Existence and multiplicity results for a fractional curvature problem
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 1-31.

We consider the existence problem of conformal metrics with prescribed fractional curvature on the standard sphere $S^n,n\ge 2$. It is equivalent to solving a fractional nonlinear variational equation involving a critical nonlinearity. By studying the lack of compactness of the associated variational problem, we extend the existence results of [2] and [3] to any fractional order $\sigma \in (0,\frac{n}{2})$ and prove a general existence and multiplicity Theorem under an Euler–Hopf type criterion.

Publié le :
DOI : 10.5802/ambp.431
Classification : 35J60, 58E30
Keywords: Fractional nonlinear problems, Variational analysis, Critical nonlinearities, Palais–Smale condition, Critical points at infinity

Azeb Alghanemi 1 ; Khadijah Abdullah Sharaf 1 ; Hichem Chtioui 2 ; Mohamed Gdarat 2

1 King Abdulaziz University Department of Mathematics Jeddah Saudi Arabia
2 Sfax University Department of Mathematics Faculty of Sciences of Sfax Tunisia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_1_1_0,
     author = {Azeb Alghanemi and Khadijah Abdullah Sharaf and Hichem Chtioui and Mohamed Gdarat},
     title = {Existence and multiplicity results for a fractional  curvature problem},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--31},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {1},
     year = {2025},
     doi = {10.5802/ambp.431},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/}
}
TY  - JOUR
AU  - Azeb Alghanemi
AU  - Khadijah Abdullah Sharaf
AU  - Hichem Chtioui
AU  - Mohamed Gdarat
TI  - Existence and multiplicity results for a fractional  curvature problem
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 1
EP  - 31
VL  - 32
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/
DO  - 10.5802/ambp.431
LA  - en
ID  - AMBP_2025__32_1_1_0
ER  - 
%0 Journal Article
%A Azeb Alghanemi
%A Khadijah Abdullah Sharaf
%A Hichem Chtioui
%A Mohamed Gdarat
%T Existence and multiplicity results for a fractional  curvature problem
%J Annales mathématiques Blaise Pascal
%D 2025
%P 1-31
%V 32
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/
%R 10.5802/ambp.431
%G en
%F AMBP_2025__32_1_1_0
Azeb Alghanemi; Khadijah Abdullah Sharaf; Hichem Chtioui; Mohamed Gdarat. Existence and multiplicity results for a fractional  curvature problem. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 1-31. doi : 10.5802/ambp.431. https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/

[1] Wael Abdelhedi; Hichem Chtioui On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2937-2955 | DOI | MR | Zbl

[2] Wael Abdelhedi; Hichem Chtioui; Hichem Hajaiej A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. I, Anal. PDE, Volume 9 (2016) no. 6, pp. 1285-1315 | DOI | MR | Zbl

[3] Azeb Alghanemi; Wael Abdelhedi; Hichem Chtioui A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. II, J. Math. Phys. Anal. Geom., Volume 18 (2022) no. 1, pp. 3-32 | MR | Zbl

[4] Abbas Bahri Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, 182, John Wiley & Sons, 1989 | MR | Zbl

[5] Abbas Bahri An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., Volume 81 (1996) no. 2, pp. 323-466 | MR | Zbl

[6] Abbas Bahri; Jean-Michel Coron On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Commun. Pure Appl. Math., Volume 41 (1988) no. 3, pp. 253-294 | DOI | MR | Zbl

[7] Abbas Bahri; Jean-Michel Coron The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., Volume 95 (1991) no. 1, pp. 106-172 | DOI | MR | Zbl

[8] Mohamed Ben Ayed; Yansong Chen; Hichem Chtioui; Mokhles Hammami On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996) no. 3, pp. 633-677 | MR | Zbl

[9] Randa Ben Mahmoud; Hichem Chtioui Existence results for the prescribed scalar curvature on S 3 , Ann. Inst. Fourier, Volume 61 (2011) no. 3, pp. 971-986 | Numdam | MR | Zbl

[10] Randa Ben Mahmoud; Hichem Chtioui Prescribing the scalar curvature problem on higher-dimensional manifolds, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 5, pp. 1857-1879 | DOI | MR | Zbl

[11] Simon Brendle Prescribing a higher order conformal invariant on S n , Commun. Anal. Geom., Volume 11 (2003) no. 5, pp. 837-858 | DOI | MR | Zbl

[12] Jeffrey S. Case; Sun-Yung A. Chang On fractional GJMS operators, Commun. Pure Appl. Math., Volume 69 (2016) no. 6, pp. 1017-1061 | DOI | Zbl

[13] Sun-Yung A. Chang; María del Mar González Fractional Laplacian in conformal geometry, Adv. Math., Volume 226 (2011) no. 2, pp. 1410-1432 | DOI | Zbl

[14] Sun-Yung A. Chang; Paul C. Yang A perturbation result in prescribing scalar curvature on S n , Duke Math. J., Volume 64 (1991) no. 1, pp. 27-69 | MR | Zbl

[15] Chiun-Chuan Chen; Chang-Shou Lin Prescribing scalar curvature on S N . I: A priori estimates, J. Differ. Geom., Volume 57 (2001) no. 1, pp. 67-171 | MR | Zbl

[16] Yan-Hong Chen; Chungen Liu; Youquan Zheng Existence results for the fractional Nirenberg problem, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4043-4086 | DOI | MR | Zbl

[17] Hichem Chtioui On the Chen-Lin conjecture for the prescribed scalar curvature problem, J. Geom. Anal., Volume 33 (2023) no. 9, 298, 398, 50 pages | MR | Zbl

[18] Hichem Chtioui; Randa Ben Mahmoud; Dina A. Abuzaid Conformal transformation of metrics on the n-sphere, Nonlinear Anal., Theory Methods Appl., Volume 82 (2013), pp. 66-81 | DOI | MR | Zbl

[19] Hichem Chtioui; Afef Rigane On the prescribed Q-curvature problem on S n , J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2999-3043 | DOI | MR | Zbl

[20] María del Mar González; Rafe Mazzeo; Yannick Sire Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., Volume 22 (2012) no. 3, pp. 845-863 | DOI | MR | Zbl

[21] Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci Hitchhiker’s guide to the fractional Sobolev, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl

[22] Fei Fang Infinitely many non-radial sign-changing solutions for a Fractional Laplacian equation with critical nonlinearity (2014) | arXiv | Zbl

[23] Charles Fefferman; C. Robin Graham Juhl’s formulae for GJMS operators and Q-curvatures, J. Am. Math. Soc., Volume 26 (2013) no. 4, pp. 1191-1207 | DOI | Zbl

[24] C. Robin Graham; Ralph Jenne; Lionel J. Mason; George A. J. Sparling Conformally invariant powers of the Laplacian I. Existence, J. Lond. Math. Soc. (2), Volume 46 (1992) no. 3, pp. 557-565 | DOI | MR | Zbl

[25] C. Robin Graham; Maciej Zworski Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118 | DOI | MR | Zbl

[26] Hichem Hajaiej; Luc Molinet; Tohru Ozawa; Baoxiang Wang Sufficient and necessary conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu, Volume B26 (2011), pp. 159-175 | MR | Zbl

[27] Tianling Jin; Yanyan Li; Jingang Xiong On a fractional Nirenberg problem. I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1111-1171 | MR | Zbl

[28] Tianling Jin; Yanyan Li; Jingang Xiong On a fractional Nirenberg problem. II: existence of solutions, Int. Math. Res. Not., Volume 2015 (2015) no. 6, pp. 1555-1589 | MR | Zbl

[29] Tianling Jin; Yanyan Li; Jingang Xiong The Nirenberg problem and its generalizations: A unified approach, Math. Ann., Volume 369 (2017) no. 1-2, pp. 109-151 | MR | Zbl

[30] Yanyan Li Prescribing scalar curvature on 𝕊 n and related topics. I., J. Differ. Equations, Volume 120 (1995) no. 2, pp. 319-410 | MR | Zbl

[31] Yanyan Li Prescribing scalar curvature on S n and related problems. II: Existence and compactness, Commun. Pure Appl. Math., Volume 49 (1996) no. 6, pp. 541-597 | MR | Zbl

[32] Yanyan Li; Meijun Zhu Uniqueness theorems through the method of moving spheres, Duke Math. J., Volume 80 (1995) no. 2, pp. 383-417 | MR | Zbl

[33] John W. Milnor Lectures on the h-cobordism theorem, Princeton Mathematical Notes, Princeton University Press, 1965, 113 pages | DOI | MR

[34] Khadijah Abdullah Sharaf; Hichem Chtioui Conformal metrics with prescribed fractional Q-curvatures on the standard n-dimensional sphere, Differ. Geom. Appl., Volume 68 (2020), 101562, 21 pages | MR | Zbl

[35] Steve Smale An infinite dimensional version of Sard’s theorem, Am. J. Math., Volume 87 (1965), pp. 861-866 | DOI | MR | Zbl

[36] Michael Struwe A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | MR | Zbl

[37] Jinggang Tan Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 2, pp. 837-859 | MR | Zbl

[38] Meijun Zhu Prescribing integral curvature equation (2013) | arXiv

Cité par Sources :