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Topologies on split Kac-Moody groups over valued fields

AucusTE HEBERT

Abstract

Let G be a minimal split Kac-Moody group over a valued field K. Motivated by the representation
theory of G, we define two topologies of topological group on G, which take into account the topology
on K.

Topologies sur les groupes de Kac—Moody déployés sur les corps valués
Résumé

Soit G un groupe de Kac—-Moody déployé sur un corps local K. Motivés par la théorie des
représentation de G, nous introduisons deux topologies de groupe topologique sur G.

1. Introduction

1.1. Motivation from representation theory

Let G be areductive group over a nonArchimedean local field K. As G is finite dimensional
over K, G is naturally equipped with a topological group structure. Its admits a basis
of neighbourhood of the identity consisting of open compact subgroups. A complex
representation V of G is called smooth if for every v € V, the fixator of v in G is open.
To every compact open subgroup K of G is associated a Hecke algebra Hg, which is
the space of K-bi-invariant functions from G to C which have compact support. Let V
be a smooth representation of G. Then the space of K-invariant vectors VX is naturally
equipped with the structure of an Hx-module, and we can prove that this assignment
induces a bijection between the irreducible smooth representations of G admitting a non
zero K-invariant vector and the irreducible representations of Hx.

Kac—Moody groups are infinite dimensional generalizations of reductive groups. For
example, if Gisa split reductive group and ¥ is a field, then the associated affine Kac—
Moody group is a central extension of (?)(T [u,u~']) = F*, where u is an indeterminate.
Let now G = G(K) be a split Kac-Moody group over K. Recently, Hecke algebras
were associated to G. In [5] and [11], Braverman and Kazhdan (in the affine case) and
Gaussent and Rousseau (in the general case) associated a spherical Hecke algebra
to G, i.e. an algebra associated to the spherical subgroup ®(0) of G, where O is the
ring of integers of . In [6] and [2], Braverman, Kazhdan and Patnaik and Bardy-Panse,
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A. Hébert

Gaussent and Rousseau defined the Iwahori—-Hecke algebra H; of G (associated to
the Iwahori subgroup K; of G). In [1], together with Abdellatif, we associated Hecke
algebras to certain parahoric subgroups of G, which generalizes the construction of the
Iwahori—Hecke algebra of G. In [17], [20] and [19], we associated and studied principal
series representations of Hj.

For the moment, there is no link between the representations of G and the representations
of its Hecke algebras. It seems natural to try to attach an irreducible representation of G
to each irreducible representation of H;. A more modest task would be to associate to
each principal series representation I of H; a principal series representation /(7) of G,
which is irreducible when I is.

Let T be a maximal split torus of G and Y be the cocharacter lattice of (G, T). Let B be
a Borel subgroup of G containing 7. Let Tz = Homg, (Y, C*) and 7 € T¢. Then 7 can be
extended to a character 7 : B — C*. Assume that G is reductive. Then the principal series
representation I(7) of G is the induction of 76'/% from B to G, where § : B — R} is the
modulus character of B. More explicitly, this is the space of locally constant functions
f : G — C such that f(bg) = 76'%(b) f(g) for every g € G and b € B. Then G acts
on I(7) by right translation. Then I, := I(7)X7 is a representation of ;. Assume now
that G is a Kac—-Moody group. Then we do not know what “locally constant” mean, but
we can define the representation I("r\) of G as the set of functions f : G — C such that
f(bg) =16"%(b)f(g) forevery g € G and b € B. Let I be a topology of topological
group on G such that Kj is open. Then

I(T)g, ={f € IT?) | f is locally constant for I} (1.1

—K
is a subrepresentation of G containing /(7) " Thus if we look for an irreducible

—K
representation containing /(7) " it is natural to search it inside (1) g - Moreover, the
more Jg is coarse, the smaller /(7)g,, is. We thus look for the coarsest topology of
topological group on G for which Ky is open.

1.2. Topology on G, masure and main results

We now assume that K is any field equipped with a valuation w : K — R U {+o0} such
that w(K*) D Z. We no longer assume K to be local, and w(%™) can be dense in R.
Let O be its ring of integers. Let ® be a split Kac-Moody group (a la Tits, as defined
in [31]) and G = G(K). In [10] and [30], Gaussent and Rousseau associated to G a kind
of Bruhat-Tits building, called a masure, on which G acts (when G is reductive, 7 is
the usual Bruhat-Tits building). They defined the spherical subgroup K as the fixator
of some vertex 0 in the masure (we prove in Proposition 3.1 that K; = G™"(0), where
™" is the minimal Kac-Moody group defined by Marquis in [24]). They also define the
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Topologies on Kac—Moody groups

Iwahori subgroup K as the fixator of some alcove C;; of I'. Then we define the topology
Irix on G as follows. A subset V of G is open if for every g € V, there exists a finite
subset F of I such that Gr.g C V, where GF is the fixator of F in G. Then we prove
that Jgix is the coarsest topology of topological group on G for which Kj is open (see
Proposition 4.14). However, it is not Hausdorff in general. Indeed, let Z C T be the center
of G and Zp = Z N T(0). Then Zp is the fixator of 7 in G and when Z is nontrivial
(which already happens for SL;(K)), Jix is not Hausdorff.

To address this issue, we define an other topology, 7, finer than Jgix and HausdorfF. Let
A =Y ®R be the standard apartment of 7 and ® c A* be the set of roots of (G, T). Then
I = Ugeg g-A. Let us begin with the case where G = SL,(K). Let @ € O be such that
w(w) = 1.Forn € N*, let r,, : SLy(O) — SL;(O/w@"O) be the natural projection. Then
a basis of the neighbourhood of the identity is given by the (ker 7,,),en+. Let Ut = ((1) 1)
andU™ = (! ?).Then one can prove thatker ,, = (UTNker 71,,).(U~ Nker ). (TNker 71,).
Let @, —a be the two roots of (G,T). Letxy : a + (}9) andx_4 : a +— (1 9). Then
Xo(@"0) fixes {a € A | a(a) = —n} and x_,(@"0) fixes {a € A | a(a) < n}.
Therefore if A € A is such that @(1) = 1 and [-nA,nd] = o' ([-n, n]), we have

ker 7, = (U* NFixg ([-n4,na])) . (U™ NFixg([-nd,na])) .(T Nkern,).

We now return to the general case for G. We prove that the topology associated to
(ker ;) nen+ 18 not a topology of topological group if G is not reductive (see Lemma 3.3).
Let (@;);es be the set of simple roots of (G,T) and Cj‘; ={xeA|a(x)>0,Viel}
Let WY be the Weyl group of (G,T) and A € Y N | |, ewv w.C;. We define the following
subset V,,4 of G, for n € N*:

Vua = (U nFixg([-nA,na])) . (U™ NFixg([-nd,na])) (T Nker man (),
where N (1) = min{|a(2)| | @ € @, }. We prove the following theorem:

Theorem 1.1 (see Theorem 4.8, Lemma 4.2, Proposition 4.21 and Proposition 5.13).
(1) Forn e N*and A € Y N0 | ,yewv w.CY, Vyp is a subgroup of G™"(0).

(2) The topology T associated with (Vy )nen is Hausdorff, independent of the
choice of A and equips G with the structure of a topological group.

(3) The topology T is finer than Jrix and if K is Henselian, we have I = TJrix if
and only if Zp = {1}.

(4) Every compact subset of G has empty interior (for ).
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Note that I and Jg;x induce the same topologies on U* and U~. The main difference
comes from what happens in 7. As the elements of I(7)g and I(7)g;,, are left T(O)-
invariant, these two spaces are actually equal (see Remark 4.22).

In [14], based on works of Kac and Peterson on the topology of ®(C), Hartnick, K&hl
and Mars defined a Kac—Peterson topology on ® (), for any local field ¥ (Archimedean
or not). Assume that K is local and let Tk p be the Kac—Peterson topology on G. We prove
that when G is not reductive, then I is strictly coarser than Ik p (see Proposition 5.4)
and thus ~ seems more adapted for our purpose.

Assume that ® is affine SL, (with a nonfree set of simple coroots). Then G =

SL, (K [u, u='])=%*. Up to the assumption that ker 7, C (Hwno[”’”il] @" Oluu] )><1

@"Olu,u~'] 1+@"Olu,u"']
(1 +@"0), for n € N*, we prove that the topology I on G is associated to the filtration

(Hnese where Hy = ker(m) 0 {( G170 G (o ) )

The paper is organized as follows. In Section 2, we define Kac—Moody groups (as
defined by Tits, Mathieu and Marquis) and the masures.

In Section 3, we define and study the subgroups ker 7, of G™"(0).

In Section 4, we define the topologies J and i, and compare them.

In Section 5, we study the properties of I and Jgix: we prove that Tk p is strictly
finer than I, we describe the topology in the case of affine SL,, and we prove that usual

subgroups of G (i.e. T, N, B, etc.) are closed for 7.
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2. Kac-Moody groups and masures

In this section, we define Kac—-Moody groups and masures. Let K be a field. There are
several possible definitions of Kac-Moody groups and we are interested in the minimal one
® (%K), as defined by Tits in [31]. However, because of the lack of commutation relations
in ® (%K), it is convenient to embed it in its Mathieu’s positive and negative completions
®PM(K) and "™ (K). Then one define certain subgroups of ®(K) as the intersection
of a subgroup of ®P™?(K) and & (K). For example if ® is affine SL, (with a nonfree set
of simple roots and coroots), then & (%K) = SLy(K[u, u~']), GP™(K) = SLy (K (1))
and 6" (K) = SLy (K((u™1)).
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Topologies on Kac—Moody groups

As we want to define congruence subgroups in our framework, we also need to work
with Kac—Moody groups over rings: if K is equipped with a valuation w and @ is such that
w(w@) = 1, then we want to define kerw,, € ®(0), where 7,, : (0) —» G(0O/w"0)
is the natural projection. The functor defined by Tits in [31] goes from the category of
rings to the category of groups. However the fact that it satisfies the axioms defined
by Tits is proved only for fields (see [31, 3.9 Theorem 1]) and we do not know if it is
“well-behaved” on rings, so we will consider it only as a functor from the category of
fields to the category of groups. In [24, 8.8], Marquis introduces a functor G™" which
goes from the category of rings to the category of groups and he proves that it has nice
properties (see [24, Proposition 8.128]), especially on Bézout domains. We will use its
functor G™". We have G™"(F) ~ G(F) for any field . This functor is defined as a
subfunctor of ®P™?  so we first define Tits’s functor, then Mathieu’s functors and then
Marquis’s functor.

2.1. Standard apartment of a masure
2.1.1. Root generating system

A Kac—Moody matrix (or generalized Cartan matrix) is a square matrix A = (a; ;)i jer
indexed by a finite set I, with integral coefficients, and such that :

(1) Viel, aii = 2;
(i) V (i, /) € P, (i # j) = (ai,; < 0);
(i) V (i,j) € I%, (a;; =0) & (a;; =0).

A root generating system is a 5-tuple S = (A, X,Y, (@)ier, (@, )icr) made of a Kac—
Moody matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite
rank, and of a family (;);es (respectively (;)icr) of elements in X (resp. Y) called
simple roots (resp. simple coroots) that satisfy a; ; = a () for all i, j in I. Elements of
X (respectively of Y) are called characters (resp. cocharacters).

Fix such a root generating system S = (A, X, Y, (@;)ier, (aiv),-el) andset A ==Y ® R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the
dual A*. In particular, the @;’s (with i € I) will be seen as linear forms on A. This allows
us to define, for any i € I, a simple reflection r; of A by setting r;.v := v — a;(v)a,’ for
any v € A. One defines the Weyl group of S as the subgroup W" of GL(A) generated by
{r; | i € I}. The pair (WY, {r; | i € I}) is a Coxeter system, hence we can consider the
length €(w) with respect to {r; | i € I} of any element w of W".
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The following formula defines an action of the Weyl group W" on A*:
VxeAweW aehA, (wa)x):=aw'x).

Let® := {w.q; | (w,i) € WYxI} (resp. ®" = {w.a} | (w,i) € WY xI})be the set of real
roots (resp. real coroots): then @ (resp. @) is a subset of the root lattice Q := @i e1 La;
(resp. coroot lattice Q¥ = P, Za;). By [23, 1.2.2(2)], one has ReV N @Y = {xa"}
and Ra N ® = {+a} for all ¥ € ®¥ and « € ©.

We define the height ht : Q — Z by ht(Y;c; nia;) = ;e ni, for (n;) € Z7.

2.1.2. Vectorial apartment

As in the reductive case, define the fundamental chamber as CJZ ={veA|Vie
I, a;(v) > 0}.

Let 7 = Upewr w.C_}i be the Tits cone. This is a convex cone (see [23, 1.4]).

ForJcl,set F'(J)={x€eAla;jx)=0,VjeJanda;(x) >0,V jel\J} A
positive vectorial face (resp. negative) is a set of the form w.F" (J) (—w.F" (J)) for some
w € WY and J c I. Then by [26, 5.1 Théoreme (ii)], the family of positive vectorial faces
of A is a partition of 7~ and the stabilizer of F¥(J) is W; = (J).

Onesets Y** =Y N C_j‘ﬁ and Y* =Y N 7. An element of Y™ is called regular if it does
not belong to any wall, i.e. if it belongs to | |,,cwv W.C;.

Remark 2.1. By [21, Section 4.9] and [21, Section 5.8] the following conditions are
equivalent:

(1) the Kac—-Moody matrix A is of finite type (i.e. is a Cartan matrix),
2) A=T

(3) WV is finite.

2.2. Split Kac—-Moody groups over fields
2.2.1. Minimal Kac—Moody groups over fields

Let ® = G s be the group functor associated in [31] with the root generating system S,
see also [26, 8]. Let K be a field. Let G = G(K) be the split Kac—Moody group over K
associated with S. The group G is generated by the following subgroups:

o the fundamental torus 7 = T(K), where T = Spec(Z[X]),

e the root subgroups U, = U, (K), for @ € ®, each isomorphic to (K, +) by an
isomorphism x .
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Topologies on Kac—Moody groups

The groups X and Y correspond to the character lattice Hom(¥, G,,,) and cocharacter
lattice Hom(G,,,, T) of T respectively. One writes U* the subgroup of & generated by
the U, for @ € ®* and U* = U*(K).

By a simple computation in SL;, we have for @ € ® and a, b € K such that ab # —1:

X_a(b)xe(a) = xq(a(l+ab) ™ Ha" (1 +ab)x_q(b(1+ab)™)

2.1
=xq(a(l +ab) "x_o(b(1 +ab))a" (1 +ab),

where @V =w.e) if @ = w.a;, fori € Tandw € W".
Let 9 be the group functor on rings such that if &’ is a ring, | (X’) is the subgroup
of &(%’) generated by T(X’) and the 7;, for i € I, where

7i = Xa; (1)x-a, (=D)xg, (1). (2.2)

Then if %’ is a field with at least 4 elements, J(%£’) is the normalizer of T(A’) in
6&(R).

Let N = 9t(K) and Aut(A) be the group of affine automorphisms of A. Then by [28,
1.4 Lemme], there exists a group morphism v¥ : N — GL(A) such that:

(1) fori € I, v¥(r;) is the simple reflection r; € WY,
2) kerv¥ =T.

The aim of the next two subsubsections is to define Mathieu’s Kac—Moody group. This
group is defined by assembling three ingredients: the group UP™?, which corresponds to a
maximal positive unipotent subgroup of ®P™?, the torus I and copies of SL,, one for
each simple root a;, i € 1.

2.2.2. The affine group scheme [P™*

In this subsubsection, we define UP™. Let g be the Kac—Moody Lie algebra over C
associated with S (see [23, 1.2]) and Uc(g) be its enveloping algebra. The group UP™?(C),
will be defined as a subgroup of a completion of Uc(g). As we want to define UP™4(R),
for any ring %, we will also consider Z-forms of g and Uc(g).

The Lie algebra g decomposes as g = @ae A 8a> Where A C Q is the set of roots and
g 1S the proper space associated with «, for @ € A (see [23, 1.2]). Wehave A = A, LIA_,
where Ay = ANQ,and A_ = —A,. We have ® C A. The elements of ® = A, are called
real roots and the elements of A;;,, = A\ @ are called imaginary roots.

Following [31, 4] one defines U as the Z-subalgebra of Uc(g) generated by
e§") = i—'n, fl.(") = %, (Z), fori € I and h € Y (where the ¢;, f; are the genera-
tors of g, see [23, 1.1]). This is a Z-form of Uc(g). The algebra Uc(g) decomposes as
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Uc(g) = P ,e 0 Uc(g) o Where we use the standard Q-graduation on Uc(g) induced
by the Q-graduation of g (for i € I, deg(e;) = a;, deg(f;) = —a;, deg(h) =0,forh €Y,
deg(xy) = deg(x) + deg(y) for all x,y € Uc(g) which can be written as a product of
nonzero elements of g). For @ € Q, one sets Uy, = Uc(g)o N U and Uy = Uy @ R.

For a ring &, we set Uy = U ®7 K. One sets U+ = [laco, Uo and ‘L’l; =
[Teeo, Ua - This is the completion of U* with respect to the Q,-gradation.

If (ua) € [oeo, Ua.o, We write 3 o, Uo the corresponding element of ’L’Z% A
sequence (X 4e0, uﬁ,") )nel converges in Ug if and only if for every @ € A,, the sequence
(ug’))neN is stationary.

Let (E, <) be a totally ordered set. Let (u(¢)) € ((E{@)E. For e € E, write u =

2aco, uif), with ugf) € Uy z, for @ € Q.. We assume that for every @ € Q,,

{e € E | ugf) # 0} is finite. Then one sets [[,cx ule) = 2aco, Uas Where

Ug = Z Z ug‘) ... u’;ik) € Uy 2,

Byl (€1 k) CE-
Biv- i

for @ € A;. This is well-defined since in the sum defining u,, only finitely many nonzero
terms appear.
Let A =P, o, Uz, where U, denotes the dual of U, (as a Z-module). We have

a natural #-modules isomorphism between (LIA;Z and Homz i, (A, R), for any ring %
(see [24, (8.26)]) and we now identify these two spaces. The algebra A is equipped with
a Hopf algebra structure (see [24, Definition 8.42]). This additional structure equips

UPPY(R) := Homz alg (A, R)

with the structure of a group (see [24, Appendix A.2.2]). Otherwise said, A is the
representing algebra of the (infinite dimensional in general) affine group scheme UP™ :
Z-Alg — Grp.

Let @ € AU {0} and x € g4.z. An exponential sequence for x is a sequence (x!"1), ey
of elements of U such that x[%! = 1, x!!] = x and x["! € U,,, forn € Z> and satisfying
the conditions of [24, Definition 8.45]. By [30, Proposition 2.7] or [24, Proposition 8.50],
such a sequence exists. Note that it is not unique in general. However, if @ € ®,, the
unique exponential sequence for x is (x!™), ey = (%x") by [30, 2.9 2)] (this sequence is
often denoted (x<”) )nen in the literature).

For r € &, one then sets

[exp](rx) =: Z M erme (L/igy
neN

This is the rwisted exponential of rx associated with the sequence (x["1),,cp.
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We fix for every a € A, a Z-basis B, of §o,z := 8o NU. Set B = yep, Bo- We fix
an order on each 8, and on A,. Let @ € A,. One defines X, : §¢,z ® X — UPT(R)
by Xo(Xxeg, Ax-X) = [lres, [expldx.x, for (1) € %8> When a € ®,, we have
Ga.z = Ze o, Where e, is defined in [24, Remark 7.6]. One sets x,(r) = [exp](req), for
r € R.0ne has Xo(80,2z ® R) = xo(R) = Uy(R). By [24, Theorem 8.5.1], every
g € UPM(R) can be written in a unique way as a product

g=| ] Xa(ea), 2.3)
aeA;
where cy € go.z ® R, for @ € A, where the product is taken in the given order on A..
Let W c A.. We say that W is closed if for all o, 5 € ¥, for all p,q € N*, pa+qf € Ay
implies pa + gB € Y. Let ¥ C A, be a closed subset. One sets

WM (R) = [ | Xa(8oz® ) C W™ (R).
ae¥
This is a subgroup of UP™?, which does not depend on the chosen order on A, (for the
product). This is not the definition given in [30] or [24, p. 210], but it is equivalent by [24,
Theorem 8.51].

2.2.3. Mathieu’s group GP™?

The Borel subgroup (it will be a subgroup of ®P™) is B = B = T s < UP™ where T
acts on UP™ as follows. Let % be aring, @ € Ay, t € T(R),r € X and x € 4.2,

tlexp] (rx)t~! = [exp](a(t)rx). 2.4)

In particular, if @ € ®, we have
txo (Nt = xq(a(t)r).

Fori e I, let 111;_ be the reductive group associated with the root generating system
((2), XY, a;, oziv). For each i € I, Mathieu defines an (infinite dimensional) affine group
scheme PB; = II{,L_ [ uz’f\ () (see [24, Definition 8.65] for the definition of the action
of U_,, on IIT:’ o ), where U _,,, is an affine group scheme over Z isomorphic to G,
(see [24, 7.4.3] for more details).

We do not detail the definition of ®P™? and we refer to [25], [24, 8.7] or [30, 3.6]. This
is an ind-group scheme containing the 9B; for every i € 1. Let w € W" and write w =
iy .. .7, Withk = €(w) andiy, ..., ix € I. Then the multiplication map PB;, x- - -xPB;, —
®P™ is a scheme morphism, and we have OP™(R) = U, i )ered(wr) Biy (R) X
<o X Py (R), where Red(WY) is the set of reduced words of WY (i.e. Red(WV) =

{G1y.in) € 10D [ €(ry, .. 1) = kD).
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Letw € WY, i € I and @ = w.a;. One sets U, = w. 0, .w~ !, where
I 2.5)

if w=r; ...r; is areduced decomposition of w. There is an isomorphism of group
schemes x, : G, — U, (see [24, p. 262]). The group GP™? is generated by the B;, i € 1.
Moreover, if i € I, then P; is generated by T, U ,, and 7; = xq, (1)x_q, (1)x4,(1). Thus
®P™ is generated by UP™, T, U _,,, and the 7;, for i € I and thus we have:

GPM = (UP™ T W, a € D). (2.6)

There is a group functor morphism ¢ : ® — ®P™ such that for any ring %, 1% maps
xq(r)toxq(r)andttot, forecach o € @, r € R, t € T(X). When X is a field, this
morphism is injective (see [30, 3.12] or [24, Proposition 8.117]).

Proposition 2.2. Let # and &' be two rings and ¢ : R — R’ be a ring morphism.
Let f;w C U, — UG, and fou 2 OPTH(R) — GP(R') be the induced morphisms.

Then f, T(uPma( ) c UP™(R’) and we have:

(1) Forevery (ry) € %%,

e (ﬂ [exp](rxx>) = [ texpl (o).

xeB xeB

(2) Fora € A, and (1) € %%, we have

Z Axx

XEBy

ftp Xa =Xy

» wx)x).

x€By

(3) We have f,(u) = f?(u)foru € UPM(R), fo(xa(r)) = xa(p(r)), fora € ®
andr € R, and f,(x(r)) = x(@(r)), for y €Y andr € F*.

(4) If ¢ is surjective, then f, is surjective.

Proof.
(1), (2). By definition, we have

f‘ZIP(Z Zua,]‘@?‘j

@eQ* jel,

= Z Z u(,,j®ga(rj)

@eQ* jely

if J, is a finite set and (r;) € R and Uq,j € Uy g, forevery a € Q. Thus ¢ commutes
with infinite sums and product, which proves (1) and (2).
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(3). Leti € I. Then the morphism B; (R) — B, (R’) induced by ¢ satisfies the formula
above. Using the fact that x, = wx_q,w !, for @ = —w.a;, withw € W, i € [ and w
defined as in (2.5), we have (3).

(4). Assume ¢ is surjective. By (2.3) and (1), the restriction of f, to UP™#(2) is surjective.
By (3), the restriction of f, (U~ (X)) = U~ (X’) and f,(T(R)) = T(X'). We conclude
by using the fact that GP™? is generated by UP™?, U~ and T (see (2.6)). O

2.2.4. Minimal Kac-Moody group over rings

For i € I, there is a natural group morphism ¢; : SL, — llfli.
For a ring &, one sets

G R) = (¢i (SLa(R) , T(R)) € ™ (R).

This group is introduced by Marquis in [24, Definition 8.126]. By [24, Proposition 8.129],
it is a nondegenerate Tits functor in the sense of [24, Definition 7.83] and we have
G (R) ~ G(R), for any field &.

Note that if ¢ is a ring morphism between two rings & and &%’, the induced morphism
GPM(R) — GPM(R’) restricts to a morphism G™"(RF) — G™N(R’).

Let £ be a semilocal ring, i.e. a ring with finitely many maximal ideals, then by [13,
4.3.9 Theorem], SL, (%) is generated by (%) and ( L, ). Therefore,

6™ (R) = Wig, (R), T(R) | i € T) C GP™(R). 2.7

2.3. Split Kac-Moody groups over valued fields and masures

We now fix a field K equipped with a valuation w : K — RU{+00} such that A := w(K*)
contains Z. Let O = {x € K | w(x) > 0} be its ring of valuation. We defined Mathieu’s
positive completion ®P™. Replacing A, by w.A,, for w € WV, one can also define a
group ®P"4W_ Replacing A, by A_ or by w.A_, for w € WY, one can also define "™
or (ﬁnma,w.

We set G = G(K), GP™ = GP™(K) and G"™* = G""(K).

2.3.1. Action of N on A

Let N = 9t(K) and Aut(A) be the group of affine automorphism of A. Then by [30, 4.2],
there exists a group morphism v : N — Aut(A) such that:

(1) fori € I, v(7;) is the simple reflection r; € WV, it fixes 0,
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(2) for t € T(K), v(r) is the translation on A by the vector v(¢) defined by
x(v(1) = —w(x (1)), for all y € X.

(3) wehave v(N) = WV x (Y @ A) := Wh.

2.3.2. Affine apartment

Alocal face in A is the germ F(x, FV) = germ  (x+ F") where x € A and F" is a vectorial
face (i.e., F(x, F") is the filter of all neighbourhoods of x in x + F"). It is a local panel,
positive, or negative if F" is. If F¥ is a chamber, we call F(x, F") an alcove (or a local
chamber). We denote by C; the fundamental alcove, i.e., Cj = germO(C;).

A sector in A is a subset q = x + C", for x a point in A and C" a vectorial chamber. Its
sector germ (at infinity) is the filter Q = germ, (q) of subsets of A containing another
sector x + y + CV, with y € C". It is entirely determined by its direction C". This sector
or sector germ is said positive (resp. negative) if C" has this property. We denote by +co
the germ at infinity of +C ;

Fora € Aand k € AU {+o0}, we set D(a, k) = {x € A | a(x) + k > 0}. A set of the
form D(a, k), for @ € A and k € A is called a half-apartment.

2.3.3. Parahoric subgroups

In [10] and [30], the masure J of G is constructed as follows. To each x € A is associated
a group Py = Gy. Then T is defined in such a way that G, is the fixator of x in G for
the action on 7. We actually associate to each filter 2 on A a subgroup Go € G (with
G(xy = Gy forx € A). Even though the masure is not yet defined, we use the terminology
“fixator” to speak of G, as this will be the fixator of Q in G. The definition of G involves
the completed groups GP™ and G™™?.

If Q is a non empty subset of A we sometimes regard it as a filter on A by identifying
it with the filter consisting of the subsets of A containing Q. Let Q C A be a non empty
set or filter. One defines a function fgo : A — R by

fola)=inf{r e R| Qc D(a+r)} =inf{r e R | a(Q) +r c [0, +o0][},

for@ € A.Forr € R, one sets Ky»r = {x € K|w(x) = r}, Kp=r = {x € K|w(x) =r}.
If Q is a set, we define the subgroup UD™ = [14en, Xa (80,2 ® Kuz fo(a)) € GP™.
Actually, for @ € ®* = AY,, X0 (80,2 ® szfg(a)) = xa((Ka,ng(a)) =: Uq,q. We then
define
ubm =ui™nG =U" nUY,
see [30, 4.5.2, 4.5.3 and 4.5.7]. When Q is a filter, we set UD™ = Ugseq Uy and

utmt =0t nG
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We may also consider the negative completion G™? = "™ (K) of G, and define
the subgroup UJ“™ = [[4en Xa(8a.z ® K> fo(a)) Fora € @7 = AL, Xo(8a,z ®
szfﬂ((,)) = xa(‘szfﬂ((,)) =:Uq,0. We then define Ugm_ = Ugm_ NG = Ugm_ nU™.

Let W be a closed subset of A,. One sets U™ (¥) = U™ (K) N US™ . By the
uniqueness in the decomposition of the elements of UP™ as a product, every element
of U™ (W) belongs t0 [Tyey Xao(Kuws fo(a))- If ¥ is a closed subset of A, one sets
Ug" (W) = W™ (K) N UG™ ™. Note that US"” = Ugm(A+) and Ug"™ = UZ"(A-).

Let Q be a filter on A. We denote by N the fixator of Q in N (for the action of N on
A). If Q is not a set, we have Ng = (Jgeq Ns. Note that we drop the hats used in [30].
When Q is open one has Ng = Ny = T(0) := T(Ku>0) = T(Kw=0)-

If x € A, we set G, = UY™ .U~ N,. This is a subgroup of G. If Q C A is a set,
we set Go = (\req Gx and if Q is a filter, we set Gq = | Jseq Gs- Note that in [30], the
definition of G is much more complicated (see [30, Définition 4.13]). However it is
equivalent to this one by [30, Proposition 4.14].

A filter is said to have a “good fixator” if it satisfies [30, Définition 5.3]. There are
many examples of filters with good fixators (see [30, 5.7]): points, local faces, sectors,
sector germs, A, walls, half apartments. . . . For such a filter Q, we have:

Gq =UL" . UY"™ Ng = US"™ U™ Na. (2.8)

We then have:

UL™ =GonU"and Ug" =GanU™, (2.9)
asU” NU*.N=U*n N = {1}, by [30, Remarque 3.17] and [26, 1.2.1(RT3)].

When Q = Cj = germO(C]‘Z) is the (fundamental) positive local chamber in A,
K7 := G is called the (fundamental) Iwahori subgroup. When Q is a face of C?, Gg is
called a parahoric subgroup.

For Q a set or a filter, one defines:

Ug=(Uaga | ac®), UEZ:UQﬁUi and U$i=<Ua,Q | @ € ©F).

Then one has US" c U§ c US"”, but these inclusions are not equalities in general,
contrary to the reductive case (see [30, 4.12.3a and 5.7(3)]).

Lemma 2.3. Let (uy,u_,t), (u,u’,t') € Ut x U™ X T. Assume that u tu_ = u,t’'u’_ or

upu_t =uu’ t ortusu_ =t'uu’ . Thenu_ =u’, uy =ul andt =1

Proof. Assume uytu_ = u’,t’'u’. We have (u},) " 'uyt = t'u_(u’.)~!. As t normalizes U™,

we deduce the existence of u” such that (u})~'u,tt’~! = u”. By [28, Proposition 1.5
(DRS5)] (there is a misprint in this proposition, Z is in fact T'), we deduce (/) ~lustt'~1 = 1
and hence u/, = u, and ¢t = ¢'. Therefore u_ = u’ . The other cases are similar. O

By [30, 4.10] and (2.4), we have the following lemma.
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Lemma 2.4. Let Q be a filter on A, t € T and ¥ be a closed subset of Ay (resp. A_).
Then tUS™ 17! = UPT, tUE™ (W)t~ = UPE (W) (resp. tUL™ ()1~ = UMa (W),

2.3.4. Masure

We now define the masure 7 = 7 (®, K, w). As aset, I = G X A/~, where ~ is defined
as follows:

Y (g,x),(h,y) e GXA,(g,x)~(h,y) < IneN|y=v(n)xand g_lhn € Gy.

We regard A as a subset of 7 by identifying x and (1, x), for x € A. The group G acts on J
by g.(h,x) = (gh,x), for g,h € G and x € A. An apartment is a set of the form g.A, for
g € G. The stabilizer of A in G is N and if x € A, then the fixator of x in G is G . More
generally, when Q C A, then G is the fixator of Q in G and G permutes transitively
the apartments containing Q. If A is an apartment, we transport all the notions that are
preserved by W, (for example segments, walls, faces, chimneys, etc.) to A. Then by [18,
Corollary 3.7], if (@;)ier and (@, );es are free, then I satisfies the following axioms:

MATIIL Let A, A’ be two apartments. Then AN A’ is a finite intersection of half-apartments
and there exists g € G such that g.A = A’ and g fixes AN A’.

MA III. If R is the germ of a splayed chimney and if F is a local face or a germ of a
chimney, then there exists an apartment containing ‘R and F.

We did not recall the definition of a chimney and we refer to [29] for such a definition.
We will only use the fact that a sector-germ is a particular case of a germ of a splayed
chimney.

We also have:

o The stabilizer of A in G is N and N actson A C J via v.

e The group Uy = {xo(u) | u € K,w(u) > r}, for @ € ®,r € A, fixes the
half-apartment D («, r). It acts simply transitively on the set of apartments in 7
containing D (a,r).

The first point of the next proposition extends [7, Proposition 7.4.8] to masures.

Proposition 2.5.

(1) Let g € G. Then A N g~'. A is a finite intersection of half-apartments and there
exists n € N such that g.x = n.x for every x € AN g~ A,

(2) Let g € G. Then {x € A | g.x = x} is convex. In particular if Q is a subset of A,
then Gq = Geonv(q), Where conv(Q) is the convex hull of Q.
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Proof.

(1). Let g € G. We assume that A N g~ A is non-empty. Then it is a finite intersection
of half-apartments by (MA II) and there exists 4 € G such that hg.A = A and & fixes
A N g.A. Then hg stabilizes A and thus it belongs to N, by [30, 5.7 5)]. We get (1) by
setting n = hg.

(2. Letg e G,Q =Ang ' Aand Q= {x € A| gx =x}. We have Q c Q.
Let n € N be such that g.x = n.x for all x € Q. Let f = v(n) : A — A. Then
Q=0 n{x e A| f(x) =x}. As f is affine and Q, is convex, we have that Q is
convex. m]

Remark 2.6. In 2.1.1, we did not assume the freeness of the families (@;)ier and (@,)ier,
since there are interesting Kac—-Moody groups, which do not satisfy this assumption.
For example, G := SL,, (K [u,u~']) = K* is naturally equipped with the structure of a
Kac—Moody group associated with a root generating system S having nonfree coroots.
This group is particularly interesting for examples, since it is one of the only Kac—Moody
groups in which we can make explicit computations. In [18], we proved that if («;);e;
and (a,");es are free families, then the masure associated with G satisfies (MA II) and
(MAIII). Without this assumption we do not know. In [30, Théoréme 5.16], Rousseau
proves that 7 satisfies the axioms (MA2) to (MAS5) of [29]. We did not introduce these
axioms since they are more complicated and a bit less convenient. However it is easy
to adapt the proofs of this paper to use the axioms of [29] instead of those of [18], for
example, retractions are already available in [29].

2.3.5. Retraction centred at a sector-germ

Let L be a sector-germ of A. If x € 7, then by (MA III), there exists an apartment A of 1
containing 2 and x. By (MAII), there exists g € G such that g.A = A and g fixes A N A.
One sets pg(x) = g.x € A. This is well-defined, independently of the choices of A and
g, by (MAID). This defines the retraction pg : I — A onto A and centred at Q. When
Q = +co, we denote it pieo. If x € T, then po(x) is the unique element of U*.x N A.

2.3.6. Topology defined by a filtration

A filtration of G by subgroups is a sequence (V,)nen+ of subgroups of G such that
Vue1 C V, for all n € N*. Let (V},) be a filtration of G by subgroups. The associated
topology 7 ((V,,)) is the topology on G for which a set V is open if for all g € V, there
exists n € N* such that g.V,, C V.
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Let (V,,), (V,,) be two filtrations of G by subgroups. We say that (V,;) and (V,) are
equivalent if for all n € N, there exist m, m € N such that V,,, C V, and V,; C V,. This
defines an equivalence relation on the set of filtrations of G by subgroups. Then (V,,) and
(V,,) are equivalent filtrations, if and only if 7 ((V,))) = T ((V,,)).

We say that (V,,) is conjugation-invariant if for all g € G, (gV,g~") is equivalent to
(V). Then I ((V,;)) equips G with the structure of a topological group if and only if
(Vy) is conjugation invariant, by [24, Exercise 8.5].

3. Congruence subgroups

In this section, we define and study the congruence subgroups. They will be a key tool
in order to define the topology I in Section 4. We prove however that the filtration
(ker ;) en- 18 not conjugation-invariant. We also study how they decompose.

3.1. Definition of the congruence subgroup
Proposition 3.1. The fixator Gy of 0 in G is the group G™"(0).
Proof. Fori € I,x4,(0), x—qa,(0) and T(O) fix 0. Therefore by (2.7), G™"(0) c Gy.
By [30, Proposition 4.14]
Go = Uy Uy™" No, 3.1
where Ng = {n € N | n.0 = 0}. By [3, 2.4.1 2)], we have
U™ = U} = (xo(u) | @ € @,u € 0)yNU* c G™"(0)
and
Uym™ =Uy = (xo() | € ®,uc 0)NU~ c G™(0).
Fori € I, set7; = Xo,(1)x_g; (= 1)x4,(1) € ®™"(O). We have N = (X(K),7; | i € I).
Let n € No. Write vV (n) = w € WY, where v was defined in 2.2.1. Write w = r;, ... 7,
with k = €(w) and iy,...,ix € . Letn’ =7; ...F, € No. By [30, L6 D] v'(n') = w
and 7 := n’~'n € T Nker(v). By [30, 4.2 3)], t € T(O). Therefore
No={(r;|iel).T(0). (3.2)
and in particular, Ny ¢ G™"(0). Proposition follows. O
Recall that we assumed that A = w(K™) D Z. If w(K™) is discrete, we can normalize
w so that A = Z. We fix @ € O such that w(w) = 1.
For n € N*, we denote by 715, : GP™3(0) — GP™ (O /w"O) and 7M™ : G"™(0) —

"™ (O/w"O) the morphisms associated with the canonical projection O -» O/w@"O.
pma

We denote by 7, the restriction of 75 to &™"(Q). By Proposition 2.2, 7, is also the
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restriction of 7M™ to G™"(Q) (it is also the restrictions of 75""" : GPMLW(Q) —
®&PmeY (O /w"0) and np, """ L GV (O) — GMAY(O/w"O), for w € WY). By
Proposition 2.2 and (2.7), 7, 5 and 7%™2 are surjective. Their kernels are respectively
called the n-th congruence subgroups of ™ (0), GP™(0) and G"™(0).

The family (ker ;) en- is a filtration of G. We prove below that it is not conjugation-
invariant when WV is infinite, which motivates the introduction of other filtrations

(V)nens, for A € Y* regular, in Section 4.

Lemma 3.2. Let x € A be such that a;(x) > 0 for all i € 1. Suppose that W" is infinite.
Then for all n € N*, there exists g € ker(m,,) such that g.x # x.

Proof. Letn € N*. As ®* is infinite, there exists 8 € ®* such that ht(8) > m

Then B(x) > n. Let g = x_g(w") € kern,. Then the subset of A fixed by g is
{y € A| =B(y) +n = 0}, which does not contain x. O

Lemma 3.3. Assume that WY is infinite. Then (ker(my,)),en- Is not conjugation-invariant.

Proof. Suppose that (ker(7,,)) is conjugation-invariant. Then the topology & ((ker(r;,))
equips G with the structure of a topological group. We have ker(7;) ¢ ®™"(0) = G
and in particular Go = Ugeg, &- ker(nry) is open. Let A € Y™ be such that ; (1) = 1 for all
i€landt e T besuchthatt.0=A. Then H := tGot~" is open (since G is a topological
group). As 1 € H, we deduce the existence of n € N* such that ker(r,) C H. As H fixes
A, this implies that W" is finite, by Lemma 3.2. O

3.2. On the decompositions of the congruence subgroups

Let m = {x € O | w(x) > 0} be the maximal ideal of O and k = O/m. Let m} :
G™"(0) — G™" (k) be the morphism induced by the natural projection O - k. When
w(K*) =Z, m = 7.

In this subsection we study ker my: we prove that it decomposes as the product of its
intersections with U™, U* and T (see Proposition 3.5), using the masure 7 of G. We
also describe U~ N ker 7 and U™* N ker 7 through their actions on 7 and we deduce that
ker y fixes Cj U C; . It would be interesting to prove similar properties for ker rr,, instead
of ker 7y, for n € N*. The difficulty is that when w is not discrete or n > 2, O/w@™O is no
longer a field and very few is known for Kac—-Moody groups over rings.

Let C,C’ be two alcoves of the same sign based at 0. By [16, Proposition 5.17],
there exists an apartment A containing C and C’. Let g € G be such that g.A = A and
g.C = C;. Then g.C’ is an alcove of A based at 0 and thus there exists w € W" such
that g.C’ = w.Cg. We set dW” (C,C’") = w, which is well-defined, independently of the
choices we made (note that in [2, 1.11] the “W-distance” d"" is defined for more general
pairs of alcoves). Then d W" is G-invariant.
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Lemma 3.4. Let C be a positive alcove of I based at O andw € WY. Writew =r;, ...rj,,
with k = €(w) and iy, ...,ix € I. Let 81 = aj,, B2 = 1i,.Qiy, - .., Bk = Tiy .. . Fip_, Q.
Then By, ..., Bx € ®, andwe have po(C) = w.C6r ifand only if there exists ay, . . . ,ax €
O such that C = xp,(a1) .. .xg, (ax).7i, ... 7;, .Cy.

Proof. Asxg (0)..... xp, (O) fixes 0, an element of x, (O0) ... x5, (0).r;, ... 73, .Cjisa
positive alcove based at 0. The fact that 51, . . ., Bx € @, follows from [23, 1.3.14 Lemma].
Thus xg, (0). . ... xg, (0).7y; ... 7, .C§ € UT.w.Cj and we have one implication.

We prove the reciprocal by induction on £(w). Assume w = 1. Then p,(C) = C;.
Let A be an apartment containing +co and C. Let g € G be such that g.A = A and g fixes
ANA.Then C = g‘1 .Car , by definition of p,«. Moreover, A contains 0 and +co and thus
it contains conv(0, +o0) > Cy. Therefore C = Cj and the lemma is clear in this case.
Assume now that £(w) > 1.

Let C) = Cg, Cl = ril.Cg, o Cp =y, ...rik.C(‘)“ = C’. Let C be a positive alcove
based at 0 and such that p,«(C) = C}. Let A be an apartment containing C and +co.
Let g € G be such that g.A = A and g fixes AN A. Set C; = g~'.C/, for i € [0,k].
Then g fixes +co and hence p,(x) = g.x for every x € A. Therefore p,(C;) = C;, for
i € [0, k]. In particular, p1e(Ck-1) = C,’(_ ;- By induction, we may assume that there
exist ay,...,ar-1 € O such that Cy_y = uv.Cy, where u = xg, (ay)...xg, (ax-1) and
V=ry...7;_,. Moreover we have

d" (Ci-1.C) = d" (G, C) = 1y
=d" (w7 G C) =d" (TG )

Let P be the panel common to v.C; and u~'.Cy. Then P C ﬂ;l({O}). Let D be
the half-apartment delimited by B;l({O}) and containing Cy_1. Then as B¢ (Ck-1) =
Fiy oo Ty @i (Fiy ... 15 .C) > 0, D contains +co. By [29, Proposition 2.9], there
exists an apartment B containing D and u~'.Cy. Let g’ € G be such that g’.B = A and
g’ fixes AN B. We have g’.u™'.Ci = p.oo(Cr) = C;. By [30,5.7 1)), g’ € T(O)Up, 0
and as T(O) fixes A, we can assume g’ € Ug, o = xg, (0). Write g’ = xg, (—ay), with
ay € O.Then Cy = u.xg, (ax).Cx = xp,(a1) ...xg, (ax).ri, ...7; .C§, which proves the
lemma. |

Proposition 3.5.
(1) We have UZl'™ = U™ Nker(ny) and Uf?f = U* Nker(my).
0 0
(2) We have ker(my) = (ker(my) N U*) . (ker(m) NU™) . (ker(me) N T(0)).

(3) We have ker(my) C GCSUC6‘
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Proof.

2). Letu € Uéﬁ"‘. By definition, there exists Q € Ca’ such that u € UG™". Let
0

X € C]‘i NQ. Then u € [Tpea. Xa(8a.z2 ® Kus—a(x)) N Go. As —a(x) > 0 for every
a € A_, Proposition 2.2 implies:

Ug'™ C ker(my). (3.3)
0

Let g € ker(m) € G™"(0). Then g fixes 0 and g.Cj is a positive alcove based at
0. Write p1(g.Cj) = w.Cy, with w € WY, Write w = r;, ...7;,,, with m = £(w) and
it,...,im€l.Letn=7; ...7;, € N(K). By Lemma 3.4, there exists u € (xg(O0) | B €
@, ) such that g.Cj = un.Cj. Then g = uni, with i € Ge;- As C§ has a good fixator ([30,
5.7 2)]), we have (by (2.8):
Ger = U@S”*Ugg"‘Ncg.

pm+ _ y;pm+
= UO

As every element of C; has non empty interior, Nci = T (0). Moreover, U-,
0

and 7°(0) normalizes U "™ and U 2. Therefore,
0
_ pm+ -
Gy = T(O)UY" .Uz~

Write i = tu,u_, with t € T(0), uy € Uy™ and u_ € U™
0
Therefore by (3.3), we have
me(g) = 1 = me(untuu_) = my (u)me (nt) e (w4 ) e (u-) = e () e (nt) e ().

By [30, 3.16 Proposition] or [24, Theorem 8.118],

(®GPM(k), N(k), UPma(k), U~ (k), T(k), {r; | i € I}) is a refined Tits system. By [30,
3.16 Remarque], we have the Birkhoff decomposition

GPm(k) = | | W (@)U (k).
nef (k)

As m(u) € UH(k), mp(nr) € N(k) and 7y (uy) € UPM2(k), we deduce mx(nr) = 1.

By [28, 1.4 Lemme and 1.6], there exists a group morphism v} : (k) — W such
that vy (7;) = r; fori € I and v (T (k)) = 1. Then v} (nt) = w = 1. Therefore w = 1 and
g =utuu_ =u'tu_, for some u’ € Uém”, since ¢ normalizes Ué’mJ'. By Lemma 2.3 and

by symmetry of the roles of U™~ and UP™*, we have u’ € Uf’cng. By (3.3) applied to
Uf’g’f we have my(g) = 1 = m(u')my (£) e (u—) = my(¢) and thus
0

P (T Nk UM = Pttt oyt (T Nk .
g€ Uﬁc0 ( er my) UCo Uﬁc0 UCo ( er my)

By (3.3), we deduce (2).
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pm+ _ pm+ nm— _ nm-—
(3). We have U_Ca = U—Cguc; C Gcgu—c[p ch = chu—c; C Gcgu—cg and
T Nnkermy € T NGy € Gy, which proves (3).

(1). We already proved one inclusion. Let u € ker i N U™. Then by what we proved

above, u € Ufg‘f.(T Nkermy) U2~ By Lemma 2.3, u € U2!", and the proposition
0 0 0

follows. m]

Corollary 3.6. Let n € N*. Thenkern,, C Ufgg.i(O).Ug’?‘.

Remark 3.7. Letu € U™ Nkerm, = Ug"‘. Write u = [[,ea Xa(Ve), Where v, €
80z ® O, forevery @ € A_. Define w : g0z ® K = RU {+00} by w(v) = inf{x € R |
V€ Qaz®Kusx}, forvege,z® K. Let A € Y be such that a; (1) = 1 forevery i € 1.
Let Q € Cj be such that u € U3™~ and n € R} be such nd € Q. Then u € UJ"~ implies
w(ve) = |a(nd)| = nht(a) for every @ € A_. In particular, w(v,) goes to +co when
—ht(a) goes to +co.

4. Definition of topologies on G

In this section, we define two topologies I and Jrix on G and compare them. For the
first one, we proceed as follows. We define a set V) for every regular A € Y*. We prove
that it is actually a subgroup of &™"(Q) (Lemma 4.2) and we define I~ as the topology
associated with (V,,1)nen+. We then prove that  does not depend on the choice of A and
that it is conjugation-invariant (Theorem 4.8) and thus that (G, ") is a topological group.
‘We then introduce the topology Jrix associated with the fixators of finite subsets of 7 and
we end up by a comparison of  and Jrix.

4.1. Subgroup V,
Forn e N*, we set T,, = kerm,, N T € T(0). For A € Y* regular, we set

N(1) = min{|a@(1)| | @ € ®} e N* and V, = U{’_"ZM.UE’j"ﬂjﬂ].TzNw.

By (2.9), we have
Vi=U"nN G[—/l,/l])-(U_ N G[—/l,/l])-(T ﬂkerﬂ'ZN(,l)) Cc Gi-aa- “.1)

The 2N (1) appearing comes from x_,(@"0).xo(@"0) C xo(@"O)x_o(w@"O)
V(1 +@?0) for @ € ® and n € N*, which follows from (2.1). To prove that V; is a
group, the main difficulty is to prove that it is stable by left multiplication by U ["_”jl‘ NE If
G is reductive, we have Uf’_”ilj/l] = U[_—_/l,/l] = (xq(a) | e ®_,a € K,w(a) = |a(d)]).

By induction, it then suffices to prove that x_ (@!*W10)V, c Vy, for a € ®,. When
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G is no longer reductive, we have U[_—_/l,/l] - Uf‘_”’;u in general (see [30, 4.12 3)]). The
group UE[”; A is defined as a set of infinite products and so its seems difficult to reason
by induction in our case. We could try to use the group Uiy = (xq(a) |a e ®,a €
K,w > |a(a)|) N U~ since it is sometimes equal to UE’_”IM (for example when A € CJV(.,
U{’_”IAJ =U"T =U] = U[_—/l,/l] by [3, 2.4.1 2)]). However it seems difficult since if
a € @, the condition w(a) + @(1) > 0 allows elements with a negative valuation. In
order to overcome these difficulties, we use the morphisms r,,, for n € N.

By definition,

Uf—nleA] =GN 1_[ X‘,(g(,,z®7(w2f9([,4,/,])) cGn l_[ X‘,(g(,,z®w’v(’l)0).

ael; ael,

By Proposition 2.2 we deduce Uf’_";/l] C ker (7n(a)). Using a similar reasoning for
Uf‘f”/l‘ 2 We deduce
YV, C ker(nN(/l)). “4.2)

Forn € Nand " € @Y, one sets Tov ,, = @’ (1 + @w"0) c T(0).

Lemma 4.1. Let A € Y* be regular and a € ®. Then Uy [—.2).U-o,[-2,4] - Tav 2N (1) IS
a subgroup of G.

Proof. Set Q = [-A,4]. Set H = Uy 0.U_q,0.Tov 2n (1) It suffices to prove that H is
stable under left multiplication by Uy q, U-q,0 and Ty 2y (). The first stability is clear
and the third follows from Lemma 2.4 and the fact that T,,v o (1) € T(O) fixes A. Let
u_,u- € U_g,0,us € Uggand 1 € Tovon(r). Write u_ = x_qo(a-), u- = x_q(a-)
and uy = x4(ay), fora_,a_,a, € K. We have w(a_),w(a_),w(as) = |a(1)| = N(Q).
Then by (2.1), we have

U_UsU_t =Xq (a+(1 +c7_a+)_])x_(, (5_(1 +a_ay) '+ a_) o (1+a_ay)t.
As w(1+a_ay) =1, we deduce that u_u,u_t € H, which proves the lemma. |

Let w € WY and Q be a filter on A. Recall that G”"*" and G"*" are the
completions of ® with respect to w.A, and w.A_ respectively. One defines US'"(W.AJ,)
and U™ (w.A_) similarly as US™" and U™~ in these groups.

Lemma 4.2. Let A € Y* be regular. Then
1) Vo= U[p_nj[’/l](W'A+)‘UEI,;7’1,1](W'A_)'TZN(/U for everyw € WY,

(2) Vy is a subgroup of G.
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Proof.
(1). This follows the proof of [10, Proposition 3.4]. Set Q = [-A,1]. Leti € I and @ = «;.
By [10, 3.3.4)] and Lemma 4.1,
Va=U{" (A \{a}).US"(A-\{a}).Us,0.U-a.0.Ton )

= UB™(A\ {)).US" (A= \ {a)).U-a.0.Uag-Ton et

= U™ (A \ {a})U— a0 U™ (A \ (@)U Tav

= US" (ri.A).UG" (ri.AZ) Tan ()
Therefore V,; does not change when A, is replaced by w.A,, for w € WY, which proves (1).
(2). Letw € WY be such that A € w.C;. By (1) we have

V= Ugm(w.AJr).Ugm(w.A_).TgN(l).

Let ¢ € T be such that .0 = 4. By Lemma 2.4, we have

UG (w.A) T = UL (w.Ay) = U (w.Ay) = UP™ (w.Ay).

Similarly, tU2™ (w.A_)t~ ' = U™ (w.A_). As T is commutative, we also have To (1)1 ~' =
Trn (2)- In order to prove (2), it suffices to prove that
H = tUS" (w.A) U™ (w.A ) Doy oyt ™" = UY™ (w. AU (W.A) oy ()

is a subgroup of G. It suffices to prove that H is stable under left multiplication by
U™ (w.Ay), Uy (w.A_) and Ty (y. The first stability is clear and the third follows
from Lemma 2.4.

First note that by [30, 5.7 1)],

Gioaa) = U™ (w. AU (w.A_)T(0) 4.3)

is a subgroup of G.

Letu_,u_ € Uy (w.A2),uy € UJ™ (w.Ay), 1 € Toy(a)- Letus prove that w_u,u_t €
H. We have &_u, = u,(u;'t_u,). By Proposition 2.2, Ul (w.A) C kermaon(a)-
By Proposition 3.1, u; € G™"(0) and we have u;'u_u, € Go.2a] Nkermona)-
Therefore (4.3) implies that we can write u; 'w_u, = utut, where u} € Uy™(w.Ay),
u;y € Uy (w.A_) and t; € T(O). We have

mon o (Wiuyn) =1 =mn ) (uit) = ooy () man ) (1).

AsB(0/m NV 0) = T(0/a™ VO)<UPmaw (0/m>N VW O) and as moy (1) (T(0)) €
T(0/w*N Q) and TNy (UPEY(0)) < urmaw(Q/w?NQ0), we deduce
nZN(ﬂ)(”T) =TIN(Q) (l‘l) =landt € TZN(/l)- We have

U_upu_t = uujuytiu_t
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and as T (1) normalizes U”m(w A_), u_usu_t € H, which proves the lemma. O

Remark 4.3.

(1) Note thatif A € Y* isregular, then Up ]U[”ﬁ A]TQN(/I)_‘_] is not a subgroup of G.

Indeed, take @ € ®* such that Ia(/l)l N(A). Then x_ o (@N D) x o (@N W) =
Yo (@ V1 + @)D (@O (1 + @2V V)"DaV (1 +@*N D) and by

Lemma 2.3, this does not belong to U[pj’/’:/l] U N+

(2) Forevery k € [0,2N(2)], Up UE"”_ Ty = V). Ty is a subgroup of G, since

Ty normalizes U p e and U (o] by Lemma 2.4. Note that for the definition of a
topology, we could also have taken the filtration (U P m; L U E’_njl’n A Ti(n))nenrs

for any k(n) € [0,2nN(2)] such that k(n) —— > oo,
n—+0oo

(3) AsVy =V, " and by Lemma 2.4, we have Vi = U™ U™ Do .-

4.2. Filtration (V) ,en:

Let Q be a filter on A. One defines ¢l () as the filter on A consisting of the subsets Q' of
A for which there exists (ko) € [Tgep Aa U {+00} such that Q" D (M ,en D(a, ko) D Q,
where A, = A if @ € ® and A, = R otherwise. Note that cl* is denoted cl in [29]
and [30]. By definition of U5™" and UZ™", we have
pm+ _ pm+ pm+ nm— __ nm-— nm-—
U, =U, =U () and U5"™ =UG" =U ad @)’ 4.4)
for any filter Q' such that Q c Q' c cl*(Q).

Lemma 4.4, Let A € Cj‘j and w € WY. Then cI®([-w.A,w.A]) D (-w.A + w.C_]‘i) N
(w.Ad - w.C_;).

Proof. As A and @ are W"-invariant, we have w.cl®(Q) = cl®(w.Q) for every w € W".
Thus it suffices to determine cl®([-1, 1]). Let (ko) € [Toea Aa U {+o0} be such that
Naer D(a, k) D [-4,2]. Leta € Ay. Write @ = )¢y nja;, withn; € Nfori € 1. Then
ko =2 a(d) = Y niai(d). Let @ € A_. We also have k_q, > > ;cpnia; ().
Letx € (-1 + C") N (14— CV) Then —a; (1) < a@;(x) < a@;(A) forevery i € I. Then
o S Dier N (x) < ko and thus ko +a(x) 2 0and k_, — a(x) > 0. Consequently,
x € ﬂaeA D(a, ko) and thus

(-1+CHN(@A-CY c ﬂ D(a, ko),
a€A

which proves the lemma. O
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The following lemma will be crucial throughout the paper. This is a rewriting of [3,
Lemma 3.3 and Lemma 3.6]. Although w is assumed to be discrete in [3], the proofs of
these lemma do not use this assumption.

Lemma 4.5.

(1) Leta € Aandg € U*. Then there exists b € a—Cj‘j such thatg’]Ungrg c ubm,

(2) Lety € I. Then there exists a € A such that UY™" fixes y.
(3) LetA € Y* be regular and y € I. Then for n € N large enough, Ufj'::l ] fixes y.

Proof. By [3, Lemma 3.3 and 3.6], we have (1) and (2). Let 1 € Y* be regular. Write
A=w. At with 1t e Cyandw € WY. Leta € A be such that UP™ fixes y. For n € N*,

we have cl®([-n4,n1]) D n((-w.A* + w.C_;) N (w.At - w.C_j‘j ), which contains a, for

n > 0. So for n > 0, we have Uf7";; ] © UP™ | which proves (3). O

Lemma 4.6. Let A, i € Y* be regular. Then (Vy)new- and (Vou)nen+ are equivalent.

Proof. Write u = v.u*™, where v € WY and u** € C]VC. For m € N, set
Quy = (—mu + V.C_}) N (myu — v.C_;).

By Lemma 4.4, Q,,, C cl?( [-mu,mu]). Letn € N*. As Q,,,,, = m€,, and €, contains

0 in its interior, there exists m € Z, such that Q,,, D [-nd, nd]. Moreover, by (4.4),

Ufjer =yPl™ cyP™  since Q' — UP™ is decreasing for . With the same
—my,mu| Qi [-na,na] Q

reasoning for U~ , we deduce V,,,,, C V1. By symmetry of the roles of 4 and u, we

deduce the lemma. O

The end of this subsection is devoted to the proof of the fact that for every A € Y*
regular, (V,1)nen+ 1S conjugation-invariant.
Lemmad.7. Leta € ®anda € K. Let A € Y* be regular. Then (x o (a).Voi.xo(—a))nen
is equivalent to (Vi) nen

Proof. Let € € {—,+} be such that @ € ®.. Let w € W" be such that ew™!.a is simple.
By symmetry, we may assume that € = +. By Lemma 4.6 we may assume that A € w.C;.
Let n € N*. By Lemma 4.2, we have

(Vn/l = Uf)—”rlul,n/l] (W‘A‘*)Ufl—”;z/l,n/l] (W.A_)Tan(,l).
= Uf:;(WA+)UZT(WA—)T2nN(/l) .
Write @ = w.a;, fori € I. By Lemma 4.5,

Xw.a; (a)UI_"n (W-A+)xw.ai(_a) c UfZi[(W-A+)7 4.5)

mA
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form > 0.

By [30, Lemma 3.3], U’“"/1 /IJ(W A) = U"";/l ] w.(AN{=ai})).U_s.a;,[-nana]
and U_yy o, [-na,na] normahzes U"":M na] (w. (A \{ ai})).

By [23, 1.3.11 Theorem (b4)], r;. (A \ {-a;}) = A_\ {—a;} and thus for m € N, we
have

Ul may W-(A\{=ai})) = U ) (wri(A-\ {=ai}))

=U"(wri(A_\ {-a;})) N U"mm/l ma) (WriA2).
Moreover,
Xw.a; (@)U (wri (A \ {=ai}))xy.a;(=a) = U (wri(A-\ {~a;})), (4.6)

by [30, Lemma 3.3] (applied to wr;.(A_ \ {-a;}) € wr;.A_). By Lemma 4.5, for m > 0,
Xw.a; (a)U i m/l](wrl A )Xy q;(—a) C U[ A M](wrl-.A,). 4.7
Combining (4.6) and (4.7), we get

Koy (@UI WA =0 Xy (=) C UM (0 (A\ {=ai))s (48)

for m > 0.
For b € K such that 1 + ab # 0, we have

Xw.a; (a)x—w.m (b)xwlai (-a) = X—w.a; (b(l +ab)_l )av(l +ab)xw‘ai (_azb(l +ab)_l)-

Therefore if m > 0, xy,. o, (@) U—y_a; [-mA,mA)Xw.a; (—a@) C V1. Combined with (4.8)
we get

Xw.a; (a)U;;’Z:(W-A—)xw.ai(_a) C Vi, (4.9)

for m > 0, since V},, is a group.
Letm € N* and ¢ € T,,,. Then:

Xw.a; (a)txw.a/i(_a) =Xw.q; (a(w-a'i(t_l) - 1))

Therefore if m > nN(A) and w (a (w.e;(t™!) = 1)) > w(a) + 2mN(A) is greater than
lw.a;(nd)], then X, o; (a (w.a;(t71) = 1)) € Vya and xyy o, (@)1x. 0, (—a) € V2. Com-
bined with (4.9) and (4.5), we get xo(a@). Vi xoq(—a) € Vya, for m > 0. Applying this
to (xo(—a). Via.xq(a))ken+, we get the other inclusion needed to prove that (V},,;) and
(xq(a).Vya.xq(—a)) are equivalent. O
Theorem4.8. Let A € Y* be regular. Forn € N*, set V,,, = U[pr:'l; L UEM:;I L TN (na)-
Then (V) is conjugation-invariant. Therefore, the associated topology T ((Vy,1)) equips
G with the structure of a Hausdorf{f topological group.
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Proof. We need to prove that for every g € G, g(V,1)g~! is equivalent to (V). Using

Lemma 4.6, we may assume A € C}. By [28, Proposition 1.5], G is generated by T and
the x4 (a), for @ € ® and a € K. By Lemma 4.7, it remains only to prove thatif r € T,
then (tVyat™!),en- is equivalent to ("Vn,l) Lett € T and m € N*. Then by Lemma 2.4,

1 + _ _1

Vit ™ = tUZ0 gt AUt Tamn )
— jpm+ -

U[t (=ma),t.ma] Unzm( maA),t.mA] Tomn (1)

SetQ = (—A+C_]¥) N (/l—Cf). Then by Lemma 4.4, c1* ([-mA, mA]) > m&. Moreover,

cl®([t.(=mA), t.mA]) = t.cl®([-mA, mA]) D t.mQ. Let n € N*. Then as Q contains 0
in its interior, #.mQ > nQ for m >> 0. Therefore (by (4.4)) U/ | i c U
and U[Im( “may.ema) © U[ ] for m > 0. Consequently, tVat™t €V, form > 0,
which proves that (V,,,) is conjugation-invariant.

It remains to prove that I ((V,,)) is Hausdorff. For that it suffices to prove that

Nnens Vaa = {1}. Let g € Ny Vaa- Let n € N*. Then as [-nAd, nd] has a good

fixator ([30, 5.7 1)] and (2.8)) g € G[_pana] = Up”::l 1] Ulmnal .T(0), so we can
write g = u}u, t,, with (u},u;,t,) € Up”:; ) x Uy X T(0). By Lemma 2.3,
uy = u}, does not depend on n and thus ut € N, U 7,; ] = Ubm™t = {1}.

Similarly, u~ := u,, = 1. Therefore t € T N (,en- kerﬂn. Let (xi)ief1,m] be a Z-
basis of Y. Write t = []™, xi(a;), with a; € O*, fori € [1,m]. Let n € N. Then
ﬂn(t) =[1, xi(mn(a;)) = 1 and thus a; € M), @"O = {0}. Consequently, # = 1 and

= 1. Therefore (,,cp+ Viua = {1} and T ((V,,1)) is Hausdorff. O

We denote by I the topology I ((Vi.a)), for any A € Y™ regular.

Corollary 4.9. Let A € Y* be regular. The filtrations (ker rty), and (Vy)nen+ are
equivalent if and only if WY is finite.

Proof. If WV is infinite, this follows from Lemma 3.3 and Theorem 4.8. Assume now
that WY is finite. Then by (4.2), V1 C ker m,,v(a) for every n € N*.

Let n € N* and g € kerm,. By Corollary 3.6, g € Up Z(0). U”m‘. As WV is
finite, ® = A (by [21, Theorem 5.6]), U”’"+ =U*. = Hae@ xa(m) and U™ =
Ucs = laeo_ Xo(m), for any (fixed) orders on ®_ ;nd ®,, where m is the maxnnal
ideal of O. Write g = utu_, with g € Uc+’ t € T(0)and u_ € Ug,. Then m,(g) =
7w (ust)m,(u_) = 1. Moreover, 7, (ust) € %(O/w"O) and 7, (u_) e B~ (0/w"0),
where B = Ut =T and B~ = U~ = T are two opposite Borel subgroups. Therefore
ma(ust) € B(O/w"O)NB~ (O/w"0) = T(O/w"0), by [4, Theorem 14.1]. Therefore
mp(uy) = mp(u-) = mu(t) = 1. Write uy = [[yeo, Xa(tta), with u, € O for a € ®,.
Then 7, (uy) = [ gew, Xo(mn(uqe)) = 1, by Proposition 2.2, and by [24, Theorem 8.51],
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this implies 7, (uy) = 1, for every @ € ®@,. Let N’ (1) = maxye |@(1)|. Then we have
Uy € U N G_na/n'(1).na/N’(2)]- Using a similar reasoning for U~ and (4.1), we deduce
ker w,, € Vyayn(a). Therefore (V,,) and (ker ;) are equivalent. O

Remark 4.10.
(1) If n € N*, then ker 7, is open for I, by (4.2).

(2) The Iwahori subgroup GCJ = Ky is open. Indeed, if A e Y N CJVC, then V, C K;
by (4.1). In particular, ™" (0Q) > K is open.

(3) Assume ® is reductive, i.e. W is finite. Then by Corollary 4.9,  is the usual
topology on G.

4.3. Topology of the fixators
4.3.1. Definition of the topology

Recall that if F is a subset of 7, we denote by G its fixator in G. In this subsection we
study the topology Jrix which is defined as follows. A subset V of G is open if for every
v in V, there exists a finite subset F of I such that vG c V. Note that Go = G™"(0) is
open for this topology.

We begin by constructing increasing sequences of finite sets of vertices (F,) =
(Fn(A))nen- such that Jrix is the topology associated with (G, )nen.

We fix A € Y* regular. We set Fy = @. For n € N*, we set

F, = F(1) = {nd, —nd} U{xq,(@w™™).0|i € I} U F,_;. (4.10)

Let n € N*. By [30, 5.7 1)], [-n4, nd] has a good fixator and by Proposition 2.5, we
have G0, -na)y = G[-na,na)- Therefore

GF, C Gl_nana] = U{’_’i‘;,nﬂ].UF’_"z‘A’mﬂ.i(()). 4.11)

We chose F,, as above for the following reasons. We want that when x € 7 and n > 0,
an element of G, fixes x. By Lemma 4.5, if u € U* (resp. U™), and if u fixes —nA (resp.
nd), for some n large, then u fixes x. However, if r € T, as T(O) fixes A, we need to
require that ¢ fixes elements outside of A, and the choice of x,, (@").0 is justified by the
lemma below.

Lemma 4.11. Leti € [, n € Nandt € T. Then t fixes xo,(@w™").0 if and only if
w(a;(t)-1) 2 n.
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Proof. We have t.x,,(@™").0 = xq,(@™").0 if and only if x,, (- ")xq, (@i (t) X
@w ™").t.0 = 0. We have pio(xg,(—@ "xg, (ai(t)w™).t.0) = t.0 and thus if
tXq;(@™).0 = x4, (@™").0, we have .0 = 0. Thus t.xy, (@™ ").0 = x4,(w™").0 if
and only if x,, ((@;(t) — 1)@ ™").0 = 0 if and only if w(e;(t) — 1) > n. O

Forn € N, we set
Tho={teT|w(a()-1)=nViel} 4.12)
Lemma 4.12. Let y € 1. Then there exists M € N such that Ty o fixes y.

Proof. By the Iwasawa decomposition (MAIII), y € U*.z, where z = pyo0(y). Write
y=xg (a1)...xg.(ax).z, withk e Nand f1,...,Br € ®,.Lett € T. We have .y = y
if and only if

z=xg, (—ag) ... xg (—ai)txg (a1) ... xg, (ax).z
= xp (=) . x5 (—an) g, (1= Br (™ )an ) g, (a2) -3, (an) 2

Let M € N*. Assume that o; (1) — 1 € @™ O foreveryi € I.

Write 81 = X;c; mia;, with m; € N for every i € I. Then By (t) = [1;¢; @/ (¢). There-
fore B1(t) € 1 +@MO. For M > 0, xg, (1 - B1(t71))ay) fixes xp,(az) . . . x5, (ax).z,
by Lemma 4.5. By induction on k we deduce that ¢ fixes z for M > 0. O

Lemma 4.13.
(1) Let F be a finite subset of I. Then there exists n € N* such that G, fixes F.

(2) Let A, u € Y* be regular. Then the filtrations (G, 1))nen+ and (G, () )nen:
are equivalent.

(3) The topology Triy is the topology associated with T ((GF,, )nen)-

Proof.

(1). It suffices to prove that if y € 7, then GF, fixes y for n > 0. Let n € N*. Then
F, D {-nA4,nd} and by Proposition 2.5, we have Gr, C G[_m1 n,l]

By Lemma 4.5, there exists n; € N such that U[’Jm; ] and U[ ] fix y, forn > ny.
Let n > nj. Let np = np(n) > n be such that for every i € I, (U’7 oAy ]’ U[m‘/l . /1])
fixes xq,(@™).0 forevery i € I. Let g € GF,,. Using (4. 11) we write g = uyu_t,
with (uy,u_,t) € Up'?;l o] U”";;l ma] X T(0). Then g fixes y if and only if ¢
fixes y. Moreover, u,u_t fixes F, and thus ¢ fixes F,,. By Lemma 4.11, we deduce
w((a;(t) = 1) 2 nforevery i € I. By Lemma 4.12 we deduce that ¢ fixes y, for n > 0.

Thus GF,,,, fixes y for n > 0.
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(2). It follows from (1) by applying to F = F,,,(u) and F,, = F,; (1), for m,n € N* and by
symmetry of the roles of A and p.

(3). As F,, is finite for every n € N*, 7 ((GF,)) is coarser than Jgix. But by (1), TFix is
coarser that (I, ). O

Proposition 4.14. The topology Jrix is the coarsest topology of topological group on G
such that &™"(0) is open.

Proof. Forn € N*, Gg, ¢ G™"(0) and thus ™" (0) is open for Tgix.

Let now I’ be a topology of topological group on G such that ™" (0) is open. Let
n € N*, Then for every element a of F,,, there exists g, € G such that g,.0 = a. Then
GF, = Naer, 24.6™"(0).g;" is open in G. Proposition follows. O

4.3.2. Relation between Jg;x and I

In this subsection, we compare Jgix and J . We prove that I is finer than Jgx. When
K is Henselian, we prove that = Jgix if and only if the fixator of 7 in G is {1} (see
Proposition 4.21).

Let A € Y* be regular. For n € N, we define F,, = F,,(2) as in (4.10).

Let Z = Nen Tn.o (Where the T}, ¢ are defined in (4.12)) and Zp = Z N T(O). Then
Z={teT|a;t)=1,Yie I} is the center of G by [26, 8.4.3 Lemme].

Lemma 4.15. The fixator Gy of I in G is Zo and (\,en+ GF, = Zo-

Proof. Wehave Gr € Gy = T(0), by [30,5.75)]. By Lemma4.11,G; € T, 0 N T(O)
foreveryn e Nand thus Gy € Zp.Letz € Zp and x € 7. Write x = g.a, witha € A,
Thenzx =gza=ga=xandz € Gy.

Now let g € (N,,ex+ GF, - Then by Lemma 4.13, g fixes 7, which proves the lemma. O

Lemma 4.16. There exists an increasing map M : N — N whose limit is +co and such
that for every m € N,

GF, € Vina-(Tmn),0 N T(0)),

Jor m,n € N* such that M(n) > m and n > m.

Proof. Let n € N*. Let M(n) € N be maximum such that U™} 1. Uf’_":;’ml], fix

Fprr(n)- By Lemma 4.5, M(n) — +co. Let g € Gf,. Using (4.11) we write g = u,u_t,
with u, € Uf’_”y’l;’nl], u- e upms yandt € T(0). Letm’ = M(n). Then m’ < n and
Uy, u_ fix Fyy. As g fixes F,,y we deduce ¢ fixes F,,y. By Lemma 4.12, ¢ € T,,y ¢ N T(O0).

Therefore g € Vipa.(Tpr (), 0 N T(O)), which proves the lemma. O
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Lemma4.17. Let A* = XQR, Q' = (@ie[ Qa;)NX C A" and d be the dimension of Q'
as a Q-vector space. Then there exists a Z-basis (x1, - .., x¢) of X such that (x1,...,Xd)
is a Z-basis of Q’.

Proof. Letx € X and n € Z\ {0}. Assume that nx € Q’. Then x € Q’. Therefore X/Q’

is torsion-free. Let (eg41, ..., er) € (X/Q")¢ ™7 be a Z-basis of X/Q’. For j € [d+1,(],
take y; € X whose reduction modulo Q' is e;. Choose a Z-basis (yi,...,xq) of X’.
Then (x1, ..., xe) satisfies the condition of the lemma. O

Lemma 4.18. Assume K to be Henselian. Let a € O and m € N*. Assume w(a™ 1) > 0.
Then we can write a = b + ¢, with b € O such that b™ = 1 and w(c) > 0.

Proof. Letk = O/m be the residual field and 7y : O - O/m be the natural projection.
Let p be the characteristic of k. If p = 0, we set m" = m and k = 0. If p > 0, we write
m = p*m’, with k € N and m’ € N prime to p. We have 7y (a™) = mp(a)™ = me(1). We
have (m(a)™ — l)pk = 0 and thus 7 (@)™ = me(1). Let Z be an indeterminate. We have
Z™m — 1 = (Z — a)Qx, where the bar denotes the reduction modulo m[Z] and Qy € k[Z]
is prime to Z — a. As O is Henselian, we can write zZm 1= (Z-b)Q,where b € O is
such that 71 (b) = 7z (a) and Q € O[Z] is such that Q = Q. Then 7 (b — a) = 0 and we
get the lemma, with ¢ = b — a. m]

The following lemma was suggested to me by Guy Rousseau.

Lemma 4.19. Assume K to be Henselian. Let m € N*. Then there exists K € N*, K’ € N
such that for every n € N* and a € O such that w(a™ — 1) > n, we can write a = b + ¢,
with b, c € O such that b = 1 and w(c) 2 n/K — K.

Proof. We first assume that K has characteristic p > 0. Let n € N* and a € O be
such that w(a™ — 1) > n. Write m = m’p*, with k € N and m’ € N prime to p. We
have a™ - 1 = (a™ - l)f’k and thus w(a™ - 1) = w(a™ - 1)/p* > n/p* > 0. By
Lemma 4.18, we can write a = b + ¢, with b,c € O, b™ =1 and w(c) > 0. We have

a” —1=m'b"™ e+ >, (" )c'b™1, where X is the image of x in K, if x € Z. As m’ is

prime to p, m’ is aroot of 1 and thus we have w(m’) = 0. As b = 1, w(b) = 0. Therefore

w(c) = wmb™ ) < w((™)b™ i) fori € [2,m’]. Consequently w(a™ —1) = w(c)
and w(a™ - 1) = pFw(a™ — 1) = p*w(c) > n. This proves the lemma in this case, with
K’ =0and K = p*.

We now assume that K has characteristic 0. Then by [12, Theorem 1] and [27,
Annexe A4] (for the case where w(K™) is not discrete) applied with F = {Z™ — 1} (where
Z is an indeterminate), there exist K € N*, K’ € N such that for every n € N*, for every
a € O such that w(a™ — 1) > n, we can write a = b + ¢, with b,c € O, b = 1 and
w(c) = n/K — K’, which proves the lemma in this case. O
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Lemma 4.20. Assume K to be Henselian. There exist K| € RY, L € N such that for every
ne€Zsy, TnoNIT(0) C Zo.Tyk,-

Proof. We keep the same notation as in Lemma 4.17. Let (x,,...,x;) € Y ¢ be the dual
basis of (x1,...,x¢). Fori € I, we write a; = 2521 njix;j, withn;; € Zforalli, j. We
have nj; =0 for j € [d+1,]. Set7=[1{_y., x} (x; (1)) € T(O). Then o;(7) = 1 for
everyi € [ and thus7 € Zp.

For j € [1,d], write x; = X,y m; ja;, withm; j € Q for every i € I. Take m € N*
such that mm; ; € Z for every (i, j) € I x [1,d]. Let j € [1,d]. We have

d
xi@" =] e e 1+ @0
j=1

Using Lemma 4.19 we can write y;(¢) = b; + c;, with b;, c; € O such that b;." =1 and
w(cj) = n/K — K’, with the same notation as in Lemma 4.19. Set ¢; = cjb;.l €0.As
bj is aroot of 1, we have w(b;) = 0 and thus w(c;) = a)(c}) > n/K — K’. We have
bj +c; = bj(l +C;-).

Setr’ = r[;.’zl)(jY(bj) and” = []%., X (1+¢%). Then y; (1) = b and y; (") = 1+¢},
for j € [1,d]. Fori € I, we have a;(t) = a;(t)a;(t")a;(t) = a;(t)a;(t”) and
a;(t") € 1+ @K KO (when n/K — K’ ¢ N, @5-X'0 is just a notation for
Kewsn/k-k')- As a;i(t) € 1+ @"K-K' O we deduce a;(1') € 1 + @"X~K'O (replacing
Kby K+1ifK < 1).

Let F ={£ €O | &™ =1} Then F is finite. Let L’ = max{w(¢é - 1) | £ € F\ {1}}.
Let L € N be such that L/K — K’ > L’. For n € Zsy, we have n/K — K’ > L’,
we have a;(t’) = 1 fori € I and ' € Zp. Maybe increasing L, we can assume that
Ky :=1/K-K'/L >0.Thenforn > L, wehaven/K — K’ >n(1/K —K’'/L) > nK,.

Consequently, for n € Zsy, and t € T, ¢, we have t = t'tt”, with t't € Zp and
t"" € T, k,, which proves the lemma. O

Proposition 4.21. The topology T is finer than Jrix. If K is Henselian, then we have
T = Igix if and only if Zo = {1} if and only if Igix is Hausdorff.

Proof. Let x € T and m € N*. Then by Lemma 4.5, Uf’m+ and U™ fix x, for
—-mA,mAa] [-mA,mA]
m > 0. By Lemma 4.12, To,,y (1) fix x and thus V,;,; fixes x for m > 0. Thus if n € N*,
Vina € Gf, form > 0 and I is finer than Jgiy.
If I = IFix, then by Theorem 4.8, I is Hausdorff. Therefore (,,cp GF, = Lo =
{1} by Lemma 4.15.
Assume %K is Henselian. Let m € N*. Then by Lemma 4.16 and Lemma 4.20, there

exist K; € R} and L € N such that

Gr, € Vur-Zo Tmmy/k, »
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for n > min(m, L), with M (n) —— +o0. Therefore if Zp = 1 we have
n—+oo

GF, C ViaTymyk, € Vimas

for n such that M (n)/K > 2mN(A), and thus (V,2) and (GF,) are equivalent, which
proves the proposition. O

Remark 4.22.

(1) If (@;)ies is a Z-basis of X, then I = Jgix. Indeed, assume that (a;);cs is a
Z-basis of X. Let (x,')ier be the dual basis. Let n € N* and t € T;, ¢ N T(O0).
Write 1 = [1;¢; x,;(ai), with a; € O* fori € I. Then 71, (1) = [1;; x; (mn(ai))
and m,(¢t) = 1 if and only if 7,,(a;) = 1 for all i € I. Now «;(t) = a; and thus
t € Ty, ¢ if and only if # € T},. Therefore Zp = ,en Tn = {1}

(2) Note that by Lemma 4.16, the set of left T(O)-invariant open subsets of G are
the same for Jpix and . Indeed, let V C G be a non empty left T(O)-invariant
open subset of G for Jgix. Then for every v € V, there exists n € N* such that
vGp, ¢ V.By Lemma 4.16, £(0).GF, € V,, and thus V is open for 7.

(3) Assume that K is local. By (2), if 7 € Homg(Y,C"), then I(1)g = I(7)g;,
(see (1.1) for the definition). Indeed, 6'/2 and 7 are maps from Y = T/T(0) to
C* and thus their extensions to B are left T (O)-invariant. Therefore any element
of I’(\T) is left T(O)-invariant.

5. Properties of the topologies

In this section, we study the properties of the topologies  and Jgix. In Section 5.1, we
prove that when G is not reductive, I is strictly coarser than the Kac—Peterson topology
on G (Proposition 5.4). In Section 5.2, we prove that certain subgroups of G are closed
for 7. In Section 5.3, we prove that the compact subsets of G have empty interior. In
Section 5.4, we describe the topology in the case of affine SL,, under some assumption.

5.1. Comparison with the Kac—Peterson topology on G

In [22], Kac and Peterson defined a topology of topological group on & (C). This topology
was then studied in [14] and generalized in [14, 7]: Hartnick, Kohl and Mars define a
topology of topological group on ® () for # a local field (Archimedean or not), taking
into account the topology of # . The aim of this section is to prove that the topologies we
defined on G = ®(‘K) are strictly coarser than the Kac—Peterson topology on G, unless G
is reductive. As iy is coarser than I it suffices to prove that I is strictly coarser than

108



Topologies on Kac—Moody groups

Ik p. To that end, we prove that I is coarser than Ik p and that the topologies induced
by I and Jkp on a subset of B := TU* differ, using the description of Txp|p given
in [14, 7].

We assume that %K is local, in particular, w(K*) = Z. We equip SL,(K) with the
topology associated to (ker ﬂiLz)ngN*, where ﬂ,S,LZ : SL,(0) — SL,(O/w"0) is the
natural projection. We denote by x, (resp. x_) the morphism of algebraic groups a — ( (1) q )
(resp. a +— (1 9)) for a in aring . Using Corollary 3.6, it is easy to check that

1+@"0 0

SL, _ n n
kerm,? = x. (@"0).x_(@"0). (( 0 |+ 20

) NSL, ((K)) .
and thus (‘Vns/lLZ) is equivalent to (ker 7ry-2) for any regular A € Ysi,.

We equip T with its usual topology Jr, via the isomorphism 7" =~ (K*)™, for m the
rank of X. This is the topology I ((ker 7, |7)nen-). As we shall see (Proposition 5.4),
this is the topology induced by 5 on 7.

For @ € @, let ¢, : SLy(K) — G be defined by ¢, 0 x+ = x+o and let G, be its
image in G. We equip G, with the quotient topology J¢,, inherited from SL, (%K) via
¢o.Let 2 = {a; | i € I} and 2@ be the set of finite sequences of elements of X. For
a@=(a,...,ar) € 0 where k € N*,one sets Go = Gy - .. Go, C G. Note that G4
is not a subgroup of G in general. If @, 8 € X, we write @ < g if  appears as an
ordered subtuple of 3. Then < is a preorder on =™ and (X, <) is a directed poset.

Weequip7G o with the topology I7¢,, obtained as the quotient topology with respect
to the multiplication map -

mq 2 (T,97) X (G(,],F/"Gal) X oo X (Gak,F/‘qu) —»TG,. 5.1
In [14, Definition 7.8], the authors define the Kac—Peterson topology Ik p on G as the

direct limit of the directed system {(7G 4, I76G,) | @ € 2@} In other words, a subset V
of G is open for Ik p if and only if V N TG, is open for every a € =@,

Lemma 5.1. Let w € WY. Assume that wr; < w for every i € I (for the Bruhat order on
WY). Then WY is finite.

Proof. By [23, 1.3.13 Lemma], we have w.a; € ®_ foreveryi € I. Let A € CJV,. Then

a;j(w™'.2) <Oforeveryi € Iandthus w™'.1 € —CJ‘;. Thus A € ¥ N —9". By [23, 1.4.2
Proposition] we deduce that @ is finite and thus WV is finite. O

We equip WY with the right weak Bruhat order <: for every v,w € WY, v < w if
£(v) + £(v_'w) = £(w). We assume that W" is infinite. By Lemma 5.1, there exists a
sequence (w;)ien € (W)Y such that wg = 1, £(wiy1) = €(w;) + 1 and w; < w;,, for

every i € N.
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For w € W", one sets Inv(w) = {@ € @, | wla e ®_}. LetU,, = (U, | a €
Inv(w)}. By [8, Lemma 5.8], if w = r;, ...r;, with k = £(w) and iy,...,ix € I,
then U,, = Uail .U,ill(,[i2 ~-~Uri]~~~rfk,1~aik and every element of U, admits a unique
decomposition in this product. By [14, Proposition 7.27], as a topological space, B is
the colimit lim_, TU,, (note that (W", <) is not directed). Let U’ = | J,,cjy Uw,, - Then the
topology induced on TU’ by Ik p is the topology of the direct limit lim_, TU,,,,: a subset
V of TU’ is open if and only if V N TU,,, is open for every n € N.

Forn € N, write w,,41 = w,r;, wherei € I. Set B[n] = w,,.;. Then Inv(w,,) = {B[i] |
i €1,n]}, by [23, 1.3.14 Lemma].

By [14, Lemma 7.26], if n € N* then the map m = m,, : T x (K)" — TU,,, defined
by m(t,ai,...,a,) = txgi1)(ay) ...xga)(a,) is a homeomorphism, when TU,,, is
equipped with the restriction of Ix p.

Recall that T = F ((V,2)) forany 1 € Y* N Cj‘j.

Define ht : Q. = B, ., Za; — Z by ht(X;c; niei) = Yieq ni, for (n;) € Z1.

Lemma 5.2. Assume that W is infinite. For n € N*, set V,, = T [}_, xg[i] (' MBLED )
and set V = U, e V- Then 'V is open in (TU’, Tk p) but not in (TU’, ). In particular,
I and Tk p are different.

Proof. Letn € N*. Letv € VNTU,, and choose k € N* such thatv € Vi. If k < n,
then v € Vi C V,. Suppose now k > n. Write v = 1[I xg;) (@™B)'q;), with
ai,...,ax € Oandt € T. By [14, Lemma 7.26], we have a; = 0 forevery i € [n+ 1, k]
and thus v € V,,. Therefore VN TU,,, =V,. By [14, Lemma 7.26], V,, is open in TU,,,
and thus V is open in (TU’, Ik p).

LetieC }’ﬂY be such that @; (1) = 1 foreveryi € I. Let us prove that for every n € N*,
U’ nUP™ is not contained in V. For k,n € N*, set xy., = [T, xp(;1 (@™MPlID) e U' 0
UP™  Letn € N*. By [14, Lemma 7.26], if xy, € V, then nht(B[i]) > (ht(B[i]))!, for
everyi € [0, k]. Asht(B[i]) - +00, there exists k € N such thatxy , € U'NnU”""\V

and thus, U’ N U? T; ¢ V. Using Lemma 2.3 we deduce that there exists no n € N* such

that V,, N TU’ C V and thus V is not open for 7. O

Proposition 5.3. Let V = (V,))nen+ be a conjugation-invariant filtration of G. Let Iy be
the associated topology on G. We assume that for every a € X, the induced topology on
G is I, and that the induced topology on T is I1. Then Iy is coarser than Tk p.

Proof. Let n € N*. Let us prove that V,, is open for Txp. Let @ = (ag, ..., 1) € PN
Let us prove that m,'(V,) is open in T x G o, X -+ X Gg,, with the notation of (5.1).
Letv € TGy NV, and (£, vk, ...,v1) € my'({v}). We have v = tvj...v|. We set
n; = n and we choose na, ..., 1k, ngs1 € N* such that for all J € [2,k], we have
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Vijvi-1...vi Cvji1...viVp, which is possible since V is conjugation-invariant. Then
we have:
Vnk” VkVnka_lvnkq e Vn3V2VnZV1Vn] C Vnk+1VkVnka—1Vnk71 A Vn3V2vlvn

C-+CVg...Vy.
Consequently
(Vi NT) (Vi N Ga) oo (ViViy NGy,y) Ctvg...viVy =vV, =V,
and hence
Mo ((tVioy NT) X (viVi, N Goy) X -+ X (viVyy, NGg,)) €V NTGyg.

Therefore m' (V,, N TG,) is open or equivalently V,, N TG, is open. As this is true for
every @ € 2 we deduce that V,, is open for Tk p. As (G, Ik p) is a topological group,
we deduce that xV;, is open in Ik p for every x € G and n € N* and we deduce that Ty is
coarser than Ik p. O

Proposition 5.4.

(1) Let @« € @, and ¢, : SLy(K) — G be the group morphism defined by
Qq © X =Xsq. Fixabasis (x),...,x}) of Y and define . : (K*)* ST cGby
t((ai,....ap)) = x\(a1) ... x)(ae), foray,...,ar € K*. Then the o, @ € ®
and ¢ are continuous when G is equipped with I .

(2) The topology induced by 5 on T is I and if a € @, then the topology induced
byT onG,is Ig,

Proof. Leta € ® and A € Y* be regular. Let g € ¢! (V3). By [30, 3.16] and [26, 1.2.4
Proposition], we have the Birkhoft decomposition in SL (%) (where Ngy, is the set of
monomial matrices with coefficient in K*) and G:
SLa(K) = | | x(FOnx (%) and G=| |UtnU".
nENSL2 neN

Let n € Ngp, be such that g € x. (K)nx_(K). If n ¢ Tsr,, then ¢,(g) € UTpo(n)U™
and v¥ (¢4 (n)) acts as the reflection with respect to @ on A. Then ¢, (g) ¢ UTTU~ which
contradicts Corollary 3.6. Therefore n € T. Write g = x;.(ay)nx_(a-), with a,,a_ € K.
Then by Lemma 2.3, we have x, (a,) € U{’_"Z/”,x_a(a_) e U and go(n) € Ton(y)-
Consequently, w(a.), w(a-) > |a(1)| and

1+ @NDo 0
t€Ts,on@) = 0 1+ @2N DO N SLy(K).
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Therefore ¢! (V)  ©  x:(Kwzja))Tsia2n )X (Kwzja(r)). Conversely,
Ca(x-(Kuzja))s Pa@e(Kosia)))s PaTsi,any) € Vo and thus @' (V) =
X+ (Kwz)a)DTsL,2n ()X = (Kws e (1)) is open in SLy (K). Therefore ¢, is continuous
and V) N G, is open.

Let n € N*. Then ¢*1(7,)) = (1 + @"0)¢ and thus ¢ is continuous. Moreover, we
have T NV = Ton(a), by the Birkhoff decomposition, which proves that J~ induces Ir
onT. m]

Corollary 5.5. If ® is infinite, the topologies I and Jrix are strictly coarser than Tk p.

Proof. Let A € Y* be any regular element. By Propositions 5.4 and 5.3, applied with
V =(Vua), T is coarser than Ik p. By Lemma 5.2, 7 is different from Ik p. As Jgix is
coarser than I (by Proposition 4.21), we deduce the result. O

5.2. Properties of usual subgroups of G for I and Jrix

In this subsection, we prove that many subgroups important in this theory (such as B, T,
Uy, a € @, etc.) are open or closed. We have Tgix C 7 and thus every subset of G open
or closed for 7ri is open or closed for 7. As the Kac—Peterson topology Ik p is finer
than , this improves the corresponding results of [14]. Note that we consider B = B*
and U™, but the same results hold for B~ and U™, by symmetry.

If g € G, we say that g stabilizes (resp. pointwise fixes) +co if g. + co = +oo (resp.
if there exists Q € +oo such that g pointwise fixes Q). We denote by Stabg (+c0) the
stabilizer of +oc0 in G.

By [15, 3.4.1], Stabg (+c0) = B := TU*. We denote by Ch(dZ™*) the set of positive
sector-germs at infinity of 7. For ¢ € Ch(d1 ™) and x € I, there exists an apartment A
containing x and c. We denote by

x+c (5.2)

the convex hull of x and c in this apartment. This does not depend on the choice of A, by
(MATD). Fix 4p € C;'~ Forr e Ry, weset C, = {c € Ch(dI*) | [0,r.49] € O+ c}. This

set is introduced in [9, Definition 3.1] where it is denoted Uy ;- . or U, .

Proposition 5.6.
(1) The subgroup B is closed in G for T and gix.

(2) The subgroup U* of G is closed for T . It is closed for Tgix if and only if T = Tgix.
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Proof.

(1). Letg € G\ B. Then g.(+o0) # +c0. By [9, Lemma 7.6], (), cg, Cr = {+oo}. Thus
there exists n € N* such that g=!. + co ¢ C,,. Then V4, fix [0, ndo]. Let v € V4, Then

V.(0+00) =v.0+ (v.+00) =0+ (v.+00) Dv.[0,ndg] = [0,ndp].

Therefore V,, 4,.(+00) C C,,. Consequently, g (+00) ¢ Via,-+oo and thus gV, 4. +00 3
+00. Thus g.V;1, € G \ B, which proves that G \ B is open for Frix.

(2). Let g € G\ U*. If g € G\ U'T, then by (1), there exists V € 7 such that
gV c G\U'T c G\ U". We now assume g € U*T \ U. Write g = u,t, with u, € U*
andr e T\ {l}.LetA e Y N C]‘Z and assume that g'V) N U* # @. Then there exists
(), u’,t') € Uf’f":/l] x Upm % Tana such that ustu,u’ t' = u’, where u! € U*. As
¢ normalizes U* and U™, we can write tu/,u’ = uf)u(})t, for some u'*) € U*,u® e U~.
Then we have
u;'_lu+u4(r3)u(_3)tt’ =1.

By Lemma 2.3 we deduce ¢’ = 1. Therefore ¢ € T (4). Thus if A is sufficiently dominant,
gVanU* =@ and gV, c G\ U*. We deduce that G \ U™ is closed for 7.

Suppose now I # Trix. Then by Proposition 4.21, Zo # {1}. Then every non empty
open subset of G for T contains Zp. Take z € Zp \ {1}. Asz € T(0), z € G\ U*.
Moreover, for any non empty open subset V of G, zV 3 1 € U*. Therefore G \ U* is not
open, which completes the proof of the proposition. O

Proposition 5.7.

(1) Letx € I. Then the fixator G of x in G is open (for Trix and T"). In particular,
®™"(0) is open in G.

(2) Let E C I. Then the fixator and the stabilizer of E in G are closed for Trix and T".

Proof.
(1). By Lemma 4.13, Gf, € G, for n > 0, which proves (1).

(2). Let g € G\ Gg. Let x € E be such that g.x # x. Then g.Gx € G \ Gg and
hence G is open. Let g € G \ Stabg(E). Let x € E be such that g.x ¢ E. Then
g.G, C G\ Stabg (E) and hence Stabg (E) is closed. O

Corollary 5.8. The subgroups N and T are closed in G for Trix and T .
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Proof. By Proposition 5.7, N = Stabg (A) is closed. We have T = Stabg (+o0) N N.
Indeed, it is clear that T C Stabg (+c0) N N. Conversely, let g € Stabg (+c0) N N. Let
w € WY and A € A be such that g.x = 1 + w.x for every x € A. Then w. CV Cv and
thus w = 1. Therefore g acts by translation on A and hence g € T. This proves that
T = Stabg (+c0) N N and we conclude with Proposition 5.6. |

Remark 5.9.

(1) The fixator K; of C(')+ is open for Jrix. Indeed, let A € C; NY. Then G 4 =
Go N G, is open for Jrix and Go 1) C K7.

(2) Forx,y € I, one writes x < -y if there exists g € G such that g.x, g.y € A and
gy—gx €T =Upew w. C By WV-invariance of 7, this does not depend
on the choice of g and by [29, Theoreme 5.9], < is a preorder on 7. One sets

*={geG|g.0>0}.

This is a subsemigroup of G which is crucial for the definition of the Hecke
algebras associated with G (when K is local), see [2], [5], [6] or [11]. Then
G* > Gy = G™"(0) and thus G* is open in G.

Lemma 5.10. Let g € G. Then there exists n € N such that g.a = n.a for every
acAng LA

Proof. Let h € G be such that hg.A = A and h fixes A N g.A, which exists by (MAII).
Then n := hg stabilizes A and thus it belongs to N. Moreover, hg.a = n.a = g.a for every
ae AN g‘l.A, which proves the lemma. ]

Lemma 5.11. Let @ € ®. Write @ = ew.q;, forw € WY, e € {—,+} andi € I. Let Q be
the sector-germ at infinity of—ewri(C}). Then U,T = Stabg (w.e0) N Stabg (Q).

Proof. There is no loss of generality in assuming that w = 1 and € = +. Let u € U,,.
Then u fixes a translate of ai‘l (R4). Therefore TU ,, stabilizes 2 and +oo. Conversely, let
g € Stabg (+00) N Stabg (Q). Then there exist x, x” € A such that g.(x + C}’.) =x"+ C}f..
Then by Lemma 5.10, there exists n € N such that g.x”" = n.x"" for every x” € Ang=' A.
Then n fixes +co and thus n € T (by the proof of Corollary 5.8). Then n~'g.x = x.
Considering n~'g instead of g, we may assume that g pointwise fixes +co. Therefore
g pointwise fixes Q. There exists a,a’ € A such that g fixes a + Cj‘ﬁ and g fixes
a - r,-(C“f’.). Let A = g.A. Then A N A is a finite intersection of half-apartments by
(MATI) and thus either A = A or A N A is a translate of ozi‘l (R4). Moreover, g fixes
AN Asince it fixes an open subset of AN A. By [30, 5.7 3)], g € U,, T(O). Consequently
Stabg (+00) N Stabg (Q) € Uy, T, and the lemma follows. O

114



Topologies on Kac-Moody groups
Proposition 5.12. Let o € .
(1) The group U,T is closed for T~ and Tgix.
(2) The group U, is closed for T .
(3) If T # Trix, then Uy is not closed for Irix.

Proof.

(1). Let 2 be a sector-germ of I (positive or negative). Then by Proposition 5.6 (or
the similar proposition for B~ if Q is negative), Stabg (Q) is closed in G for Fgix. By
Lemma 5.11 and Proposition 5.7, we have (1).

(2). We have U, = U,T N U*, by Lemma 2.3 and thus (2) follows from (1) and
Proposition 5.6.

(3). Itis similar to the proof of the corresponding result of Proposition 5.6. O

5.3. Compact subsets have empty interior

By [1, Theorem 3.1], for any topology of topological group on G, GCJ or G are not
compact and open. In particular, G and G ¢y are not compact for 7. With a similar
reasoning, we have the following.

Proposition 5.13. Assume that WY is infinite.
(1) Letn € N* and A € Y* regular. Then Vi1 /V(n+1)a is infinite.
(2) Every compact subset of (G, J) has empty interior.

Proof.

(1). Set H = G[_pa,(n+1)a] € G. Then H O V(p11)a, by (4.1). Thus [Va/Vinenal =
| Vua/ (H NV, )| and it suffices to prove that V,,/(H N V},,) is infinite. We have V,; =
Lvev,,/(Ha V) V-(HNVpa). Moreover if v,v" € Vy, thenv.((n+1)2) =v".((n+1)4)
if and only if v'.(G (nr1)a N Via) = v.(G (ns1)2 0 Vid)-

Let us prove that G (,+1)a N Via = HNVya. Let g € Gnr1)a N Via. Then by (4.1), g
fixes [-nd, nd] and (n+1)A. Then g.A is an apartment containing [—nd, nd] U {(n+1)A1}.
As g.A N A is convex, g.A contains [—nd, (n+ 1)1]. By (MA D), there exists 4 € G such
that g.A = h.A and h fixes AN g.A. Then h~'g.A = A and h~'g acts on A by an affine
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map. As h~'g fixes [-nA, nd], it fixes [-nA, (n + 1)A]. Therefore g fixes [-nd, (n+ 1)A4]
and thus g € H. Therefore G (112 N Vi = H N V1. Consequently,

Vaa-((n+1)2) = |_| {v.(n+1)a}t and [Via/(HO Vo)l = [Vaa. (n+ 1)) |.
VEVua/(HNVia)

Let (B¢) € (®,)" be an injective sequence. Write Br = 3¢, mfg)a/,-, with ml@ eN

for £ € N. Then (1) = (S;e;m'")(mines a; (1)) —— +oo. Let £ € N. For k ¢
[Be(n), Be((n+ DA) = 1], x_p (@) € UP™= 1 € Vig. Set

X = x,ﬁf(wk).((n + 1)) € Vya.((n+ 1)A).

Let k' € [B¢(nd), Be((n+1)2) — 1]. Then xi = xy if and only if x_g, (@*).((n+1)2) =
X_g, (@*").((n+ 1)) if and only ifx_g, (@k —@*).((n+1)2) = (n+ 1) if and only if
w(w* — @) > (n+1)B,(A) if and only k = k’. Therefore |V,,1.((n + 1)) > B¢(1).
As this is true for every € € N, |V,.1.((n + 1)4)| if infinite, which proves (1).

(2). LetV be acompact subset of G and assume that V has non empty interior. Considering
v~1.V instead of V, we may assume 1 € V. Then there exists 1 € Y* N CJVC such that
YV, c V, and we have Vo, € V,. As V, is closed, it is compact. By (1), Vy/V,, is
infinite. Therefore V) = ||, c, /4, v-V2a is a cover of V, by open subsets from which
we can not extract a finite subcover: we reach a contradiction. Thus every compact subset
of G has empty interior. O

5.4. Example of affine SL,

In this subsection, we determine an explicit filtration equivalent to (V},,) in the case of
affine SL, (quotiented by the central extension).

Let Y = Z&" @ Zd, where &, d are some symbols, corresponding to the positive
root of SL, (%K) and to the semi-direct extension by K™ respectively. Let X = Z& & Z6,
where &, 6 : Y — Z are the Z-module morphisms defined by &(&") = 2, &(d) = 0,
6(¢Y) =0and 6(d) = 1. Letag = 6 — &, a1 = &, ay = —¢" and @) = &". Then
S = ((% 7). X.Y. {ao, a1}, {ay.a)}) is a root generating system. Let ® be the
Kac—Moody group associated with S and G = &(K). Then by [23, 13] and [24, 7.6],
G = SLy (K[u,u™']) = K*, where u is an indeterminate and if (M, z), (M1,z1) € G,

with M = (a(w,u) b(w,u)) M = (al(w,u) bl(w,u)) we have

c(w,u) d(w,u) ci(w,u) di(w,u)

(5.3)

(M,Z)’(Ml’m):(M(m(w,zu) b1(w,zu))’ 1).

ci(w,zu) d\(w,zu)
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Note that the family (e, ) is not free. We have ® = {a +k¢ | a € {+d}, k € Z} and
(@, 1) is a basis of this root system. We denote by @ (resp. @) the set ® N (Nag+Na;)

(resp—®,).Fork € Zand y € ‘K, we set x g4 5(y) = ((‘ “TY) , 1) € Gandx_g4x6(y) =

0
(L §):1) €6
Let f, g € K be such thatw(f) = w(g) = 0.Letl, n € Z. Then ((fg“f f_l(;_[) ,gw”)
acts on A by the translation of vector —£&Y — nd. For u = €&Y +nd € Y, we set

ty = ( “’07[ wo(; s w‘"), which acts by the translation of vector y on A. We set A = &Y +3d.

We have (1) = 1, @;(1) =2 and thus A € C;..
m uOu] Olu ..
By 130, 4.123 b, 0™ = (("0k) .96, ) 1) 1 G and similarty

- l1+u'O[u™"] u'O[u™"]
Yo ‘(( Olu'] 1+u—10[u—1])’1)”G'

We make the following assumption:

l1+@"Ofu,u™'] 1+@"Ofu,u!]

VneN kerm, C (1 +@"Olu,u™'] 1+@"Ofu,u™"]

)><1 (1+@"0). (5.4

sy € 17 v e 0/70) ~ (/0000 ) 00

(O/w@"0)* and =, is the canonical projection, then the assumption is satisfied. However
we do not know if it is true. In [24, 7.6], ® is described only on fields and in [23, 13],
only on C.

For n € N*, we set H,, = ker(7,) N (( Ol(wu)",(wu” )" O[(w”)n’(w“_l)n} ) ,7(*).

Ol (ww)™,(wu=""] O[(wu)",(wu="')"

Proposition 5.14. If (5.4) is true, then the filtrations (H,)nen+ and (Vp)nen+ are
equivalent.

Proof. Letn € N*. By Lemma 2.4, we have U, = U"/"" = 1,0 U§" " 1,0. We have
tha = thgv13na- We have
1+ (@"u)O[w"u] Olw*"u]

=< {1}.

pm+
fanalo T nd S\ (g Olmte] 1+ (@) 0lo ]

117



A. Hébert

We have
f 1 + @ u0[w>u) O[@"u] < (1} 1
e (@u)0[wu] 1+ @"ul[w™u] na
c 1 + @ "uO @ u] @O "u] < {1}
o (@ u)0[@*u] 1+ "u0 @ u]
1+ (@"u)0|w"u] Olw"u]
< (( w"uO[w"u) 1 +w”u0[w"u]) 8 {1})
C SLy(O[w"u]) < {1} C SLy(O[w"u, w"u"']) = {1}.
Similarly, U””}’/l 1] © SL,(O@"u, w"u~']) = {1}.
AsT,, C SLZ(O[w u, w"ul) =< {1 + @"0}, we deduce V,; c H,, since V,, C

ker(m,).
Now let M € SLy(O[@* u, @**u~']) Nker(x2,) and a € K*. Using (5.4), we write

M= 1 +agw? +Z|i|21aiw2"|‘|u bow™" +Z|i|21a,~w2"|“u
cow + Zlis1 ciwMily! 1 +dyw™ + Zlils1 diw?ilyt ]’

with a;, b;, c;,d; € O, for all i. Then

t—nd(Ma a)tnd

B 1+aow.2n+zm2] aiwn(2|i|—i)ui b0w2n+2|i\2] aiwn(2|i|—i)ui .
COwZn +Z|i|zl Ciwn(2|t\—t)ut 1+dow2" +Z|i\21 diwn(zlll—l)ul >
Therefore

t_ng—nd(M, @)ty (&v+a)

B 1+a0w2n +Z\i|zl aiwn(2|i\—i)ui wZn(bow.Zn +Z|i|2] aiwn(2|i|—i)ui) .
w.—Zn (Cow.2n +Z|i\zl Ciw.n(ZM—z)uz) 1+d0w2n +Z\i|zl diwn(2|l\—l)ul >

€ SLy(O[u,u™']) =< O".

By [3, Lemma 6.11], Ha,, fixes nd’, where A’ = &" + d. Similarly, it fixes —nA’. There-
fore Hy, C G|_pu nr) Nkermy,. We have G_, o] = U{’_’:l:l, '] Uf”’;;l/ '] .Z(0),
by (2.8). Using the inclusion (Ufm;:l, w) Ul M,]) c kerm,, we deduce that
Gi-nv vy Nkerm, C Voa. As (Vina) and (Vi) are equivalent, we deduce that

(H,,) and (V) are equivalent. O
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