑈 𝑝𝑚+
[−𝜆,𝜆] ⊂ ker

(
𝜋𝑁 (𝜆)

)
. Using a similar reasoning for

𝑈𝑛𝑚−
[−𝜆,𝜆] we deduce

V𝜆 ⊂ ker(𝜋𝑁 (𝜆) ). (4.2)

For 𝑛 ∈ N and 𝛼∨ ∈ Φ∨, one sets 𝑇𝛼∨ ,𝑛 = 𝛼
∨ (1 +𝜛𝑛O) ⊂ 𝔗(O).

Lemma 4.1. Let 𝜆 ∈ 𝑌+ be regular and 𝛼 ∈ Φ. Then𝑈𝛼, [−𝜆,𝜆] .𝑈−𝛼,[−𝜆,𝜆] .𝑇𝛼∨ ,2𝑁 (𝜆) is
a subgroup of 𝐺.

Proof. Set Ω = [−𝜆, 𝜆]. Set 𝐻 = 𝑈𝛼,Ω.𝑈−𝛼,Ω.𝑇𝛼∨ ,2𝑁 (𝜆) . It suffices to prove that 𝐻 is
stable under left multiplication by𝑈𝛼,Ω,𝑈−𝛼,Ω and 𝑇𝛼∨ ,2𝑁 (𝜆) . The first stability is clear
and the third follows from Lemma 2.4 and the fact that 𝑇𝛼∨ ,2𝑁 (𝜆) ⊂ 𝔗(O) fixes A. Let
𝑢− , 𝑢− ∈ 𝑈−𝛼,Ω, 𝑢+ ∈ 𝑈𝛼,Ω and 𝑡 ∈ 𝑇𝛼∨ ,2𝑁 (𝜆) . Write 𝑢− = 𝑥−𝛼 (𝑎−), �̃�− = 𝑥−𝛼 (�̃�−)
and 𝑢+ = 𝑥𝛼 (𝑎+), for 𝑎− , �̃�− , 𝑎+ ∈ K. We have 𝜔(�̃�−), 𝜔(𝑎−), 𝜔(𝑎+) ≥ |𝛼(𝜆) | ≥ 𝑁 (𝜆).
Then by (2.1), we have

�̃�−𝑢+𝑢−𝑡 = 𝑥𝛼
(
𝑎+ (1 + �̃�−𝑎+)−1

)
𝑥−𝛼

(
�̃�− (1 + �̃�−𝑎+)−1 + 𝑎−

)
𝛼∨ (1 + �̃�−𝑎+)𝑡.

As 𝜔(1 + �̃�−𝑎+) = 1, we deduce that �̃�−𝑢+𝑢−𝑡 ∈ 𝐻, which proves the lemma. □

Let 𝑤 ∈ 𝑊𝑣 and Ω be a filter on A. Recall that 𝔊𝑝𝑚𝑎,𝑤 and 𝔊𝑛𝑚𝑎,𝑤 are the
completions of 𝔊 with respect to 𝑤.Δ+ and 𝑤.Δ− respectively. One defines𝑈 𝑝𝑚

Ω
(𝑤.Δ+)

and𝑈𝑛𝑚
Ω

(𝑤.Δ−) similarly as𝑈 𝑝𝑚+
Ω

and𝑈𝑛𝑚−
Ω

in these groups.

Lemma 4.2. Let 𝜆 ∈ 𝑌+ be regular. Then

(1) V𝜆 = 𝑈 𝑝𝑚

[−𝜆,𝜆] (𝑤.Δ+).𝑈𝑛𝑚[𝜆,𝜆] (𝑤.Δ−).𝑇2𝑁 (𝜆) for every 𝑤 ∈ 𝑊𝑣 ,

(2) V𝜆 is a subgroup of 𝐺.
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Proof.

(1). This follows the proof of [10, Proposition 3.4]. Set Ω = [−𝜆, 𝜆]. Let 𝑖 ∈ 𝐼 and 𝛼 = 𝛼𝑖 .
By [10, 3.3.4)] and Lemma 4.1,

V𝜆 = 𝑈 𝑝𝑚

Ω
(Δ+ \ {𝛼}).𝑈𝑛𝑚Ω (Δ− \ {𝛼}).𝑈𝛼,Ω.𝑈−𝛼,Ω.𝑇2𝑁 (𝜆)

= 𝑈
𝑝𝑚

Ω
(Δ+ \ {𝛼}).𝑈𝑛𝑚Ω (Δ− \ {𝛼}).𝑈−𝛼,Ω.𝑈𝛼,Ω.𝑇2𝑁 (𝜆)

= 𝑈
𝑝𝑚

Ω
(Δ+ \ {𝛼}).𝑈−𝛼,Ω.𝑈

𝑛𝑚
Ω (Δ− \ {𝛼}).𝑈𝛼,Ω.𝑇2𝑁 (𝜆)

= 𝑈
𝑝𝑚

Ω
(𝑟𝑖 .Δ+).𝑈𝑛𝑚Ω (𝑟𝑖 .Δ−).𝑇2𝑁 (𝜆)

Therefore V𝜆 does not change when Δ+ is replaced by 𝑤.Δ+, for 𝑤 ∈ 𝑊𝑣 , which proves (1).

(2). Let 𝑤 ∈ 𝑊𝑣 be such that 𝜆 ∈ 𝑤.𝐶𝑣
𝑓
. By (1) we have

V𝜆 = 𝑈 𝑝𝑚

Ω
(𝑤.Δ+).𝑈𝑛𝑚Ω (𝑤.Δ−).𝑇2𝑁 (𝜆) .

Let 𝑡 ∈ 𝑇 be such that 𝑡.0 = 𝜆. By Lemma 2.4, we have

𝑡𝑈
𝑝𝑚

Ω
(𝑤.Δ+)𝑡−1 = 𝑈

𝑝𝑚

𝑡.Ω
(𝑤.Δ+) = 𝑈 𝑝𝑚

[0,2𝜆] (𝑤.Δ+) = 𝑈 𝑝𝑚

0 (𝑤.Δ+).

Similarly, 𝑡𝑈𝑛𝑚
Ω

(𝑤.Δ−)𝑡−1 =𝑈𝑛𝑚2𝜆 (𝑤.Δ−). As𝑇 is commutative, we also have 𝑡𝑇2𝑁 (𝜆) 𝑡
−1 =

𝑇2𝑁 (𝜆) . In order to prove (2), it suffices to prove that

𝐻 := 𝑡𝑈 𝑝𝑚

Ω
(𝑤.Δ+)𝑈𝑛𝑚Ω (𝑤.Δ−)𝑇2𝑁 (𝜆) 𝑡

−1 = 𝑈
𝑝𝑚

0 (𝑤.Δ+)𝑈𝑛𝑚2𝜆 (𝑤.Δ−)𝑇2𝑁 (𝜆)

is a subgroup of 𝐺. It suffices to prove that 𝐻 is stable under left multiplication by
𝑈
𝑝𝑚

0 (𝑤.Δ+), 𝑈𝑛𝑚2𝜆 (𝑤.Δ−) and 𝑇2𝑁 (𝜆) . The first stability is clear and the third follows
from Lemma 2.4.

First note that by [30, 5.7 1)],

𝐺 [0,2𝜆] = 𝑈
𝑝𝑚

0 (𝑤.Δ+)𝑈𝑛𝑚2𝜆 (𝑤.Δ−)𝔗(O) (4.3)

is a subgroup of 𝐺.
Let 𝑢− , 𝑢− ∈ 𝑈𝑛𝑚2𝜆 (𝑤.Δ−), 𝑢+ ∈ 𝑈 𝑝𝑚

0 (𝑤.Δ+), 𝑡 ∈ 𝑇2𝑁 (𝜆) . Let us prove that �̃�−𝑢+𝑢−𝑡 ∈
𝐻. We have �̃�−𝑢+ = 𝑢+ (𝑢−1

+ �̃�−𝑢+). By Proposition 2.2, 𝑈𝑛𝑚2𝜆 (𝑤.Δ−) ⊂ ker 𝜋2𝑁 (𝜆) .
By Proposition 3.1, 𝑢+ ∈ 𝔊min (O) and we have 𝑢−1

+ �̃�−𝑢+ ∈ 𝐺 [0,2𝜆] ∩ ker 𝜋2𝑁 (𝜆) .
Therefore (4.3) implies that we can write 𝑢−1

+ �̃�−𝑢+ = 𝑢+1𝑢
−
1 𝑡1, where 𝑢+1 ∈ 𝑈 𝑝𝑚

0 (𝑤.Δ+),
𝑢−1 ∈ 𝑈𝑛𝑚2𝜆 (𝑤.Δ−) and 𝑡1 ∈ 𝔗(O). We have

𝜋2𝑁 (𝜆) (𝑢+1𝑢
−
1 𝑡1) = 1 = 𝜋2𝑁 (𝜆) (𝑢+1 𝑡1) = 𝜋2𝑁 (𝜆) (𝑢+1)𝜋2𝑁 (𝜆) (𝑡1).

As𝔅(O/𝜛2𝑁 (𝜆)O) = 𝔗(O/𝜛2𝑁 (𝜆)O)⋉𝔘𝑝𝑚𝑎,𝑤 (O/𝜛2𝑁 (𝜆)O) and as 𝜋2𝑁 (𝜆) (𝔗(O)) ⊂
𝔗(O/𝜛2𝑁 (𝜆)O) and 𝜋2𝑁 (𝜆) (𝔘𝑝𝑚𝑎,𝑤 (O)) ⊂ 𝔘𝑝𝑚𝑎,𝑤 (O/𝜛2𝑁 (𝜆)O), we deduce
𝜋2𝑁 (𝜆) (𝑢+1) = 𝜋2𝑁 (𝜆) (𝑡1) = 1 and 𝑡1 ∈ 𝑇2𝑁 (𝜆) . We have

�̃�−𝑢+𝑢−𝑡 = 𝑢+𝑢
+
1𝑢

−
1 𝑡1𝑢−𝑡
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and as 𝑇2𝑁 (𝜆) normalizes𝑈𝑛𝑚2𝜆 (𝑤.Δ−), �̃�−𝑢+𝑢−𝑡 ∈ 𝐻, which proves the lemma. □

Remark 4.3.

(1) Note that if 𝜆 ∈ 𝑌+ is regular, then𝑈 𝑝𝑚+
[−𝜆,𝜆]𝑈

𝑛𝑚−
[−𝜆,𝜆]𝑇2𝑁 (𝜆)+1 is not a subgroup of𝐺.

Indeed, take 𝛼 ∈ Φ+ such that |𝛼(𝜆) | = 𝑁 (𝜆). Then 𝑥−𝛼 (𝜛𝑁 (𝜆) )𝑥𝛼 (𝜛𝑁 (𝜆) ) =
𝑥𝛼 (𝜛𝑁 (𝜆) (1 +𝜛2𝑁 (𝜆) )−1)𝑥−𝛼 (𝜛𝑁 (𝜆) (1 +𝜛2𝑁 (𝜆) )−1)𝛼∨ (1 +𝜛2𝑁 (𝜆) ) and by
Lemma 2.3, this does not belong to𝑈 𝑝𝑚+

[−𝜆,𝜆]𝑈
𝑛𝑚−
[−𝜆,𝜆]𝑇2𝑁 (𝜆)+1.

(2) For every 𝑘 ∈ ⟦0, 2𝑁 (𝜆)⟧,𝑈 𝑝𝑚+
[−𝜆,𝜆] .𝑈

𝑛𝑚−
[−𝜆,𝜆] .𝑇𝑘 = V𝜆.𝑇𝑘 is a subgroup of𝐺, since

𝑇𝑘 normalizes𝑈 𝑝𝑚+
[−𝜆,𝜆] and𝑈𝑛𝑚−

[−𝜆,𝜆] by Lemma 2.4. Note that for the definition of a
topology, we could also have taken the filtration (𝑈 𝑝𝑚+

[−𝑛𝜆,𝑛𝜆] .𝑈
𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] .𝑇𝑘 (𝑛) )𝑛∈N∗ ,

for any 𝑘 (𝑛) ∈ ⟦0, 2𝑛𝑁 (𝜆)⟧ such that 𝑘 (𝑛) −−−−−→
𝑛→+∞

+∞.

(3) As V𝜆 = V−1
𝜆

and by Lemma 2.4, we have V𝜆 = 𝑈𝑛𝑚−
[−𝜆,𝜆]𝑈

𝑝𝑚+
[−𝜆,𝜆]𝑇2𝑁 (𝜆) .

4.2. Filtration (V𝑛𝜆)𝑛∈N∗

Let Ω be a filter on A. One defines clΔ (Ω) as the filter on A consisting of the subsets Ω′ of
A for which there exists (𝑘𝛼) ∈

∏
𝛼∈Δ Λ𝛼 ∪ {+∞} such that Ω′ ⊃ ⋂

𝛼∈Δ 𝐷 (𝛼, 𝑘𝛼) ⊃ Ω,
where Λ𝛼 = Λ if 𝛼 ∈ Φ and Λ𝛼 = R otherwise. Note that clΔ is denoted cl in [29]
and [30]. By definition of𝑈 𝑝𝑚+

Ω
and𝑈𝑛𝑚−

Ω
, we have

𝑈
𝑝𝑚+
Ω

= 𝑈
𝑝𝑚+
Ω′ = 𝑈

𝑝𝑚+
clΔ (Ω)

and𝑈𝑛𝑚−
Ω = 𝑈𝑛𝑚−

Ω′ = 𝑈𝑛𝑚−
clΔ (Ω) , (4.4)

for any filter Ω′ such that Ω ⊂ Ω′ ⊂ clΔ (Ω).

Lemma 4.4. Let 𝜆 ∈ 𝐶𝑣
𝑓

and 𝑤 ∈ 𝑊𝑣 . Then clΔ ( [−𝑤.𝜆, 𝑤.𝜆]) ⊃ (−𝑤.𝜆 + 𝑤.𝐶𝑣
𝑓
) ∩

(𝑤.𝜆 − 𝑤.𝐶𝑣
𝑓
).

Proof. As Δ and Φ are𝑊𝑣-invariant, we have 𝑤.clΔ (Ω) = clΔ (𝑤.Ω) for every 𝑤 ∈ 𝑊𝑣 .
Thus it suffices to determine clΔ ( [−𝜆, 𝜆]). Let (𝑘𝛼) ∈

∏
𝛼∈Δ Λ𝛼 ∪ {+∞} be such that⋂

𝛼∈Δ 𝐷 (𝛼, 𝑘𝛼) ⊃ [−𝜆, 𝜆]. Let 𝛼 ∈ Δ+. Write 𝛼 =
∑
𝑖∈𝐼 𝑛𝑖𝛼𝑖 , with 𝑛𝑖 ∈ N for 𝑖 ∈ 𝐼. Then

𝑘𝛼 ≥ 𝛼(𝜆) = ∑
𝑖∈𝐼 𝑛𝑖𝛼𝑖 (𝜆). Let 𝛼 ∈ Δ− . We also have 𝑘−𝛼 ≥ ∑

𝑖∈𝐼 𝑛𝑖𝛼𝑖 (𝜆).
Let 𝑥 ∈ (−𝜆 + 𝐶𝑣

𝑓
) ∩ (𝜆 − 𝐶𝑣

𝑓
). Then −𝛼𝑖 (𝜆) ≤ 𝛼𝑖 (𝑥) ≤ 𝛼𝑖 (𝜆) for every 𝑖 ∈ 𝐼. Then

𝑘−𝛼 ≤ ∑
𝑖∈𝐼 𝑛𝑖𝛼𝑖 (𝑥) ≤ 𝑘𝛼 and thus 𝑘𝛼 + 𝛼(𝑥) ≥ 0 and 𝑘−𝛼 − 𝛼(𝑥) ≥ 0. Consequently,

𝑥 ∈ ⋂
𝛼∈Δ 𝐷 (𝛼, 𝑘𝛼) and thus

(−𝜆 + 𝐶𝑣𝑓 ) ∩ (𝜆 − 𝐶𝑣𝑓 ) ⊂
⋂
𝛼∈Δ

𝐷 (𝛼, 𝑘𝛼),

which proves the lemma. □
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The following lemma will be crucial throughout the paper. This is a rewriting of [3,
Lemma 3.3 and Lemma 3.6]. Although 𝜔 is assumed to be discrete in [3], the proofs of
these lemma do not use this assumption.

Lemma 4.5.

(1) Let 𝑎 ∈ A and 𝑔 ∈ 𝑈+. Then there exists 𝑏 ∈ 𝑎−𝐶𝑣
𝑓

such that 𝑔−1𝑈
𝑝𝑚+
𝑏

𝑔 ⊂ 𝑈 𝑝𝑚+
𝑎 .

(2) Let 𝑦 ∈ I. Then there exists 𝑎 ∈ A such that𝑈 𝑝𝑚+
𝑎 fixes 𝑦.

(3) Let 𝜆 ∈ 𝑌+ be regular and 𝑦 ∈ I. Then for 𝑛 ∈ N large enough,𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] fixes 𝑦.

Proof. By [3, Lemma 3.3 and 3.6], we have (1) and (2). Let 𝜆 ∈ 𝑌+ be regular. Write
𝜆 = 𝑤.𝜆++, with 𝜆++ ∈ 𝐶𝑣

𝑓
and 𝑤 ∈ 𝑊𝑣 . Let 𝑎 ∈ A be such that𝑈 𝑝𝑚+

𝑎 fixes 𝑦. For 𝑛 ∈ N∗,
we have clΔ ( [−𝑛𝜆, 𝑛𝜆]) ⊃ 𝑛

(
(−𝑤.𝜆++ +𝑤.𝐶𝑣

𝑓
) ∩ (𝑤.𝜆++ −𝑤.𝐶𝑣

𝑓
)
)
, which contains 𝑎, for

𝑛 ≫ 0. So for 𝑛 ≫ 0, we have𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] ⊂ 𝑈

𝑝𝑚+
𝑎 , which proves (3). □

Lemma 4.6. Let 𝜆, 𝜇 ∈ 𝑌+ be regular. Then (V𝑛𝜆)𝑛∈N∗ and (V𝑛𝜇)𝑛∈N∗ are equivalent.

Proof. Write 𝜇 = 𝑣.𝜇++, where 𝑣 ∈ 𝑊𝑣 and 𝜇++ ∈ 𝐶𝑣
𝑓
. For 𝑚 ∈ N, set

Ω𝑚𝜇 = (−𝑚𝜇 + 𝑣.𝐶𝑣
𝑓
) ∩ (𝑚𝜇 − 𝑣.𝐶𝑣

𝑓
).

By Lemma 4.4, Ω𝑚𝜇 ⊂ clΔ ( [−𝑚𝜇, 𝑚𝜇]). Let 𝑛 ∈ N∗. As Ω𝑚𝜇 = 𝑚Ω𝜇 and Ω𝜇 contains
0 in its interior, there exists 𝑚 ∈ Z≥𝑛 such that Ω𝑚𝜇 ⊃ [−𝑛𝜆, 𝑛𝜆]. Moreover, by (4.4),
𝑈
𝑝𝑚+
[−𝑚𝜇,𝑚𝜇] = 𝑈

𝑝𝑚+
Ω𝑚𝜇

⊂ 𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] , since Ω′ ↦→ 𝑈

𝑝𝑚+
Ω′ is decreasing for ⊂. With the same

reasoning for 𝑈𝑛𝑚− , we deduce V𝑚𝜇 ⊂ V𝑛𝜆. By symmetry of the roles of 𝜆 and 𝜇, we
deduce the lemma. □

The end of this subsection is devoted to the proof of the fact that for every 𝜆 ∈ 𝑌+

regular, (V𝑛𝜆)𝑛∈N∗ is conjugation-invariant.

Lemma 4.7. Let𝛼 ∈ Φ and 𝑎 ∈ K . Let𝜆 ∈ 𝑌+ be regular. Then (𝑥𝛼 (𝑎).V𝑛𝜆.𝑥𝛼 (−𝑎))𝑛∈N∗

is equivalent to (V𝑛𝜆)𝑛∈N∗ .

Proof. Let 𝜖 ∈ {−, +} be such that 𝛼 ∈ Φ𝜖 . Let 𝑤 ∈ 𝑊𝑣 be such that 𝜖𝑤−1.𝛼 is simple.
By symmetry, we may assume that 𝜖 = +. By Lemma 4.6 we may assume that 𝜆 ∈ 𝑤.𝐶𝑣

𝑓
.

Let 𝑛 ∈ N∗. By Lemma 4.2, we have
V𝑛𝜆 = 𝑈 𝑝𝑚

[−𝑛𝜆,𝑛𝜆] (𝑤.Δ+)𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤.Δ−)𝑇2𝑛𝑁 (𝜆) .

= 𝑈
𝑝𝑚

−𝑛𝜆 (𝑤.Δ+)𝑈𝑛𝑚𝑛𝜆 (𝑤.Δ−)𝑇2𝑛𝑁 (𝜆) .

Write 𝛼 = 𝑤.𝛼𝑖 , for 𝑖 ∈ 𝐼. By Lemma 4.5,

𝑥𝑤.𝛼𝑖 (𝑎)𝑈
𝑝𝑚

−𝑚𝜆 (𝑤.Δ+)𝑥𝑤.𝛼𝑖 (−𝑎) ⊂ 𝑈
𝑝𝑚

−𝑛𝜆 (𝑤.Δ+), (4.5)
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for 𝑚 ≫ 0.
By [30, Lemma 3.3],𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤.Δ−) = 𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤.(Δ− \{−𝛼𝑖})).𝑈−𝑤.𝛼𝑖 , [−𝑛𝜆,𝑛𝜆]

and𝑈−𝑤.𝛼𝑖 , [−𝑛𝜆,𝑛𝜆] normalizes𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤.(Δ− \ {−𝛼𝑖})).
By [23, 1.3.11 Theorem (b4)], 𝑟𝑖 .(Δ− \ {−𝛼𝑖}) = Δ− \ {−𝛼𝑖} and thus for 𝑚 ∈ N, we

have
𝑈𝑛𝑚[−𝑚𝜆,𝑚𝜆] (𝑤.(Δ− \ {−𝛼𝑖})) = 𝑈𝑛𝑚[−𝑚𝜆,𝑚𝜆] (𝑤𝑟𝑖 (Δ− \ {−𝛼𝑖}))

= 𝑈𝑛𝑚 (𝑤𝑟𝑖 (Δ− \ {−𝛼𝑖})) ∩𝑈𝑛𝑚[−𝑚𝜆,𝑚𝜆] (𝑤𝑟𝑖 .Δ−).

Moreover,

𝑥𝑤.𝛼𝑖 (𝑎)𝑈𝑛𝑚 (𝑤𝑟𝑖 (Δ− \ {−𝛼𝑖}))𝑥𝑤.𝛼𝑖 (−𝑎) = 𝑈𝑛𝑚 (𝑤𝑟𝑖 (Δ− \ {−𝛼𝑖})), (4.6)

by [30, Lemma 3.3] (applied to 𝑤𝑟𝑖 .(Δ− \ {−𝛼𝑖}) ⊂ 𝑤𝑟𝑖 .Δ−). By Lemma 4.5, for 𝑚 ≫ 0,

𝑥𝑤.𝛼𝑖 (𝑎)𝑈𝑛𝑚[−𝑚𝜆,𝑚𝜆] (𝑤𝑟𝑖 .Δ−)𝑥𝑤.𝛼𝑖 (−𝑎) ⊂ 𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤𝑟𝑖 .Δ−). (4.7)

Combining (4.6) and (4.7), we get

𝑥𝑤.𝛼𝑖 (𝑎)𝑈𝑛𝑚[−𝑚𝜆,𝑚𝜆] (𝑤.Δ− \ {−𝛼𝑖})𝑥𝑤.𝛼𝑖 (−𝑎) ⊂ 𝑈𝑛𝑚[−𝑛𝜆,𝑛𝜆] (𝑤.(Δ− \ {−𝛼𝑖})) , (4.8)

for 𝑚 ≫ 0.
For 𝑏 ∈ K such that 1 + 𝑎𝑏 ≠ 0, we have

𝑥𝑤.𝛼𝑖 (𝑎)𝑥−𝑤.𝛼𝑖 (𝑏)𝑥𝑤.𝛼𝑖 (−𝑎) = 𝑥−𝑤.𝛼𝑖
(
𝑏(1+𝑎𝑏)−1)𝛼∨ (1+𝑎𝑏)𝑥𝑤.𝛼𝑖 (−𝑎2𝑏(1+𝑎𝑏)−1) .

Therefore if 𝑚 ≫ 0, 𝑥𝑤.𝛼𝑖 (𝑎)𝑈−𝑤.𝛼𝑖 , [−𝑚𝜆,𝑚𝜆]𝑥𝑤.𝛼𝑖 (−𝑎) ⊂ V𝑛𝜆. Combined with (4.8)
we get

𝑥𝑤.𝛼𝑖 (𝑎)𝑈𝑛𝑚𝑚𝜆 (𝑤.Δ−)𝑥𝑤.𝛼𝑖 (−𝑎) ⊂ V𝑛𝜆, (4.9)

for 𝑚 ≫ 0, since V𝑛𝜆 is a group.
Let 𝑚 ∈ N∗ and 𝑡 ∈ 𝑇2𝑚. Then:

𝑥𝑤.𝛼𝑖 (𝑎)𝑡𝑥𝑤.𝛼𝑖 (−𝑎) = 𝑡𝑥𝑤.𝛼𝑖
(
𝑎
(
𝑤.𝛼𝑖 (𝑡−1) − 1

) )
Therefore if 𝑚 ≥ 𝑛𝑁 (𝜆) and 𝜔

(
𝑎

(
𝑤.𝛼𝑖 (𝑡−1) − 1

) )
≥ 𝜔(𝑎) + 2𝑚𝑁 (𝜆) is greater than

|𝑤.𝛼𝑖 (𝑛𝜆) |, then 𝑥𝑤.𝛼𝑖
(
𝑎

(
𝑤.𝛼𝑖 (𝑡−1) − 1

) )
∈ V𝑛𝜆 and 𝑥𝑤.𝛼𝑖 (𝑎)𝑡𝑥𝑤.𝛼𝑖 (−𝑎) ∈ V𝑛𝜆. Com-

bined with (4.9) and (4.5), we get 𝑥𝛼 (𝑎).V𝑚𝜆.𝑥𝛼 (−𝑎) ⊂ V𝑛𝜆, for 𝑚 ≫ 0. Applying this
to (𝑥𝛼 (−𝑎).V𝑘𝜆.𝑥𝛼 (𝑎))𝑘∈N∗ , we get the other inclusion needed to prove that (V𝑛𝜆) and
(𝑥𝛼 (𝑎).V𝑛𝜆.𝑥𝛼 (−𝑎)) are equivalent. □

Theorem 4.8. Let 𝜆 ∈ 𝑌+ be regular. For 𝑛 ∈ N∗, setV𝑛𝜆 = 𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] .𝑈

𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] .𝑇2𝑁 (𝑛𝜆) .

Then (V𝑛𝜆) is conjugation-invariant. Therefore, the associated topology𝒯((V𝑛𝜆)) equips
𝐺 with the structure of a Hausdorff topological group.
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Proof. We need to prove that for every 𝑔 ∈ 𝐺, 𝑔(V𝑛𝜆)𝑔−1 is equivalent to (V𝑛𝜆). Using
Lemma 4.6, we may assume 𝜆 ∈ 𝐶𝑣

𝑓
. By [28, Proposition 1.5], 𝐺 is generated by 𝑇 and

the 𝑥𝛼 (𝑎), for 𝛼 ∈ Φ and 𝑎 ∈ K. By Lemma 4.7, it remains only to prove that if 𝑡 ∈ 𝑇 ,
then (𝑡V𝑛𝜆𝑡−1)𝑛∈N∗ is equivalent to (V𝑛𝜆). Let 𝑡 ∈ 𝑇 and 𝑚 ∈ N∗. Then by Lemma 2.4,

𝑡V𝑚𝜆𝑡−1 = 𝑡𝑈
𝑝𝑚+
[−𝑚𝜆,𝑚𝜆] 𝑡

−1.𝑡𝑈𝑛𝑚−
[−𝑚𝜆,𝑚𝜆] 𝑡

−1.𝑇2𝑚𝑁 (𝜆)

= 𝑈
𝑝𝑚+
[𝑡 .(−𝑚𝜆) ,𝑡 .𝑚𝜆]𝑈

𝑛𝑚−
[𝑡 .(−𝑚𝜆) ,𝑡 .𝑚𝜆]𝑇2𝑚𝑁 (𝜆)

Set Ω = (−𝜆+𝐶𝑣
𝑓
) ∩ (𝜆−𝐶𝑣

𝑓
). Then by Lemma 4.4, clΔ ( [−𝑚𝜆, 𝑚𝜆]) ⊃ 𝑚Ω. Moreover,

clΔ ( [𝑡.(−𝑚𝜆), 𝑡.𝑚𝜆]) = 𝑡.clΔ ( [−𝑚𝜆, 𝑚𝜆]) ⊃ 𝑡.𝑚Ω. Let 𝑛 ∈ N∗. Then as Ω contains 0
in its interior, 𝑡.𝑚Ω ⊃ 𝑛Ω for 𝑚 ≫ 0. Therefore (by (4.4)) 𝑈 𝑝𝑚+

[𝑡 .(−𝑚𝜆) ,𝑡 .𝑚𝜆] ⊂ 𝑈
𝑝𝑚+
[−𝑛𝜆,𝑛𝜆]

and 𝑈𝑛𝑚−
[𝑡 .(−𝑚𝜆) ,𝑡 .𝑚𝜆] ⊂ 𝑈

𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] for 𝑚 ≫ 0. Consequently, 𝑡V𝑚𝜆𝑡−1 ⊂ V𝑛𝜆 for 𝑚 ≫ 0,

which proves that (V𝑛𝜆) is conjugation-invariant.
It remains to prove that 𝒯((V𝑛𝜆)) is Hausdorff. For that it suffices to prove that⋂
𝑛∈N∗ V𝑛𝜆 = {1}. Let 𝑔 ∈ ⋂

𝑛∈N∗ V𝑛𝜆. Let 𝑛 ∈ N∗. Then as [−𝑛𝜆, 𝑛𝜆] has a good
fixator ([30, 5.7 1)] and (2.8)) 𝑔 ∈ 𝐺 [−𝑛𝜆,𝑛𝜆] = 𝑈

𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] .𝑈

𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] .𝔗(O), so we can

write 𝑔 = 𝑢+𝑛𝑢
−
𝑛 𝑡𝑛, with (𝑢+𝑛, 𝑢−𝑛 , 𝑡𝑛) ∈ 𝑈 𝑝𝑚+

[−𝑛𝜆,𝑛𝜆] × 𝑈
𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] × 𝔗(O). By Lemma 2.3,

𝑢+ := 𝑢+𝑛 does not depend on 𝑛 and thus 𝑢+ ∈ ⋂
𝑛∈N∗ 𝑈

𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] = 𝑈

𝑝𝑚+
A

= {1}.
Similarly, 𝑢− := 𝑢−𝑛 = 1. Therefore 𝑡 ∈ 𝑇 ∩ ⋂

𝑛∈N∗ ker 𝜋𝑛. Let (𝜒𝑖)𝑖∈⟦1,𝑚⟧ be a Z-
basis of 𝑌 . Write 𝑡 =

∏𝑚
𝑖=1 𝜒𝑖 (𝑎𝑖), with 𝑎𝑖 ∈ O∗, for 𝑖 ∈ ⟦1, 𝑚⟧. Let 𝑛 ∈ N. Then

𝜋𝑛 (𝑡) =
∏𝑚
𝑖=1 𝜒𝑖 (𝜋𝑛 (𝑎𝑖)) = 1 and thus 𝑎𝑖 ∈

⋂
𝑛∈N∗ 𝜛𝑛O = {0}. Consequently, 𝑡 = 1 and

𝑔 = 1. Therefore
⋂
𝑛∈N∗ V𝑛𝜆 = {1} and 𝒯((V𝑛𝜆)) is Hausdorff. □

We denote by 𝒯 the topology 𝒯((V𝑛𝜆)), for any 𝜆 ∈ 𝑌+ regular.

Corollary 4.9. Let 𝜆 ∈ 𝑌+ be regular. The filtrations (ker 𝜋𝑛)𝑛 and (V𝑛𝜆)𝑛∈N∗ are
equivalent if and only if𝑊𝑣 is finite.

Proof. If 𝑊𝑣 is infinite, this follows from Lemma 3.3 and Theorem 4.8. Assume now
that𝑊𝑣 is finite. Then by (4.2), V𝑛𝜆 ⊂ ker 𝜋𝑛𝑁 (𝜆) for every 𝑛 ∈ N∗.

Let 𝑛 ∈ N∗ and 𝑔 ∈ ker 𝜋𝑛. By Corollary 3.6, 𝑔 ∈ 𝑈 𝑝𝑚+
−𝐶+

0
.𝔗(O).𝑈𝑛𝑚−

𝐶+
0

. As 𝑊𝑣 is
finite, Φ = Δ (by [21, Theorem 5.6]), 𝑈 𝑝𝑚+

−𝐶+
0

= 𝑈+
−𝐶+

0
=

∏
𝛼∈Φ+ 𝑥𝛼 (𝔪) and 𝑈𝑛𝑚−

𝐶+
0

=

𝑈−
𝐶+

0
=

∏
𝛼∈Φ− 𝑥𝛼 (𝔪), for any (fixed) orders on Φ− and Φ+, where 𝔪 is the maximal

ideal of O. Write 𝑔 = 𝑢+𝑡𝑢− , with 𝑔 ∈ 𝑈−
𝐶+

0
, 𝑡 ∈ 𝔗(O) and 𝑢− ∈ 𝑈−

𝐶+
0
. Then 𝜋𝑛 (𝑔) =

𝜋𝑛 (𝑢+𝑡)𝜋𝑛 (𝑢−) = 1. Moreover, 𝜋𝑛 (𝑢+𝑡) ∈ 𝔅(O/𝜛𝑛O) and 𝜋𝑛 (𝑢−) ∈ 𝔅− (O/𝜛𝑛O),
where 𝔅 = U+ ⋊ 𝔗 and 𝔅− = 𝔘− ⋊ 𝔗 are two opposite Borel subgroups. Therefore
𝜋𝑛 (𝑢+𝑡) ∈ 𝔅(O/𝜛𝑛O) ∩𝔅− (O/𝜛𝑛O) = 𝔗(O/𝜛𝑛O), by [4, Theorem 14.1]. Therefore
𝜋𝑛 (𝑢+) = 𝜋𝑛 (𝑢−) = 𝜋𝑛 (𝑡) = 1. Write 𝑢+ =

∏
𝛼∈Φ+ 𝑥𝛼 (𝑢𝛼), with 𝑢𝛼 ∈ O for 𝛼 ∈ Φ+.

Then 𝜋𝑛 (𝑢+) =
∏
𝛼∈Φ+ 𝑥𝛼 (𝜋𝑛 (𝑢𝛼)) = 1, by Proposition 2.2, and by [24, Theorem 8.51],
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this implies 𝜋𝑛 (𝑢𝛼) = 1, for every 𝛼 ∈ Φ+. Let 𝑁 ′ (𝜆) = max𝛼∈Φ |𝛼(𝜆) |. Then we have
𝑢+ ∈ 𝑈+ ∩𝐺 [−𝑛𝜆/𝑁 ′ (𝜆) ,𝑛𝜆/𝑁 ′ (𝜆) ] . Using a similar reasoning for𝑈− and (4.1), we deduce
ker 𝜋𝑛 ⊂ V𝑛𝜆/𝑁 ′ (𝜆) . Therefore (V𝑛𝜆) and (ker 𝜋𝑛) are equivalent. □

Remark 4.10.

(1) If 𝑛 ∈ N∗, then ker 𝜋𝑛 is open for 𝒯, by (4.2).

(2) The Iwahori subgroup 𝐺𝐶+
0
= 𝐾𝐼 is open. Indeed, if 𝜆 ∈ 𝑌 ∩ 𝐶𝑣

𝑓
, then V𝜆 ⊂ 𝐾𝐼

by (4.1). In particular, 𝔊min (O) ⊃ 𝐾𝐼 is open.

(3) Assume 𝔊 is reductive, i.e.𝑊𝑣 is finite. Then by Corollary 4.9, 𝒯 is the usual
topology on 𝐺.

4.3. Topology of the fixators

4.3.1. Definition of the topology

Recall that if 𝐹 is a subset of I, we denote by 𝐺𝐹 its fixator in 𝐺. In this subsection we
study the topology 𝒯Fix which is defined as follows. A subset 𝑉 of 𝐺 is open if for every
𝑣 in 𝑉 , there exists a finite subset 𝐹 of I such that 𝑣𝐺𝐹 ⊂ 𝑉 . Note that 𝐺0 = 𝔊min (O) is
open for this topology.

We begin by constructing increasing sequences of finite sets of vertices (𝐹𝑛) =

(𝐹𝑛 (𝜆))𝑛∈N∗ such that 𝒯Fix is the topology associated with (𝐺𝐹𝑛 )𝑛∈N.
We fix 𝜆 ∈ 𝑌+ regular. We set 𝐹0 = ∅. For 𝑛 ∈ N∗, we set

𝐹𝑛 = 𝐹𝑛 (𝜆) = {𝑛𝜆,−𝑛𝜆} ∪ {𝑥𝛼𝑖 (𝜛−𝑛).0 | 𝑖 ∈ 𝐼} ∪ 𝐹𝑛−1. (4.10)

Let 𝑛 ∈ N∗. By [30, 5.7 1)], [−𝑛𝜆, 𝑛𝜆] has a good fixator and by Proposition 2.5, we
have 𝐺 {𝑛𝜆,−𝑛𝜆} = 𝐺 [−𝑛𝜆,𝑛𝜆] . Therefore

𝐺𝐹𝑛 ⊂ 𝐺 [−𝑛𝜆,𝑛𝜆] = 𝑈
𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] .𝑈

𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] .𝔗(O). (4.11)

We chose 𝐹𝑛 as above for the following reasons. We want that when 𝑥 ∈ I and 𝑛 ≫ 0,
an element of 𝐺𝐹𝑛 fixes 𝑥. By Lemma 4.5, if 𝑢 ∈ 𝑈+ (resp.𝑈−), and if 𝑢 fixes −𝑛𝜆 (resp.
𝑛𝜆), for some 𝑛 large, then 𝑢 fixes 𝑥. However, if 𝑡 ∈ 𝑇 , as 𝔗(O) fixes A, we need to
require that 𝑡 fixes elements outside of A, and the choice of 𝑥𝛼𝑖 (𝜛𝑛).0 is justified by the
lemma below.

Lemma 4.11. Let 𝑖 ∈ 𝐼, 𝑛 ∈ N and 𝑡 ∈ 𝑇 . Then 𝑡 fixes 𝑥𝛼𝑖 (𝜛−𝑛).0 if and only if
𝜔 (𝛼𝑖 (𝑡) − 1) ≥ 𝑛.
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Proof. We have 𝑡.𝑥𝛼𝑖 (𝜛−𝑛).0 = 𝑥𝛼𝑖 (𝜛−𝑛).0 if and only if 𝑥𝛼𝑖 (−𝜛−𝑛)𝑥𝛼𝑖 (𝛼𝑖 (𝑡) ×
𝜛−𝑛).𝑡.0 = 0. We have 𝜌+∞ (𝑥𝛼𝑖 (−𝜛−𝑛)𝑥𝛼𝑖 (𝛼𝑖 (𝑡)𝜛−𝑛).𝑡.0) = 𝑡.0 and thus if
𝑡.𝑥𝛼𝑖 (𝜛−𝑛).0 = 𝑥𝛼𝑖 (𝜛−𝑛).0, we have 𝑡.0 = 0. Thus 𝑡.𝑥𝛼𝑖 (𝜛−𝑛).0 = 𝑥𝛼𝑖 (𝜛−𝑛).0 if
and only if 𝑥𝛼𝑖 ((𝛼𝑖 (𝑡) − 1)𝜛−𝑛).0 = 0 if and only if 𝜔(𝛼𝑖 (𝑡) − 1) ≥ 𝑛. □

For 𝑛 ∈ N, we set

𝑇𝑛,Φ = {𝑡 ∈ 𝑇 | 𝜔(𝛼𝑖 (𝑡) − 1) ≥ 𝑛,∀ 𝑖 ∈ 𝐼} (4.12)

Lemma 4.12. Let 𝑦 ∈ I. Then there exists 𝑀 ∈ N such that 𝑇𝑀,Φ fixes 𝑦.

Proof. By the Iwasawa decomposition (MA III), 𝑦 ∈ 𝑈+.𝑧, where 𝑧 = 𝜌+∞ (𝑦). Write
𝑦 = 𝑥𝛽1 (𝑎1) . . . 𝑥𝛽𝑘 (𝑎𝑘).𝑧, with 𝑘 ∈ N and 𝛽1, . . . , 𝛽𝑘 ∈ Φ+. Let 𝑡 ∈ 𝑇 . We have 𝑡.𝑦 = 𝑦
if and only if

𝑧 = 𝑥𝛽𝑘 (−𝑎𝑘) . . . 𝑥𝛽1 (−𝑎1)𝑡𝑥𝛽1 (𝑎1) . . . 𝑥𝛽𝑘 (𝑎𝑘).𝑧

= 𝑥𝛽𝑘 (−𝑎𝑘) . . . 𝑥𝛽2 (−𝑎2)𝑡𝑥𝛽1

(
(1 − 𝛽1 (𝑡−1))𝑎1

)
𝑥𝛽2 (𝑎2) . . . 𝑥𝛽𝑘 (𝑎𝑘).𝑧

Let 𝑀 ∈ N∗. Assume that 𝛼𝑖 (𝑡) − 1 ∈ 𝜛𝑀O for every 𝑖 ∈ 𝐼.
Write 𝛽1 =

∑
𝑖∈𝐼 𝑚𝑖𝛼𝑖 , with 𝑚𝑖 ∈ N for every 𝑖 ∈ 𝐼. Then 𝛽1 (𝑡) =

∏
𝑖∈𝐼 𝛼

𝑚𝑖

𝑖
(𝑡). There-

fore 𝛽1 (𝑡) ∈ 1 + 𝜛𝑀O. For 𝑀 ≫ 0, 𝑥𝛽1

(
(1 − 𝛽1 (𝑡−1))𝑎1

)
fixes 𝑥𝛽2 (𝑎2) . . . 𝑥𝛽𝑘 (𝑎𝑘).𝑧,

by Lemma 4.5. By induction on 𝑘 we deduce that 𝑡 fixes 𝑧 for 𝑀 ≫ 0. □

Lemma 4.13.

(1) Let 𝐹 be a finite subset of I. Then there exists 𝑛 ∈ N∗ such that 𝐺𝐹𝑛 fixes 𝐹.

(2) Let 𝜆, 𝜇 ∈ 𝑌+ be regular. Then the filtrations (𝐺𝐹𝑛 (𝜆) )𝑛∈N∗ and (𝐺𝐹𝑛 (𝜇) )𝑛∈N∗

are equivalent.

(3) The topology 𝒯Fix is the topology associated with 𝒯((𝐺𝐹𝑛 )𝑛∈N).

Proof.

(1). It suffices to prove that if 𝑦 ∈ I, then 𝐺𝐹𝑛 fixes 𝑦 for 𝑛 ≫ 0. Let 𝑛 ∈ N∗. Then
𝐹𝑛 ⊃ {−𝑛𝜆, 𝑛𝜆} and by Proposition 2.5, we have 𝐺𝐹𝑛 ⊂ 𝐺 [−𝑛𝜆,𝑛𝜆] .

By Lemma 4.5, there exists 𝑛1 ∈ N such that𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] and𝑈𝑛𝑚−

[−𝑛𝜆,𝑛𝜆] fix 𝑦, for 𝑛 ≥ 𝑛1.
Let 𝑛 ≥ 𝑛1. Let 𝑛2 = 𝑛2 (𝑛) ≥ 𝑛 be such that for every 𝑖 ∈ 𝐼, ⟨𝑈 𝑝𝑚+

[−𝑛2.𝜆,𝑛2.𝜆] ,𝑈
𝑛𝑚−
[−𝑛2.𝜆,𝑛2.𝜆]⟩

fixes 𝑥𝛼𝑖 (𝜛−𝑛).0 for every 𝑖 ∈ 𝐼. Let 𝑔 ∈ 𝐺𝐹𝑛2
. Using (4.11), we write 𝑔 = 𝑢+𝑢−𝑡,

with (𝑢+, 𝑢− , 𝑡) ∈ 𝑈
𝑝𝑚+
[−𝑛2𝜆,𝑛2𝜆] × 𝑈

𝑛𝑚−
[−𝑛2𝜆,𝑛2𝜆] × 𝔗(O). Then 𝑔 fixes 𝑦 if and only if 𝑡

fixes 𝑦. Moreover, 𝑢+𝑢−𝑡 fixes 𝐹𝑛 and thus 𝑡 fixes 𝐹𝑛. By Lemma 4.11, we deduce
𝜔((𝛼𝑖 (𝑡) − 1) ≥ 𝑛 for every 𝑖 ∈ 𝐼. By Lemma 4.12 we deduce that 𝑡 fixes 𝑦, for 𝑛 ≫ 0.
Thus 𝐺𝐹𝑛2 (𝑛)

fixes 𝑦 for 𝑛 ≫ 0.
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(2). It follows from (1) by applying to 𝐹 = 𝐹𝑚 (𝜇) and 𝐹𝑛 = 𝐹𝑛 (𝜆), for 𝑚, 𝑛 ∈ N∗ and by
symmetry of the roles of 𝜆 and 𝜇.

(3). As 𝐹𝑛 is finite for every 𝑛 ∈ N∗, 𝒯((𝐺𝐹𝑛 )) is coarser than 𝒯Fix. But by (1), 𝒯Fix is
coarser that (𝒯𝐺𝐹𝑛

). □

Proposition 4.14. The topology 𝒯Fix is the coarsest topology of topological group on 𝐺
such that 𝔊min (O) is open.

Proof. For 𝑛 ∈ N∗, 𝐺𝐹𝑛 ⊂ 𝔊min (O) and thus 𝔊min (O) is open for 𝒯Fix.
Let now 𝒯

′ be a topology of topological group on 𝐺 such that 𝔊min (O) is open. Let
𝑛 ∈ N∗. Then for every element 𝑎 of 𝐹𝑛, there exists 𝑔𝑎 ∈ 𝐺 such that 𝑔𝑎 .0 = 𝑎. Then
𝐺𝐹𝑛 =

⋂
𝑎∈𝐹𝑛 𝑔𝑎 .𝔊

min (O).𝑔−1
𝑎 is open in 𝐺. Proposition follows. □

4.3.2. Relation between 𝒯Fix and 𝒯

In this subsection, we compare 𝒯Fix and 𝒯. We prove that 𝒯 is finer than 𝒯Fix. When
K is Henselian, we prove that 𝒯 = 𝒯Fix if and only if the fixator of I in 𝐺 is {1} (see
Proposition 4.21).

Let 𝜆 ∈ 𝑌+ be regular. For 𝑛 ∈ N, we define 𝐹𝑛 = 𝐹𝑛 (𝜆) as in (4.10).
Let Z =

⋂
𝑛∈N 𝑇𝑛,Φ (where the 𝑇𝑛,Φ are defined in (4.12)) and ZO = Z∩𝔗(O). Then

Z = {𝑡 ∈ 𝑇 | 𝛼𝑖 (𝑡) = 1,∀ 𝑖 ∈ 𝐼} is the center of 𝐺 by [26, 8.4.3 Lemme].

Lemma 4.15. The fixator 𝐺I of I in 𝐺 is ZO and
⋂
𝑛∈N∗ 𝐺𝐹𝑛 = ZO .

Proof. We have 𝐺I ⊂ 𝐺A = 𝔗(O), by [30, 5.7 5)]. By Lemma 4.11, 𝐺I ⊂ 𝑇𝑛,Φ ∩𝔗(O)
for every 𝑛 ∈ N and thus 𝐺I ⊂ ZO . Let 𝑧 ∈ ZO and 𝑥 ∈ I. Write 𝑥 = 𝑔.𝑎, with 𝑎 ∈ A.
Then 𝑧.𝑥 = 𝑔𝑧.𝑎 = 𝑔.𝑎 = 𝑥 and 𝑧 ∈ 𝐺I .

Now let 𝑔 ∈ ⋂
𝑛∈N∗ 𝐺𝐹𝑛 . Then by Lemma 4.13, 𝑔 fixes I, which proves the lemma. □

Lemma 4.16. There exists an increasing map 𝑀 : N→ N whose limit is +∞ and such
that for every 𝑚 ∈ N,

𝐺𝐹𝑛 ⊂ V𝑚𝜆.(𝑇𝑀 (𝑛) ,Φ ∩ 𝔗(O)),

for 𝑚, 𝑛 ∈ N∗ such that 𝑀 (𝑛) ≥ 𝑚 and 𝑛 ≥ 𝑚.

Proof. Let 𝑛 ∈ N∗. Let 𝑀 (𝑛) ∈ N be maximum such that 𝑈𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] , 𝑈

𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] , fix

𝐹𝑀 (𝑛) . By Lemma 4.5, 𝑀 (𝑛) → +∞. Let 𝑔 ∈ 𝐺𝐹𝑛 . Using (4.11) we write 𝑔 = 𝑢+𝑢−𝑡,
with 𝑢+ ∈ 𝑈 𝑝𝑚+

[−𝑛𝜆,𝑛𝜆] , 𝑢− ∈ 𝑈𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] and 𝑡 ∈ 𝔗(O). Let 𝑚′ = 𝑀 (𝑛). Then 𝑚′ ≤ 𝑛 and

𝑢+, 𝑢− fix 𝐹𝑚′ . As 𝑔 fixes 𝐹𝑚′ we deduce 𝑡 fixes 𝐹𝑚′ . By Lemma 4.12, 𝑡 ∈ 𝑇𝑚′ ,Φ ∩𝔗(O).
Therefore 𝑔 ∈ V𝑚𝜆.(𝑇𝑀 (𝑛) ,Φ ∩ 𝔗(O)), which proves the lemma. □
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Lemma 4.17. LetA∗ = 𝑋 ⊗R,𝑄′ = (
⊕

𝑖∈𝐼 Q𝛼𝑖) ∩𝑋 ⊂ A∗ and 𝑑 be the dimension of𝑄′

as a Q-vector space. Then there exists a Z-basis (𝜒1, . . . , 𝜒ℓ) of 𝑋 such that (𝜒1, . . . , 𝜒𝑑)
is a Z-basis of 𝑄′.

Proof. Let 𝑥 ∈ 𝑋 and 𝑛 ∈ Z \ {0}. Assume that 𝑛𝑥 ∈ 𝑄′. Then 𝑥 ∈ 𝑄′. Therefore 𝑋/𝑄′

is torsion-free. Let (𝑒𝑑+1, . . . , 𝑒ℓ) ∈ (𝑋/𝑄′)ℓ−𝑑 be a Z-basis of 𝑋/𝑄′. For 𝑗 ∈ ⟦𝑑 + 1, ℓ⟧,
take 𝜒 𝑗 ∈ 𝑋 whose reduction modulo 𝑄′ is 𝑒 𝑗 . Choose a Z-basis (𝜒1, . . . , 𝜒𝑑) of 𝑋 ′.
Then (𝜒1, . . . , 𝜒ℓ) satisfies the condition of the lemma. □

Lemma 4.18. Assume K to be Henselian. Let 𝑎 ∈ O and𝑚 ∈ N∗. Assume𝜔(𝑎𝑚−1) > 0.
Then we can write 𝑎 = 𝑏 + 𝑐, with 𝑏 ∈ O such that 𝑏𝑚 = 1 and 𝜔(𝑐) > 0.

Proof. Let k = O/𝔪 be the residual field and 𝜋k : O ↠ O/𝔪 be the natural projection.
Let 𝑝 be the characteristic of k. If 𝑝 = 0, we set 𝑚′ = 𝑚 and 𝑘 = 0. If 𝑝 > 0, we write
𝑚 = 𝑝𝑘𝑚′, with 𝑘 ∈ N and 𝑚′ ∈ N prime to 𝑝. We have 𝜋k (𝑎𝑚) = 𝜋k (𝑎)𝑚 = 𝜋k (1). We
have (𝜋k (𝑎)𝑚

′ − 1) 𝑝𝑘 = 0 and thus 𝜋k (𝑎)𝑚
′
= 𝜋k (1). Let 𝑍 be an indeterminate. We have

𝑍𝑚
′ − 1 = (𝑍 − 𝑎)𝑄k, where the bar denotes the reduction modulo 𝔪[𝑍] and 𝑄k ∈ k[𝑍]

is prime to 𝑍 − 𝑎. As O is Henselian, we can write 𝑍𝑚′ − 1 = (𝑍 − 𝑏)𝑄, where 𝑏 ∈ O is
such that 𝜋k (𝑏) = 𝜋k (𝑎) and 𝑄 ∈ O[𝑍] is such that 𝑄 = 𝑄k. Then 𝜋k (𝑏 − 𝑎) = 0 and we
get the lemma, with 𝑐 = 𝑏 − 𝑎. □

The following lemma was suggested to me by Guy Rousseau.

Lemma 4.19. Assume K to be Henselian. Let 𝑚 ∈ N∗. Then there exists 𝐾 ∈ N∗, 𝐾 ′ ∈ N
such that for every 𝑛 ∈ N∗ and 𝑎 ∈ O such that 𝜔(𝑎𝑚 − 1) ≥ 𝑛, we can write 𝑎 = 𝑏 + 𝑐,
with 𝑏, 𝑐 ∈ O such that 𝑏𝑚 = 1 and 𝜔(𝑐) ≥ 𝑛/𝐾 − 𝐾 ′.

Proof. We first assume that K has characteristic 𝑝 > 0. Let 𝑛 ∈ N∗ and 𝑎 ∈ O be
such that 𝜔(𝑎𝑚 − 1) ≥ 𝑛. Write 𝑚 = 𝑚′𝑝𝑘 , with 𝑘 ∈ N and 𝑚′ ∈ N prime to 𝑝. We
have 𝑎𝑚 − 1 = (𝑎𝑚′ − 1) 𝑝𝑘 and thus 𝜔(𝑎𝑚′ − 1) = 𝜔(𝑎𝑚 − 1)/𝑝𝑘 ≥ 𝑛/𝑝𝑘 > 0. By
Lemma 4.18, we can write 𝑎 = 𝑏 + 𝑐, with 𝑏, 𝑐 ∈ O, 𝑏𝑚′

= 1 and 𝜔(𝑐) > 0. We have
𝑎𝑚

′ − 1 = 𝑚′𝑏𝑚
′−1𝑐 +∑𝑚′

𝑖=2
(𝑚′

𝑖

)
𝑐𝑖𝑏𝑚−𝑖 , where 𝑥 is the image of 𝑥 in K , if 𝑥 ∈ Z. As 𝑚′ is

prime to 𝑝,𝑚′ is a root of 1 and thus we have𝜔(𝑚′) = 0. As 𝑏𝑚′
= 1,𝜔(𝑏) = 0. Therefore

𝜔(𝑐) = 𝜔(𝑚′𝑏𝑚−1𝑐) < 𝜔(
(𝑚′

𝑖

)
𝑏𝑚

′−𝑖𝑐𝑖) for 𝑖 ∈ ⟦2, 𝑚′⟧. Consequently𝜔(𝑎𝑚′−1) = 𝜔(𝑐)
and 𝜔(𝑎𝑚 − 1) = 𝑝𝑘𝜔(𝑎𝑚′ − 1) = 𝑝𝑘𝜔(𝑐) ≥ 𝑛. This proves the lemma in this case, with
𝐾 ′ = 0 and 𝐾 = 𝑝𝑘 .

We now assume that K has characteristic 0. Then by [12, Theorem 1] and [27,
Annexe A4] (for the case where 𝜔(K∗) is not discrete) applied with 𝐹 = {𝑍𝑚 − 1} (where
𝑍 is an indeterminate), there exist 𝐾 ∈ N∗, 𝐾 ′ ∈ N such that for every 𝑛 ∈ N∗, for every
𝑎 ∈ O such that 𝜔(𝑎𝑚 − 1) ≥ 𝑛, we can write 𝑎 = 𝑏 + 𝑐, with 𝑏, 𝑐 ∈ O, 𝑏𝑚 = 1 and
𝜔(𝑐) ≥ 𝑛/𝐾 − 𝐾 ′, which proves the lemma in this case. □
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Lemma 4.20. Assume K to be Henselian. There exist 𝐾1 ∈ R∗+, 𝐿 ∈ N such that for every
𝑛 ∈ Z≥𝐿 , 𝑇𝑛,Φ ∩ 𝔗(O) ⊂ ZO .𝑇𝑛/𝐾1 .

Proof. We keep the same notation as in Lemma 4.17. Let (𝜒∨1 , . . . , 𝜒
∨
ℓ
) ∈ 𝑌 ℓ be the dual

basis of (𝜒1, . . . , 𝜒ℓ). For 𝑖 ∈ 𝐼, we write 𝛼𝑖 =
∑ℓ
𝑗=1 𝑛 𝑗 ,𝑖𝜒 𝑗 , with 𝑛 𝑗 ,𝑖 ∈ Z for all 𝑖, 𝑗 . We

have 𝑛 𝑗 ,𝑖 = 0 for 𝑗 ∈ ⟦𝑑 + 1, ℓ⟧. Set �̃� =
∏ℓ
𝑗=𝑑+1 𝜒

∨
𝑗
(𝜒 𝑗 (𝑡)) ∈ 𝔗(O). Then 𝛼𝑖 (̃𝑡) = 1 for

every 𝑖 ∈ 𝐼 and thus �̃� ∈ ZO .
For 𝑗 ∈ ⟦1, 𝑑⟧, write 𝜒 𝑗 =

∑
𝑖∈𝐼 𝑚𝑖, 𝑗𝛼𝑖 , with 𝑚𝑖, 𝑗 ∈ Q for every 𝑖 ∈ 𝐼. Take 𝑚 ∈ N∗

such that 𝑚𝑚𝑖, 𝑗 ∈ Z for every (𝑖, 𝑗) ∈ 𝐼 × ⟦1, 𝑑⟧. Let 𝑗 ∈ ⟦1, 𝑑⟧. We have

𝜒 𝑗 (𝑡)𝑚 =

𝑑∏
𝑗=1
𝛼 𝑗 (𝑡)𝑚𝑚𝑖, 𝑗 ∈ 1 +𝜛𝑛O.

Using Lemma 4.19 we can write 𝜒 𝑗 (𝑡) = 𝑏 𝑗 + 𝑐 𝑗 , with 𝑏 𝑗 , 𝑐 𝑗 ∈ O such that 𝑏𝑚
𝑗
= 1 and

𝜔(𝑐 𝑗 ) ≥ 𝑛/𝐾 − 𝐾 ′, with the same notation as in Lemma 4.19. Set 𝑐′
𝑗
= 𝑐 𝑗𝑏

−1
𝑗

∈ O. As
𝑏 𝑗 is a root of 1, we have 𝜔(𝑏 𝑗 ) = 0 and thus 𝜔(𝑐 𝑗 ) = 𝜔(𝑐′𝑗 ) ≥ 𝑛/𝐾 − 𝐾 ′. We have
𝑏 𝑗 + 𝑐 𝑗 = 𝑏 𝑗 (1 + 𝑐′

𝑗
).

Set 𝑡′ =
∏𝑑
𝑗=1 𝜒

∨
𝑗
(𝑏 𝑗 ) and 𝑡′′ =

∏𝑑
𝑗=1 𝜒

∨
𝑗
(1+𝑐′

𝑗
). Then 𝜒 𝑗 (𝑡′) = 𝑏 𝑗 and 𝜒 𝑗 (𝑡′′) = 1+𝑐′

𝑗
,

for 𝑗 ∈ ⟦1, 𝑑⟧. For 𝑖 ∈ 𝐼, we have 𝛼𝑖 (𝑡) = 𝛼𝑖 (𝑡′)𝛼𝑖 (𝑡′′)𝛼𝑖 (̃𝑡) = 𝛼𝑖 (𝑡′)𝛼𝑖 (𝑡′′) and
𝛼𝑖 (𝑡′′) ∈ 1 + 𝜛𝑛/𝐾−𝐾 ′O (when 𝑛/𝐾 − 𝐾 ′ ∉ N, 𝜛𝑛/𝐾−𝐾 ′O is just a notation for
K𝜔≥𝑛/𝐾−𝐾 ′ ). As 𝛼𝑖 (𝑡) ∈ 1 +𝜛𝑛/𝐾−𝐾 ′O we deduce 𝛼𝑖 (𝑡′) ∈ 1 +𝜛𝑛/𝐾−𝐾 ′O (replacing
𝐾 by 𝐾 + 1 if 𝐾 ≤ 1).

Let 𝐹 = {𝜉 ∈ O | 𝜉𝑚 = 1}. Then 𝐹 is finite. Let 𝐿′ = max{𝜔(𝜉 − 1) | 𝜉 ∈ 𝐹 \ {1}}.
Let 𝐿 ∈ N be such that 𝐿/𝐾 − 𝐾 ′ ≥ 𝐿′. For 𝑛 ∈ Z≥𝐿 , we have 𝑛/𝐾 − 𝐾 ′ ≥ 𝐿′,
we have 𝛼𝑖 (𝑡′) = 1 for 𝑖 ∈ 𝐼 and 𝑡′ ∈ ZO . Maybe increasing 𝐿, we can assume that
𝐾1 := 1/𝐾 − 𝐾 ′/𝐿 > 0. Then for 𝑛 ≥ 𝐿, we have 𝑛/𝐾 − 𝐾 ′ ≥ 𝑛(1/𝐾 − 𝐾 ′/𝐿) ≥ 𝑛𝐾1.

Consequently, for 𝑛 ∈ Z≥𝐿 and 𝑡 ∈ 𝑇𝑛,Φ, we have 𝑡 = 𝑡 ′̃𝑡𝑡′′, with 𝑡 ′̃𝑡 ∈ ZO and
𝑡′′ ∈ 𝑇𝑛/𝐾1 , which proves the lemma. □

Proposition 4.21. The topology 𝒯 is finer than 𝒯Fix. If K is Henselian, then we have
𝒯 = 𝒯Fix if and only if ZO = {1} if and only if 𝒯Fix is Hausdorff.

Proof. Let 𝑥 ∈ I and 𝑚 ∈ N∗. Then by Lemma 4.5,𝑈 𝑝𝑚+
[−𝑚𝜆,𝑚𝜆] and𝑈𝑛𝑚−

[−𝑚𝜆,𝑚𝜆] fix 𝑥, for
𝑚 ≫ 0. By Lemma 4.12, 𝑇2𝑚𝑁 (𝜆) fix 𝑥 and thus V𝑚𝜆 fixes 𝑥 for 𝑚 ≫ 0. Thus if 𝑛 ∈ N∗,
V𝑚𝜆 ⊂ 𝐺𝐹𝑛 for 𝑚 ≫ 0 and 𝒯 is finer than 𝒯Fix.

If 𝒯 = 𝒯Fix, then by Theorem 4.8, 𝒯Fix is Hausdorff. Therefore
⋂
𝑛∈N∗ 𝐺𝐹𝑛 = ZO =

{1} by Lemma 4.15.
Assume K is Henselian. Let 𝑚 ∈ N∗. Then by Lemma 4.16 and Lemma 4.20, there

exist 𝐾1 ∈ R∗+ and 𝐿 ∈ N such that

𝐺𝐹𝑛 ⊂ V𝑚𝜆.ZO .𝑇𝑀 (𝑛)/𝐾1 ,
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for 𝑛 ≥ min(𝑚, 𝐿), with 𝑀 (𝑛) −−−−−→
𝑛→+∞

+∞. Therefore if ZO = 1 we have

𝐺𝐹𝑛 ⊂ V𝑚𝜆.𝑇𝑀 (𝑛)/𝐾1 ⊂ V𝑚𝜆,
for 𝑛 such that 𝑀 (𝑛)/𝐾 ≥ 2𝑚𝑁 (𝜆), and thus (V𝑛𝜆) and (𝐺𝐹𝑛 ) are equivalent, which
proves the proposition. □

Remark 4.22.

(1) If (𝛼𝑖)𝑖∈𝐼 is a Z-basis of 𝑋 , then 𝒯 = 𝒯Fix. Indeed, assume that (𝛼𝑖)𝑖∈𝐼 is a
Z-basis of 𝑋 . Let (𝜒∨

𝑖
)𝑖∈𝐼 be the dual basis. Let 𝑛 ∈ N∗ and 𝑡 ∈ 𝑇𝑛,Φ ∩ 𝔗(O).

Write 𝑡 =
∏
𝑖∈𝐼 𝜒

∨
𝑖
(𝑎𝑖), with 𝑎𝑖 ∈ O∗ for 𝑖 ∈ 𝐼. Then 𝜋𝑛 (𝑡) =

∏
𝑖∈𝐼 𝜒

∨
𝑖
(𝜋𝑛 (𝑎𝑖))

and 𝜋𝑛 (𝑡) = 1 if and only if 𝜋𝑛 (𝑎𝑖) = 1 for all 𝑖 ∈ 𝐼. Now 𝛼𝑖 (𝑡) = 𝑎𝑖 and thus
𝑡 ∈ 𝑇𝑛,Φ if and only if 𝑡 ∈ 𝑇𝑛. Therefore ZO =

⋂
𝑛∈N 𝑇𝑛 = {1}.

(2) Note that by Lemma 4.16, the set of left 𝔗(O)-invariant open subsets of 𝐺 are
the same for 𝒯Fix and 𝒯. Indeed, let 𝑉 ⊂ 𝐺 be a non empty left 𝔗(O)-invariant
open subset of 𝐺 for 𝒯Fix. Then for every 𝑣 ∈ 𝑉 , there exists 𝑛 ∈ N∗ such that
𝑣𝐺𝐹𝑛 ⊂ 𝑉 . By Lemma 4.16, 𝔗(O).𝐺𝐹𝑛 ⊂ V𝑛𝜆 and thus 𝑉 is open for 𝒯.

(3) Assume that K is local. By (2), if 𝜏 ∈ HomGr (𝑌,C∗), then 𝐼 (𝜏)𝒯 = 𝐼 (𝜏)𝒯Fix

(see (1.1) for the definition). Indeed, 𝛿1/2 and 𝜏 are maps from 𝑌 = 𝑇/𝔗(O) to
C∗ and thus their extensions to 𝐵 are left 𝔗(O)-invariant. Therefore any element
of 𝐼 (𝜏) is left 𝔗(O)-invariant.

5. Properties of the topologies

In this section, we study the properties of the topologies 𝒯 and 𝒯Fix. In Section 5.1, we
prove that when 𝐺 is not reductive, 𝒯 is strictly coarser than the Kac–Peterson topology
on 𝐺 (Proposition 5.4). In Section 5.2, we prove that certain subgroups of 𝐺 are closed
for 𝒯. In Section 5.3, we prove that the compact subsets of 𝐺 have empty interior. In
Section 5.4, we describe the topology in the case of affine SL2, under some assumption.

5.1. Comparison with the Kac–Peterson topology on 𝐺

In [22], Kac and Peterson defined a topology of topological group on 𝔊(C). This topology
was then studied in [14] and generalized in [14, 7]: Hartnick, Köhl and Mars define a
topology of topological group on 𝔊(F ) for F a local field (Archimedean or not), taking
into account the topology of F . The aim of this section is to prove that the topologies we
defined on 𝐺 = 𝔊(K) are strictly coarser than the Kac–Peterson topology on 𝐺, unless 𝐺
is reductive. As 𝒯Fix is coarser than 𝒯 it suffices to prove that 𝒯 is strictly coarser than
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𝒯𝐾𝑃 . To that end, we prove that 𝒯 is coarser than 𝒯𝐾𝑃 and that the topologies induced
by 𝒯 and 𝒯𝐾𝑃 on a subset of 𝐵 := 𝑇𝑈+ differ, using the description of 𝒯𝐾𝑃 |𝐵 given
in [14, 7].

We assume that K is local, in particular, 𝜔(K∗) = Z. We equip SL2 (K) with the
topology associated to (ker 𝜋SL2

𝑛 )𝑛∈N∗ , where 𝜋SL2
𝑛 : SL2 (O) → SL2 (O/𝜛𝑛O) is the

natural projection. We denote by 𝑥+ (resp. 𝑥−) the morphism of algebraic groups 𝑎 ↦→
( 1 𝑎

0 1
)(

resp. 𝑎 ↦→
( 1 0
𝑎 1

) )
for 𝑎 in a ring ℛ. Using Corollary 3.6, it is easy to check that

ker 𝜋SL2
𝑛 = 𝑥+ (𝜛𝑛O).𝑥− (𝜛𝑛O).

((
1 +𝜛𝑛O 0

0 1 +𝜛𝑛O

)
∩ SL2 (K)

)
,

and thus (VSL2
𝑛𝜆

) is equivalent to (ker 𝜋SL2
𝑛 ) for any regular 𝜆 ∈ 𝑌SL2 .

We equip 𝑇 with its usual topology 𝒯𝑇 , via the isomorphism 𝑇 ≃ (K∗)𝑚, for 𝑚 the
rank of 𝑋 . This is the topology 𝒯((ker 𝜋𝑛 |𝑇 )𝑛∈N∗ ). As we shall see (Proposition 5.4),
this is the topology induced by 𝒯 on 𝑇 .

For 𝛼 ∈ Φ+, let 𝜑𝛼 : SL2 (K) → 𝐺 be defined by 𝜑𝛼 ◦ 𝑥± = 𝑥±𝛼 and let 𝐺𝛼 be its
image in 𝐺. We equip 𝐺𝛼 with the quotient topology 𝒯𝐺𝛼

inherited from SL2 (K) via
𝜑𝛼. Let Σ = {𝛼𝑖 | 𝑖 ∈ 𝐼} and Σ (N) be the set of finite sequences of elements of Σ. For
𝛼 = (𝛼0, . . . , 𝛼𝑘) ∈ Σ (N) , where 𝑘 ∈ N∗, one sets 𝐺𝛼 = 𝐺𝛼0 . . . 𝐺𝛼𝑘

⊂ 𝐺. Note that 𝐺𝛼
is not a subgroup of 𝐺 in general. If 𝛼, 𝛽 ∈ Σ (N) , we write 𝛼 ≤ 𝛽 if 𝛼 appears as an
ordered subtuple of 𝛽. Then ≤ is a preorder on Σ (N) and (Σ (N) , ≤) is a directed poset.

We equip 𝑇𝐺𝛼 with the topology 𝒯𝑇𝐺𝛼
obtained as the quotient topology with respect

to the multiplication map

𝑚𝛼 : (𝑇,𝒯𝑇 ) × (𝐺𝛼1 ,𝒯𝐺𝛼1
) × · · · × (𝐺𝛼𝑘

,𝒯𝐺𝛼𝑘
) −↠ 𝑇𝐺𝛼 . (5.1)

In [14, Definition 7.8], the authors define the Kac–Peterson topology 𝒯𝐾𝑃 on 𝐺 as the
direct limit of the directed system {(𝑇𝐺𝛼,𝒯𝑇𝐺𝛼

) | 𝛼 ∈ Σ (N) }. In other words, a subset 𝑉
of 𝐺 is open for 𝒯𝐾𝑃 if and only if 𝑉 ∩ 𝑇𝐺𝛼 is open for every 𝛼 ∈ Σ (N) .

Lemma 5.1. Let 𝑤 ∈ 𝑊𝑣 . Assume that 𝑤𝑟𝑖 < 𝑤 for every 𝑖 ∈ 𝐼 (for the Bruhat order on
𝑊𝑣). Then𝑊𝑣 is finite.

Proof. By [23, 1.3.13 Lemma], we have 𝑤.𝛼𝑖 ∈ Φ− for every 𝑖 ∈ 𝐼. Let 𝜆 ∈ 𝐶𝑣
𝑓
. Then

𝛼𝑖 (𝑤−1.𝜆) < 0 for every 𝑖 ∈ 𝐼 and thus 𝑤−1.𝜆 ∈ −𝐶𝑣
𝑓
. Thus 𝜆 ∈ T̊ ∩ −T̊ . By [23, 1.4.2

Proposition] we deduce that Φ is finite and thus𝑊𝑣 is finite. □

We equip 𝑊𝑣 with the right weak Bruhat order ⪯: for every 𝑣, 𝑤 ∈ 𝑊𝑣 , 𝑣 ⪯ 𝑤 if
ℓ(𝑣) + ℓ(𝑣−1𝑤) = ℓ(𝑤). We assume that 𝑊𝑣 is infinite. By Lemma 5.1, there exists a
sequence (𝑤𝑖)𝑖∈N ∈ (𝑊𝑣)N such that 𝑤0 = 1, ℓ(𝑤𝑖+1) = ℓ(𝑤𝑖) + 1 and 𝑤𝑖 ⪯ 𝑤𝑖+1 for
every 𝑖 ∈ N.
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For 𝑤 ∈ 𝑊𝑣 , one sets Inv(𝑤) = {𝛼 ∈ Φ+ | 𝑤−1.𝛼 ∈ Φ−}. Let 𝑈𝑤 = ⟨𝑈𝛼 | 𝛼 ∈
Inv(𝑤)}. By [8, Lemma 5.8], if 𝑤 = 𝑟𝑖1 . . . 𝑟𝑖𝑘 , with 𝑘 = ℓ(𝑤) and 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼,
then 𝑈𝑤 = 𝑈𝛼𝑖1 .𝑈𝑟𝑖1 .𝛼𝑖2 . . . 𝑈𝑟𝑖1 ...𝑟𝑖𝑘−1 .𝛼𝑖𝑘

and every element of 𝑈𝑤 admits a unique
decomposition in this product. By [14, Proposition 7.27], as a topological space, 𝐵 is
the colimit lim→ 𝑇𝑈𝑤 (note that (𝑊𝑣 , ⪯) is not directed). Let𝑈′ =

⋃
𝑛∈N𝑈𝑤𝑛

. Then the
topology induced on 𝑇𝑈′ by 𝒯𝐾𝑃 is the topology of the direct limit lim→ 𝑇𝑈𝑤𝑛

: a subset
𝑉 of 𝑇𝑈′ is open if and only if 𝑉 ∩ 𝑇𝑈𝑤𝑛

is open for every 𝑛 ∈ N.
For 𝑛 ∈ N, write 𝑤𝑛+1 = 𝑤𝑛𝑟𝑖 , where 𝑖 ∈ 𝐼. Set 𝛽[𝑛] = 𝑤𝑛.𝛼𝑖 . Then Inv(𝑤𝑛) = {𝛽[𝑖] |

𝑖 ∈ ⟦1, 𝑛⟧}, by [23, 1.3.14 Lemma].
By [14, Lemma 7.26], if 𝑛 ∈ N∗ then the map 𝑚 = 𝑚𝑛 : 𝑇 × (K)𝑛 → 𝑇𝑈𝑤𝑛

defined
by 𝑚(𝑡, 𝑎1, . . . , 𝑎𝑛) = 𝑡𝑥𝛽 [1] (𝑎1) . . . 𝑥𝛽 [𝑛] (𝑎𝑛) is a homeomorphism, when 𝑇𝑈𝑤𝑛

is
equipped with the restriction of 𝒯𝐾𝑃 .

Recall that 𝒯 = 𝒯((V𝑛𝜆)) for any 𝜆 ∈ 𝑌+ ∩ 𝐶𝑣
𝑓
.

Define ht : 𝑄+ =
⊕

𝑖∈𝐼 Z𝛼𝑖 → Z by ht(∑𝑖∈𝐼 𝑛𝑖𝛼𝑖) =
∑
𝑖∈𝐼 𝑛𝑖 , for (𝑛𝑖) ∈ Z𝐼 .

Lemma 5.2. Assume that𝑊𝑣 is infinite. For 𝑛 ∈ N∗, set 𝑉𝑛 = 𝑇
∏𝑛
𝑖=1 𝑥𝛽 [𝑖 ] (𝜛 (ht(𝛽 [𝑖 ] )!O)

and set 𝑉 =
⋃
𝑛∈N𝑉𝑛. Then 𝑉 is open in (𝑇𝑈′,𝒯𝐾𝑃) but not in (𝑇𝑈′,𝒯). In particular,

𝒯 and 𝒯𝐾𝑃 are different.

Proof. Let 𝑛 ∈ N∗. Let 𝑣 ∈ 𝑉 ∩ 𝑇𝑈𝑤𝑛
and choose 𝑘 ∈ N∗ such that 𝑣 ∈ 𝑉𝑘 . If 𝑘 ≤ 𝑛,

then 𝑣 ∈ 𝑉𝑘 ⊂ 𝑉𝑛. Suppose now 𝑘 ≥ 𝑛. Write 𝑣 = 𝑡
∏𝑘
𝑖=1 𝑥𝛽 [𝑖 ]

(
𝜛 (ht(𝛽𝑖 )!𝑎𝑖

)
, with

𝑎1, . . . , 𝑎𝑘 ∈ O and 𝑡 ∈ 𝑇 . By [14, Lemma 7.26], we have 𝑎𝑖 = 0 for every 𝑖 ∈ ⟦𝑛 + 1, 𝑘⟧
and thus 𝑣 ∈ 𝑉𝑛. Therefore 𝑉 ∩ 𝑇𝑈𝑤𝑛

= 𝑉𝑛. By [14, Lemma 7.26], 𝑉𝑛 is open in 𝑇𝑈𝑤𝑛

and thus 𝑉 is open in (𝑇𝑈′,𝒯𝐾𝑃).
Let 𝜆 ∈ 𝐶𝑣

𝑓
∩𝑌 be such that 𝛼𝑖 (𝜆) = 1 for every 𝑖 ∈ 𝐼. Let us prove that for every 𝑛 ∈ N∗,

𝑈′ ∩𝑈 𝑝𝑚+
−𝑛𝜆 is not contained in 𝑉 . For 𝑘, 𝑛 ∈ N∗, set 𝑥𝑘,𝑛 =

∏𝑘
𝑖=1 𝑥𝛽 [𝑖 ] (𝜛𝑛ht(𝛽 [𝑖 ] ) ) ∈ 𝑈′ ∩

𝑈
𝑝𝑚+
−𝑛𝜆 . Let 𝑛 ∈ N∗. By [14, Lemma 7.26], if 𝑥𝑘,𝑛 ∈ 𝑉 , then 𝑛ht(𝛽[𝑖]) ≥ (ht(𝛽[𝑖]))!, for

every 𝑖 ∈ ⟦0, 𝑘⟧. As ht(𝛽[𝑖]) −−−−−→
𝑖→+∞

+∞, there exists 𝑘 ∈ N such that 𝑥𝑘,𝑛 ∈ 𝑈′∩𝑈 𝑝𝑚+
−𝑛𝜆 \𝑉

and thus,𝑈′ ∩𝑈 𝑝𝑚+
−𝑛𝜆 ⊄ 𝑉 . Using Lemma 2.3 we deduce that there exists no 𝑛 ∈ N∗ such

that V𝑛𝜆 ∩ 𝑇𝑈′ ⊂ 𝑉 and thus 𝑉 is not open for 𝒯. □

Proposition 5.3. Let 𝑉 = (𝑉𝑛)𝑛∈N∗ be a conjugation-invariant filtration of 𝐺. Let 𝒯𝑉 be
the associated topology on 𝐺. We assume that for every 𝛼 ∈ Σ, the induced topology on
𝐺𝛼 is 𝒯𝐺𝛼

and that the induced topology on 𝑇 is 𝒯𝑇 . Then 𝒯𝑉 is coarser than 𝒯𝐾𝑃 .

Proof. Let 𝑛 ∈ N∗. Let us prove that 𝑉𝑛 is open for 𝒯𝐾𝑃 . Let 𝛼 = (𝛼𝑘 , . . . , 𝛼1) ∈ Σ (N) .
Let us prove that 𝑚−1

𝛼 (𝑉𝑛) is open in 𝑇 × 𝐺𝛼𝑘
× · · · × 𝐺𝛼1 , with the notation of (5.1).

Let 𝑣 ∈ 𝑇𝐺𝛼 ∩ 𝑉𝑛 and (𝑡, 𝑣𝑘 , . . . , 𝑣1) ∈ 𝑚−1
𝛼 ({𝑣}). We have 𝑣 = 𝑡𝑣𝑘 . . . 𝑣1. We set

𝑛1 = 𝑛 and we choose 𝑛2, . . . , 𝑛𝑘 , 𝑛𝑘+1 ∈ N∗ such that for all 𝑗 ∈ ⟦2, 𝑘⟧, we have

110



Topologies on Kac–Moody groups

𝑉𝑛 𝑗
𝑣 𝑗−1 . . . 𝑣1 ⊂ 𝑣 𝑗−1 . . . 𝑣1𝑉𝑛, which is possible since 𝑉 is conjugation-invariant. Then

we have:

𝑉𝑛𝑘+1𝑣𝑘𝑉𝑛𝑘𝑣𝑘−1𝑉𝑛𝑘−1 . . . 𝑉𝑛3𝑣2𝑉𝑛2𝑣1𝑉𝑛1 ⊂ 𝑉𝑛𝑘+1𝑣𝑘𝑉𝑛𝑘𝑣𝑘−1𝑉𝑛𝑘−1 . . . 𝑉𝑛3𝑣2𝑣1𝑉𝑛

⊂ · · · ⊂ 𝑣𝑘 . . . 𝑣1𝑉𝑛.

Consequently(
𝑡𝑉𝑛𝑘+1 ∩ 𝑇

) (
𝑣𝑘𝑉𝑛𝑘 ∩ 𝐺𝛼𝑘

)
. . .

(
𝑣1𝑉𝑛1 ∩ 𝐺𝛼1

)
⊂ 𝑡𝑣𝑘 . . . 𝑣1𝑉𝑛 = 𝑣𝑉𝑛 = 𝑉𝑛

and hence

𝑚𝛼
( (
𝑡𝑉𝑛𝑘+1 ∩ 𝑇

)
×

(
𝑣𝑘𝑉𝑛𝑘 ∩ 𝐺𝛼𝑘

)
× · · · ×

(
𝑣1𝑉𝑛1 ∩ 𝐺𝛼1

) )
⊂ 𝑉𝑛 ∩ 𝑇𝐺𝛼 .

Therefore 𝑚−1
𝛼 (𝑉𝑛 ∩ 𝑇𝐺𝛼) is open or equivalently 𝑉𝑛 ∩ 𝑇𝐺𝛼 is open. As this is true for

every 𝛼 ∈ Σ (N) , we deduce that 𝑉𝑛 is open for 𝒯𝐾𝑃 . As (𝐺,𝒯𝐾𝑃) is a topological group,
we deduce that 𝑥𝑉𝑛 is open in 𝒯𝐾𝑃 for every 𝑥 ∈ 𝐺 and 𝑛 ∈ N∗ and we deduce that 𝒯𝑉 is
coarser than 𝒯𝐾𝑃 . □

Proposition 5.4.

(1) Let 𝛼 ∈ Φ+ and 𝜑𝛼 : SL2 (K) → 𝐺 be the group morphism defined by
𝜑𝛼 ◦ 𝑥± = 𝑥±𝛼. Fix a basis (𝜒∨1 , . . . , 𝜒

∨
ℓ
) of 𝑌 and define 𝜄 : (K∗)ℓ ∼→ 𝑇 ⊂ 𝐺 by

𝜄 ((𝑎1, . . . , 𝑎ℓ)) = 𝜒∨1 (𝑎1) . . . 𝜒∨ℓ (𝑎ℓ), for 𝑎1, . . . , 𝑎ℓ ∈ K∗. Then the 𝜑𝛼, 𝛼 ∈ Φ

and 𝜄 are continuous when 𝐺 is equipped with 𝒯.

(2) The topology induced by 𝒯 on 𝑇 is 𝒯𝑇 and if 𝛼 ∈ Φ+, then the topology induced
by 𝒯 on 𝐺𝛼 is 𝒯𝐺𝛼

Proof. Let 𝛼 ∈ Φ and 𝜆 ∈ 𝑌+ be regular. Let 𝑔 ∈ 𝜑−1
𝛼 (V𝜆). By [30, 3.16] and [26, 1.2.4

Proposition], we have the Birkhoff decomposition in SL2 (K) (where 𝑁SL2 is the set of
monomial matrices with coefficient in K∗) and 𝐺:

SL2 (K) =
⊔

𝑛∈𝑁SL2

𝑥+ (K)𝑛𝑥− (K) and 𝐺 =
⊔
𝑛∈𝑁

𝑈+𝑛𝑈− .

Let 𝑛 ∈ 𝑁SL2 be such that 𝑔 ∈ 𝑥+ (K)𝑛𝑥− (K). If 𝑛 ∉ 𝑇SL2 , then 𝜑𝛼 (𝑔) ∈ 𝑈+𝜑𝛼 (𝑛)𝑈−

and 𝜈𝑣 (𝜑𝛼 (𝑛)) acts as the reflection with respect to 𝛼 onA. Then 𝜑𝛼 (𝑔) ∉ 𝑈+𝑇𝑈− which
contradicts Corollary 3.6. Therefore 𝑛 ∈ 𝑇 . Write 𝑔 = 𝑥+ (𝑎+)𝑛𝑥− (𝑎−), with 𝑎+, 𝑎− ∈ K.
Then by Lemma 2.3, we have 𝑥𝛼 (𝑎+) ∈ 𝑈 𝑝𝑚+

[−𝜆,𝜆] , 𝑥−𝛼 (𝑎−) ∈ 𝑈
𝑛𝑚−
[−𝜆,𝜆] and 𝜑𝛼 (𝑛) ∈ 𝑇2𝑁 (𝜆) .

Consequently, 𝜔(𝑎+), 𝜔(𝑎−) ≥ |𝛼(𝜆) | and

𝑡 ∈ 𝑇SL2 ,2𝑁 (𝜆) :=
(
1 +𝜛2𝑁 (𝜆)O 0

0 1 +𝜛2𝑁 (𝜆)O

)
∩ SL2 (K).
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Therefore 𝜑−1
𝛼 (V𝜆) ⊂ 𝑥+ (K𝜔≥ |𝛼(𝜆) | )𝑇SL2 ,2𝑁 (𝜆)𝑥− (K𝜔≥ |𝛼(𝜆) | ). Conversely,

𝜑𝛼 (𝑥− (K𝜔≥ |𝛼(𝜆) | )), 𝜑𝛼 (𝑥+ (K𝜔≥ |𝛼(𝜆) | ), 𝜑𝛼 (𝑇SL2 ,2𝑁 (𝜆) ) ⊂ V𝜆 and thus 𝜑−1
𝛼 (V𝜆) =

𝑥+ (K𝜔≥ |𝛼(𝜆) | )𝑇SL2 ,2𝑁 (𝜆)𝑥− (K𝜔≥ |𝛼(𝜆) | ) is open in SL2 (K). Therefore 𝜑𝛼 is continuous
and V𝜆 ∩ 𝐺𝛼 is open.

Let 𝑛 ∈ N∗. Then 𝜄−1 (𝑇𝑛) = (1 + 𝜛𝑛O)ℓ and thus 𝜄 is continuous. Moreover, we
have 𝑇 ∩V𝜆 = 𝑇2𝑁 (𝜆) , by the Birkhoff decomposition, which proves that 𝒯 induces 𝒯𝑇
on 𝑇 . □

Corollary 5.5. If Φ is infinite, the topologies 𝒯 and 𝒯Fix are strictly coarser than 𝒯𝐾𝑃 .

Proof. Let 𝜆 ∈ 𝑌+ be any regular element. By Propositions 5.4 and 5.3, applied with
𝑉 = (V𝑛𝜆), 𝒯 is coarser than 𝒯𝐾𝑃 . By Lemma 5.2, 𝒯 is different from 𝒯𝐾𝑃 . As 𝒯Fix is
coarser than 𝒯 (by Proposition 4.21), we deduce the result. □

5.2. Properties of usual subgroups of 𝐺 for 𝒯 and 𝒯Fix

In this subsection, we prove that many subgroups important in this theory (such as 𝐵, 𝑇 ,
𝑈𝛼, 𝛼 ∈ Φ, etc.) are open or closed. We have TFix ⊂ T and thus every subset of 𝐺 open
or closed for TFix is open or closed for T . As the Kac–Peterson topology 𝒯𝐾𝑃 is finer
than 𝒯, this improves the corresponding results of [14]. Note that we consider 𝐵 = 𝐵+

and𝑈+, but the same results hold for 𝐵− and𝑈− , by symmetry.
If 𝑔 ∈ 𝐺, we say that 𝑔 stabilizes (resp. pointwise fixes) +∞ if 𝑔. + ∞ = +∞ (resp.

if there exists 𝑄 ∈ +∞ such that 𝑔 pointwise fixes 𝑄). We denote by Stab𝐺 (+∞) the
stabilizer of +∞ in 𝐺.

By [15, 3.4.1], Stab𝐺 (+∞) = 𝐵 := 𝑇𝑈+. We denote by Ch(𝜕I+) the set of positive
sector-germs at infinity of I. For 𝑐 ∈ Ch(𝜕I+) and 𝑥 ∈ I, there exists an apartment 𝐴
containing 𝑥 and 𝑐. We denote by

𝑥 + 𝑐 (5.2)

the convex hull of 𝑥 and 𝑐 in this apartment. This does not depend on the choice of 𝐴, by
(MA II). Fix 𝜆0 ∈ 𝐶𝑣

𝑓
. For 𝑟 ∈ R+, we set C𝑟 = {𝑐 ∈ Ch(𝜕I+) | [0, 𝑟 .𝜆0] ⊂ 0 + 𝑐}. This

set is introduced in [9, Definition 3.1] where it is denoted𝑈0,𝑟 ,𝑐 or𝑈𝑟 ,𝑐.

Proposition 5.6.

(1) The subgroup 𝐵 is closed in 𝐺 for 𝒯 and 𝒯Fix.

(2) The subgroup𝑈+ of𝐺 is closed for 𝒯. It is closed for 𝒯Fix if and only if 𝒯 = 𝒯Fix.
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Proof.

(1). Let 𝑔 ∈ 𝐺 \ 𝐵. Then 𝑔.(+∞) ≠ +∞. By [9, Lemma 7.6],
⋂
𝑟∈R+ C𝑟 = {+∞}. Thus

there exists 𝑛 ∈ N∗ such that 𝑔−1. + ∞ ∉ C𝑛. Then V𝑛𝜆0 fix [0, 𝑛𝜆0]. Let 𝑣 ∈ V𝑛𝜆0 . Then

𝑣.(0 + ∞) = 𝑣.0 + (𝑣. + ∞) = 0 + (𝑣. + ∞) ⊃ 𝑣.[0, 𝑛𝜆0] = [0, 𝑛𝜆0] .

Therefore V𝑛𝜆0 .(+∞) ⊂ C𝑛. Consequently, 𝑔−1.(+∞) ∉ V𝑛𝜆0 .+∞ and thus 𝑔V𝑛𝜆0 .+∞ ∌

+∞. Thus 𝑔.V𝑛𝜆0 ⊂ 𝐺 \ 𝐵, which proves that 𝐺 \ 𝐵 is open for 𝒯Fix.

(2). Let 𝑔 ∈ 𝐺 \ 𝑈+. If 𝑔 ∈ 𝐺 \ 𝑈+𝑇 , then by (1), there exists 𝑉 ∈ T such that
𝑔𝑉 ⊂ 𝐺 \𝑈+𝑇 ⊂ 𝐺 \𝑈+. We now assume 𝑔 ∈ 𝑈+𝑇 \𝑈. Write 𝑔 = 𝑢+𝑡, with 𝑢+ ∈ 𝑈+

and 𝑡 ∈ 𝑇 \ {1}. Let 𝜆 ∈ 𝑌 ∩ 𝐶𝑣
𝑓

and assume that 𝑔V𝜆 ∩ 𝑈+ ≠ ∅. Then there exists
(𝑢′+, 𝑢′− , 𝑡′) ∈ 𝑈

𝑝𝑚+
[−𝜆,𝜆] ×𝑈

𝑛𝑚−
[−𝜆,𝜆] × 𝑇2𝑁 (𝜆) such that 𝑢+𝑡𝑢′+𝑢′−𝑡′ = 𝑢′′+ , where 𝑢′′+ ∈ 𝑈+. As

𝑡 normalizes𝑈+ and𝑈− , we can write 𝑡𝑢′+𝑢′− = 𝑢
(3)
+ 𝑢 (3)− 𝑡, for some 𝑢 (3)+ ∈ 𝑈+, 𝑢 (3)− ∈ 𝑈− .

Then we have
𝑢′′−1
+ 𝑢+𝑢

(3)
+ 𝑢 (3)− 𝑡𝑡′ = 1.

By Lemma 2.3 we deduce 𝑡𝑡′ = 1. Therefore 𝑡 ∈ 𝑇2𝑁 (𝜆) . Thus if 𝜆 is sufficiently dominant,
𝑔V𝜆 ∩𝑈+ = ∅ and 𝑔V𝜆 ⊂ 𝐺 \𝑈+. We deduce that 𝐺 \𝑈+ is closed for T .

Suppose now 𝒯 ≠ 𝒯Fix. Then by Proposition 4.21, ZO ≠ {1}. Then every non empty
open subset of 𝐺 for TFix contains ZO . Take 𝑧 ∈ ZO \ {1}. As 𝑧 ∈ 𝔗(O), 𝑧 ∈ 𝐺 \𝑈+.
Moreover, for any non empty open subset 𝑉 of 𝐺, 𝑧𝑉 ∋ 1 ∈ 𝑈+. Therefore 𝐺 \𝑈+ is not
open, which completes the proof of the proposition. □

Proposition 5.7.

(1) Let 𝑥 ∈ I. Then the fixator 𝐺𝑥 of 𝑥 in 𝐺 is open (for TFix and T ). In particular,
𝔊min (O) is open in 𝐺.

(2) Let 𝐸 ⊂ I. Then the fixator and the stabilizer of 𝐸 in𝐺 are closed for TFix and T .

Proof.

(1). By Lemma 4.13, 𝐺𝐹𝑛 ⊂ 𝐺𝑥 for 𝑛 ≫ 0, which proves (1).

(2). Let 𝑔 ∈ 𝐺 \ 𝐺𝐸 . Let 𝑥 ∈ 𝐸 be such that 𝑔.𝑥 ≠ 𝑥. Then 𝑔.𝐺𝑥 ⊂ 𝐺 \ 𝐺𝐸 and
hence 𝐺𝐸 is open. Let 𝑔 ∈ 𝐺 \ Stab𝐺 (𝐸). Let 𝑥 ∈ 𝐸 be such that 𝑔.𝑥 ∉ 𝐸 . Then
𝑔.𝐺𝑥 ⊂ 𝐺 \ Stab𝐺 (𝐸) and hence Stab𝐺 (𝐸) is closed. □

Corollary 5.8. The subgroups 𝑁 and 𝑇 are closed in 𝐺 for TFix and T .
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Proof. By Proposition 5.7, 𝑁 = Stab𝐺 (A) is closed. We have 𝑇 = Stab𝐺 (+∞) ∩ 𝑁 .
Indeed, it is clear that 𝑇 ⊂ Stab𝐺 (+∞) ∩ 𝑁 . Conversely, let 𝑔 ∈ Stab𝐺 (+∞) ∩ 𝑁 . Let
𝑤 ∈ 𝑊𝑣 and 𝜆 ∈ Λ be such that 𝑔.𝑥 = 𝜆 + 𝑤.𝑥 for every 𝑥 ∈ A. Then 𝑤.𝐶𝑣

𝑓
= 𝐶𝑣

𝑓
and

thus 𝑤 = 1. Therefore 𝑔 acts by translation on A and hence 𝑔 ∈ 𝑇 . This proves that
𝑇 = Stab𝐺 (+∞) ∩ 𝑁 and we conclude with Proposition 5.6. □

Remark 5.9.

(1) The fixator 𝐾𝐼 of 𝐶+
0 is open for 𝒯Fix. Indeed, let 𝜆 ∈ 𝐶𝑣

𝑓
∩ 𝑌 . Then 𝐺 [0,𝜆] =

𝐺0 ∩ 𝐺𝜆 is open for 𝒯Fix and 𝐺 [0,𝜆] ⊂ 𝐾𝐼 .

(2) For 𝑥, 𝑦 ∈ I, one writes 𝑥 ≤ 𝑦 if there exists 𝑔 ∈ 𝐺 such that 𝑔.𝑥, 𝑔.𝑦 ∈ A and
𝑔.𝑦 − 𝑔.𝑥 ∈ T =

⋃
𝑤∈𝑊𝑣 𝑤.𝐶𝑣

𝑓
. By 𝑊𝑣-invariance of T , this does not depend

on the choice of 𝑔 and by [29, Théorème 5.9], ≤ is a preorder on I. One sets

𝐺+ = {𝑔 ∈ 𝐺 | 𝑔.0 ≥ 0}.
This is a subsemigroup of 𝐺 which is crucial for the definition of the Hecke
algebras associated with 𝐺 (when K is local), see [2], [5], [6] or [11]. Then
𝐺+ ⊃ 𝐺0 = 𝔊min (O) and thus 𝐺+ is open in 𝐺.

Lemma 5.10. Let 𝑔 ∈ 𝐺. Then there exists 𝑛 ∈ 𝑁 such that 𝑔.𝑎 = 𝑛.𝑎 for every
𝑎 ∈ A ∩ 𝑔−1.A.

Proof. Let ℎ ∈ 𝐺 be such that ℎ𝑔.A = A and ℎ fixes A ∩ 𝑔.A, which exists by (MA II).
Then 𝑛 := ℎ𝑔 stabilizes A and thus it belongs to 𝑁 . Moreover, ℎ𝑔.𝑎 = 𝑛.𝑎 = 𝑔.𝑎 for every
𝑎 ∈ A ∩ 𝑔−1.A, which proves the lemma. □

Lemma 5.11. Let 𝛼 ∈ Φ. Write 𝛼 = 𝜖𝑤.𝛼𝑖 , for 𝑤 ∈ 𝑊𝑣 , 𝜖 ∈ {−, +} and 𝑖 ∈ 𝐼. Let 𝔔 be
the sector-germ at infinity of −𝜖𝑤𝑟𝑖 (𝐶𝑣𝑓 ). Then𝑈𝛼𝑇 = Stab𝐺 (𝑤.𝜖∞) ∩ Stab𝐺 (𝔔).

Proof. There is no loss of generality in assuming that 𝑤 = 1 and 𝜖 = +. Let 𝑢 ∈ 𝑈𝛼𝑖 .
Then 𝑢 fixes a translate of 𝛼−1

𝑖
(R+). Therefore 𝑇𝑈𝛼𝑖 stabilizes 𝔔 and +∞. Conversely, let

𝑔 ∈ Stab𝐺 (+∞) ∩ Stab𝐺 (𝔔). Then there exist 𝑥, 𝑥′ ∈ A such that 𝑔.(𝑥 + 𝐶𝑣
𝑓
) = 𝑥′ + 𝐶𝑣

𝑓
.

Then by Lemma 5.10, there exists 𝑛 ∈ 𝑁 such that 𝑔.𝑥′′ = 𝑛.𝑥′′ for every 𝑥′′ ∈ A∩ 𝑔−1.A.
Then 𝑛 fixes +∞ and thus 𝑛 ∈ 𝑇 (by the proof of Corollary 5.8). Then 𝑛−1𝑔.𝑥 = 𝑥.
Considering 𝑛−1𝑔 instead of 𝑔, we may assume that 𝑔 pointwise fixes +∞. Therefore
𝑔 pointwise fixes 𝔔. There exists 𝑎, 𝑎′ ∈ A such that 𝑔 fixes 𝑎 + 𝐶𝑣

𝑓
and 𝑔 fixes

𝑎′ − 𝑟𝑖 (𝐶𝑣𝑓 ). Let 𝐴 = 𝑔.A. Then 𝐴 ∩ A is a finite intersection of half-apartments by
(MA II) and thus either 𝐴 = A or 𝐴 ∩ A is a translate of 𝛼−1

𝑖
(R+). Moreover, 𝑔 fixes

𝐴∩A since it fixes an open subset of 𝐴∩A. By [30, 5.7 3)], 𝑔 ∈ 𝑈𝛼𝑖𝔗(O). Consequently
Stab𝐺 (+∞) ∩ Stab𝐺 (𝔔) ⊂ 𝑈𝛼𝑖𝑇 , and the lemma follows. □
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Proposition 5.12. Let 𝛼 ∈ Φ.

(1) The group𝑈𝛼𝑇 is closed for T and TFix.

(2) The group𝑈𝛼 is closed for T .

(3) If 𝒯 ≠ 𝒯Fix, then𝑈𝛼 is not closed for 𝒯Fix.

Proof.

(1). Let 𝔔 be a sector-germ of I (positive or negative). Then by Proposition 5.6 (or
the similar proposition for 𝐵− if 𝔔 is negative), Stab𝐺 (𝔔) is closed in 𝐺 for 𝒯Fix. By
Lemma 5.11 and Proposition 5.7, we have (1).

(2). We have 𝑈𝛼 = 𝑈𝛼𝑇 ∩ 𝑈+, by Lemma 2.3 and thus (2) follows from (1) and
Proposition 5.6.

(3). It is similar to the proof of the corresponding result of Proposition 5.6. □

5.3. Compact subsets have empty interior

By [1, Theorem 3.1], for any topology of topological group on 𝐺, 𝐺𝐶+
0

or 𝐺0 are not
compact and open. In particular, 𝐺0 and 𝐺𝐶+

0
are not compact for 𝒯. With a similar

reasoning, we have the following.

Proposition 5.13. Assume that𝑊𝑣 is infinite.

(1) Let 𝑛 ∈ N∗ and 𝜆 ∈ 𝑌+ regular. Then V𝑛𝜆/V(𝑛+1)𝜆 is infinite.

(2) Every compact subset of (𝐺,𝒯) has empty interior.

Proof.

(1). Set 𝐻 = 𝐺 [−𝑛𝜆, (𝑛+1)𝜆] ⊂ 𝐺. Then 𝐻 ⊃ V(𝑛+1)𝜆, by (4.1). Thus |V𝑛𝜆/V(𝑛+1)𝜆 | ≥
|V𝑛𝜆/(𝐻 ∩V𝑛𝜆) | and it suffices to prove that V𝑛𝜆/(𝐻 ∩V𝑛𝜆) is infinite. We have V𝑛𝜆 =⊔
𝑣∈V𝑛𝜆/(𝐻∩V𝑛𝜆 ) 𝑣.(𝐻∩V𝑛𝜆). Moreover if 𝑣, 𝑣′ ∈ V𝑛𝜆, then 𝑣.((𝑛+1)𝜆) = 𝑣′.((𝑛+1)𝜆)

if and only if 𝑣′.(𝐺 (𝑛+1)𝜆 ∩V𝑛𝜆) = 𝑣.(𝐺 (𝑛+1)𝜆 ∩V𝑛𝜆).
Let us prove that 𝐺 (𝑛+1)𝜆 ∩V𝑛𝜆 = 𝐻 ∩V𝑛𝜆. Let 𝑔 ∈ 𝐺 (𝑛+1)𝜆 ∩V𝑛𝜆. Then by (4.1), 𝑔

fixes [−𝑛𝜆, 𝑛𝜆] and (𝑛+1)𝜆. Then 𝑔.A is an apartment containing [−𝑛𝜆, 𝑛𝜆] ∪ {(𝑛+1)𝜆}.
As 𝑔.A∩A is convex, 𝑔.A contains [−𝑛𝜆, (𝑛 + 1)𝜆]. By (MA II), there exists ℎ ∈ 𝐺 such
that 𝑔.A = ℎ.A and ℎ fixes A ∩ 𝑔.A. Then ℎ−1𝑔.A = A and ℎ−1𝑔 acts on A by an affine
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map. As ℎ−1𝑔 fixes [−𝑛𝜆, 𝑛𝜆], it fixes [−𝑛𝜆, (𝑛 + 1)𝜆]. Therefore 𝑔 fixes [−𝑛𝜆, (𝑛 + 1)𝜆]
and thus 𝑔 ∈ 𝐻. Therefore 𝐺 (𝑛+1)𝜆 ∩V𝑛𝜆 = 𝐻 ∩V𝑛𝜆. Consequently,

V𝑛𝜆.((𝑛+1)𝜆) =
⊔

𝑣∈V𝑛𝜆/(𝐻∩V𝑛𝜆 )
{𝑣.(𝑛+1)𝜆} and |V𝑛𝜆/(𝐻∩V𝑛𝜆) | = |V𝑛𝜆. ((𝑛 + 1)𝜆) |.

Let (𝛽ℓ) ∈ (Φ+)N be an injective sequence. Write 𝛽ℓ =
∑
𝑖∈𝐼 𝑚

(ℓ )
𝑖
𝛼𝑖 , with 𝑚 (ℓ )

𝑖
∈ N

for ℓ ∈ N. Then 𝛽ℓ (𝜆) ≥ (∑𝑖∈𝐼 𝑚
(ℓ )
𝑖

) (min𝑖∈𝐼 𝛼𝑖 (𝜆)) −−−−→
ℓ→∞

+∞. Let ℓ ∈ N. For 𝑘 ∈
⟦𝛽ℓ (𝑛𝜆), 𝛽ℓ ((𝑛 + 1)𝜆) − 1⟧, 𝑥−𝛽ℓ (𝜛𝑘) ∈ 𝑈𝑛𝑚−

[−𝑛𝜆,𝑛𝜆] ⊂ V𝑛𝜆. Set

𝑥𝑘 = 𝑥−𝛽ℓ (𝜛𝑘).((𝑛 + 1)𝜆) ∈ V𝑛𝜆.((𝑛 + 1)𝜆).

Let 𝑘 ′ ∈ ⟦𝛽ℓ (𝑛𝜆), 𝛽ℓ ((𝑛+ 1)𝜆) − 1⟧. Then 𝑥𝑘 = 𝑥𝑘′ if and only if 𝑥−𝛽ℓ (𝜛𝑘).((𝑛+ 1)𝜆) =
𝑥−𝛽ℓ (𝜛𝑘′ ).((𝑛 + 1)𝜆) if and only if 𝑥−𝛽ℓ (𝜛𝑘 −𝜛𝑘′ ).((𝑛 + 1)𝜆) = (𝑛 + 1)𝜆 if and only if
𝜔(𝜛𝑘 −𝜛𝑘′ ) ≥ (𝑛 + 1)𝛽ℓ (𝜆) if and only 𝑘 = 𝑘 ′. Therefore |V𝑛𝜆.((𝑛 + 1)𝜆) | ≥ 𝛽ℓ (𝜆).
As this is true for every ℓ ∈ N, |V𝑛𝜆.((𝑛 + 1)𝜆) | if infinite, which proves (1).

(2). Let𝑉 be a compact subset of𝐺 and assume that𝑉 has non empty interior. Considering
𝑣−1.𝑉 instead of 𝑉 , we may assume 1 ∈ 𝑉 . Then there exists 𝜆 ∈ 𝑌+ ∩ 𝐶𝑣

𝑓
such that

V𝜆 ⊂ 𝑉 , and we have V2𝜆 ⊂ V𝜆. As V𝜆 is closed, it is compact. By (1), V𝜆/V2𝜆 is
infinite. Therefore V𝜆 =

⊔
𝑣∈V𝜆/V2𝜆 𝑣.V2𝜆 is a cover of V𝜆 by open subsets from which

we can not extract a finite subcover: we reach a contradiction. Thus every compact subset
of 𝐺 has empty interior. □

5.4. Example of affine SL2

In this subsection, we determine an explicit filtration equivalent to (V𝑛𝜆) in the case of
affine SL2 (quotiented by the central extension).

Let 𝑌 = Z�̊�∨ ⊕ Z𝑑, where �̊�∨, 𝑑 are some symbols, corresponding to the positive
root of SL2 (K) and to the semi-direct extension by K∗ respectively. Let 𝑋 = Z�̊� ⊕ Z𝛿,
where �̊�, 𝛿 : 𝑌 → Z are the Z-module morphisms defined by �̊�(�̊�∨) = 2, �̊�(𝑑) = 0,
𝛿(�̊�∨) = 0 and 𝛿(𝑑) = 1. Let 𝛼0 = 𝛿 − �̊�, 𝛼1 = �̊�, 𝛼∨0 = −�̊�∨ and 𝛼∨1 = �̊�∨. Then
S = (

( 2 −2
−2 2

)
, 𝑋,𝑌 , {𝛼0, 𝛼1}, {𝛼∨0 , 𝛼

∨
1 }) is a root generating system. Let 𝔊 be the

Kac–Moody group associated with S and 𝐺 = 𝔊(K). Then by [23, 13] and [24, 7.6],
𝐺 = SL2

(
K[𝑢, 𝑢−1]

)
⋊ K∗, where 𝑢 is an indeterminate and if (𝑀, 𝑧), (𝑀1, 𝑧1) ∈ 𝐺,

with 𝑀 =

(
𝑎 (𝜛,𝑢) 𝑏 (𝜛,𝑢)
𝑐 (𝜛,𝑢) 𝑑 (𝜛,𝑢)

)
, 𝑀1 =

(
𝑎1 (𝜛,𝑢) 𝑏1 (𝜛,𝑢)
𝑐1 (𝜛,𝑢) 𝑑1 (𝜛,𝑢)

)
, we have

(𝑀, 𝑧).(𝑀1, 𝑧1) =
(
𝑀

(
𝑎1 (𝜛, 𝑧𝑢) 𝑏1 (𝜛, 𝑧𝑢)
𝑐1 (𝜛, 𝑧𝑢) 𝑑1 (𝜛, 𝑧𝑢)

)
, 𝑧𝑧1

)
. (5.3)
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Note that the family (𝛼∨0 , 𝛼
∨
1 ) is not free. We have Φ = {𝛼+ 𝑘𝛿 | 𝛼 ∈ {±�̊�}, 𝑘 ∈ Z} and

(𝛼0, 𝛼1) is a basis of this root system. We denote byΦ+ (resp.Φ−) the setΦ∩(N𝛼0+N𝛼1)
(resp −Φ+). For 𝑘 ∈ Z and 𝑦 ∈ K , we set 𝑥 �̊�+𝑘 𝛿 (𝑦) =

((
1 𝑢𝑘 𝑦
0 1

)
, 1

)
∈ 𝐺 and 𝑥− �̊�+𝑘 𝛿 (𝑦) =((

1 0
𝑢𝑘 𝑦 1

)
, 1

)
∈ 𝐺.

Let 𝑓 , 𝑔 ∈ K be such that𝜔( 𝑓 ) = 𝜔(𝑔) = 0. Let ℓ, 𝑛 ∈ Z. Then
((

𝑓 𝜛ℓ 0
0 𝑓 −1𝜛−ℓ

)
, 𝑔𝜛𝑛

)
acts on A by the translation of vector −ℓ�̊�∨ − 𝑛𝑑. For 𝜇 = ℓ�̊�∨ + 𝑛𝑑 ∈ 𝑌 , we set
𝑡𝜇 =

((
𝜛−ℓ 0

0 𝜛ℓ

)
, 𝜛−𝑛

)
, which acts by the translation of vector 𝜇 onA. We set𝜆 = �̊�∨+3𝑑.

We have 𝛼0 (𝜆) = 1, 𝛼1 (𝜆) = 2 and thus 𝜆 ∈ 𝐶𝑣
𝑓
.

By [30, 4.12 3 b],𝑈 𝑝𝑚+
0 =

((
1+𝑢O[𝑢] O[𝑢]
𝑢O[𝑢] 1+𝑢O[𝑢]

)
, 1

)
∩ 𝐺 and similarly

𝑈𝑛𝑚−
0 =

((
1 + 𝑢−1O[𝑢−1] 𝑢−1O[𝑢−1]

O[𝑢−1] 1 + 𝑢−1O[𝑢−1]

)
, 1

)
∩ 𝐺.

We make the following assumption:

∀ 𝑛 ∈ N∗, ker 𝜋𝑛 ⊂
(
1 +𝜛𝑛O[𝑢, 𝑢−1] 1 +𝜛𝑛O[𝑢, 𝑢−1]
1 +𝜛𝑛O[𝑢, 𝑢−1] 1 +𝜛𝑛O[𝑢, 𝑢−1]

)
⋊ (1 +𝜛𝑛O). (5.4)

If for any 𝑛 ∈ N∗, we have 𝔊(O/𝜛𝑛O) ≃
(
(O/𝜛𝑛O) [𝑢,𝑢−1 ] (O/𝜛𝑛O) [𝑢,𝑢−1 ]
(O/𝜛𝑛O) [𝑢,𝑢−1 ] (O/𝜛𝑛O) [𝑢,𝑢−1 ]

)
⋊

(O/𝜛𝑛O)× and 𝜋𝑛 is the canonical projection, then the assumption is satisfied. However
we do not know if it is true. In [24, 7.6], 𝔊 is described only on fields and in [23, 13],
only on C.

For 𝑛 ∈ N∗, we set 𝐻𝑛 = ker(𝜋𝑛) ∩
((

O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ] O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ]
O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ] O[ (𝜛𝑢)𝑛 , (𝜛𝑢−1 )𝑛 ]

)
,K∗

)
.

Proposition 5.14. If (5.4) is true, then the filtrations (𝐻𝑛)𝑛∈N∗ and (V𝑛𝜆)𝑛∈N∗ are
equivalent.

Proof. Let 𝑛 ∈ N∗. By Lemma 2.4, we have𝑈 𝑝𝑚+
[−𝑛𝜆,𝑛𝜆] = 𝑈

𝑝𝑚+
−𝑛𝜆 = 𝑡−𝑛𝜆𝑈

𝑝𝑚+
0 𝑡𝑛𝜆. We have

𝑡𝑛𝜆 = 𝑡𝑛�̊�∨ 𝑡3𝑛𝑑 . We have

𝑡−3𝑛𝑑𝑈
𝑝𝑚+
0 𝑡3𝑛𝑑 ⊂

(
1 + (𝜛3𝑛𝑢)O[𝜛3𝑛𝑢] O[𝜛3𝑛𝑢]
(𝜛3𝑛𝑢)O[𝜛3𝑛𝑢] 1 + (𝜛3𝑛𝑢)O[𝜛3𝑛𝑢]

)
⋉ {1}.
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We have

𝑡−𝑛�̊�∨

((
1 +𝜛3𝑛𝑢O[𝜛3𝑛𝑢] O[𝜛3𝑛𝑢]
(𝜛3𝑛𝑢)O[𝜛3𝑛𝑢] 1 +𝜛3𝑛𝑢O[𝜛3𝑛𝑢]

)
⋉ {1}

)
𝑡𝑛�̊�∨

⊂
((

1 +𝜛3𝑛𝑢O[𝜛3𝑛𝑢] 𝜛2𝑛O[𝜛3𝑛𝑢]
𝜛−2𝑛 (𝜛3𝑛𝑢)O[𝜛3𝑛𝑢] 1 +𝜛3𝑛𝑢O[𝜛3𝑛𝑢]

)
⋉ {1}

)
⊂

((
1 + (𝜛𝑛𝑢)O[𝜛𝑛𝑢] O[𝜛𝑛𝑢]
𝜛𝑛𝑢O[𝜛𝑛𝑢] 1 +𝜛𝑛𝑢O[𝜛𝑛𝑢]

)
⋉ {1}

)
⊂ SL2 (O[𝜛𝑛𝑢]) ⋉ {1} ⊂ SL2 (O[𝜛𝑛𝑢, 𝜛𝑛𝑢−1]) ⋉ {1}.

Similarly,𝑈𝑛𝑚−
[−𝑛𝜆,𝑛𝜆] ⊂ SL2 (O[𝜛𝑛𝑢, 𝜛𝑛𝑢−1]) ⋉ {1}.

As 𝑇2𝑛 ⊂ SL2 (O[𝜛𝑛𝑢, 𝜛𝑛𝑢]) ⋉ {1 + 𝜛𝑛O}, we deduce V𝑛𝜆 ⊂ 𝐻𝑛, since V𝑛𝜆 ⊂
ker(𝜋𝑛).

Now let 𝑀 ∈ SL2 (O[𝜛2𝑛𝑢, 𝜛2𝑛𝑢−1]) ∩ ker(𝜋2𝑛) and 𝑎 ∈ K∗. Using (5.4), we write

𝑀 =

(
1 + 𝑎0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑎𝑖𝜛

2𝑛 |𝑖 |𝑢𝑖 𝑏0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑎𝑖𝜛
2𝑛 |𝑖 |𝑢𝑖

𝑐0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑐𝑖𝜛
2𝑛 |𝑖 |𝑢𝑖 1 + 𝑑0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑑𝑖𝜛

2𝑛 |𝑖 |𝑢𝑖

)
,

with 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ∈ O, for all 𝑖. Then

𝑡−𝑛𝑑 (𝑀, 𝑎)𝑡𝑛𝑑

=

((
1 + 𝑎0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑎𝑖𝜛

𝑛(2 |𝑖 |−𝑖)𝑢𝑖 𝑏0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑎𝑖𝜛
𝑛(2 |𝑖 |−𝑖)𝑢𝑖

𝑐0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑐𝑖𝜛
𝑛(2 |𝑖 |−𝑖)𝑢𝑖 1 + 𝑑0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑑𝑖𝜛

𝑛(2 |𝑖 |−𝑖)𝑢𝑖

)
, 𝑎

)
.

Therefore
𝑡−𝑛�̊�∨−𝑛𝑑 (𝑀, 𝑎)𝑡𝑛( �̊�∨+𝑑)

=

((
1 + 𝑎0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑎𝑖𝜛

𝑛(2 |𝑖 |−𝑖)𝑢𝑖 𝜛2𝑛 (𝑏0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑎𝑖𝜛
𝑛(2 |𝑖 |−𝑖)𝑢𝑖)

𝜛−2𝑛 (
𝑐0𝜛

2𝑛 + ∑
|𝑖 | ≥1 𝑐𝑖𝜛

𝑛(2 |𝑖 |−𝑖)𝑢𝑖
)

1 + 𝑑0𝜛
2𝑛 + ∑

|𝑖 | ≥1 𝑑𝑖𝜛
𝑛(2 |𝑖 |−𝑖)𝑢𝑖

)
, 𝑎

)
∈ SL2 (O[𝑢, 𝑢−1]) ⋉ O∗.

By [3, Lemma 6.11], 𝐻2𝑛 fixes 𝑛𝜆′, where 𝜆′ = �̊�∨ + 𝑑. Similarly, it fixes −𝑛𝜆′. There-
fore 𝐻2𝑛 ⊂ 𝐺 [−𝑛𝜆′ ,𝑛𝜆′ ] ∩ ker 𝜋2𝑛. We have 𝐺 [−𝑛𝜆′ ,𝑛𝜆′ ] = 𝑈

𝑝𝑚+
[−𝑛𝜆′ ,𝑛𝜆′ ] .𝑈

𝑛𝑚−
[−𝑛𝜆′ ,𝑛𝜆′ ] .𝔗(O),

by (2.8). Using the inclusion ⟨𝑈 𝑝𝑚+
[−𝑛𝜆′ ,𝑛𝜆′ ] ,𝑈

𝑛𝑚−
[−𝑛𝜆′ ,𝑛𝜆′ ]⟩ ⊂ ker 𝜋𝑛, we deduce that

𝐺 [−𝑛𝜆′ ,𝑛𝜆′ ] ∩ ker 𝜋𝑛 ⊂ V𝑛𝜆′ . As (V𝑚𝜆) and (V𝑚𝜆′ ) are equivalent, we deduce that
(𝐻𝑚) and (V𝑛𝜆) are equivalent. □
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