We consider the existence problem of conformal metrics with prescribed fractional curvature on the standard sphere $S^n,n\ge 2$. It is equivalent to solving a fractional nonlinear variational equation involving a critical nonlinearity. By studying the lack of compactness of the associated variational problem, we extend the existence results of [2] and [3] to any fractional order $\sigma \in (0,\frac{n}{2})$ and prove a general existence and multiplicity Theorem under an Euler–Hopf type criterion.
Keywords: Fractional nonlinear problems, Variational analysis, Critical nonlinearities, Palais–Smale condition, Critical points at infinity
Azeb Alghanemi 1 ; Khadijah Abdullah Sharaf 1 ; Hichem Chtioui 2 ; Mohamed Gdarat 2

@article{AMBP_2025__32_1_1_0, author = {Azeb Alghanemi and Khadijah Abdullah Sharaf and Hichem Chtioui and Mohamed Gdarat}, title = {Existence and multiplicity results for a fractional curvature problem}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--31}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {32}, number = {1}, year = {2025}, doi = {10.5802/ambp.431}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/} }
TY - JOUR AU - Azeb Alghanemi AU - Khadijah Abdullah Sharaf AU - Hichem Chtioui AU - Mohamed Gdarat TI - Existence and multiplicity results for a fractional curvature problem JO - Annales mathématiques Blaise Pascal PY - 2025 SP - 1 EP - 31 VL - 32 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/ DO - 10.5802/ambp.431 LA - en ID - AMBP_2025__32_1_1_0 ER -
%0 Journal Article %A Azeb Alghanemi %A Khadijah Abdullah Sharaf %A Hichem Chtioui %A Mohamed Gdarat %T Existence and multiplicity results for a fractional curvature problem %J Annales mathématiques Blaise Pascal %D 2025 %P 1-31 %V 32 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/ %R 10.5802/ambp.431 %G en %F AMBP_2025__32_1_1_0
Azeb Alghanemi; Khadijah Abdullah Sharaf; Hichem Chtioui; Mohamed Gdarat. Existence and multiplicity results for a fractional curvature problem. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 1-31. doi : 10.5802/ambp.431. https://ambp.centre-mersenne.org/articles/10.5802/ambp.431/
[1] On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2937-2955 | DOI | MR | Zbl
[2] A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. I, Anal. PDE, Volume 9 (2016) no. 6, pp. 1285-1315 | DOI | MR | Zbl
[3] A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis. II, J. Math. Phys. Anal. Geom., Volume 18 (2022) no. 1, pp. 3-32 | MR | Zbl
[4] Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, 182, John Wiley & Sons, 1989 | MR | Zbl
[5] An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., Volume 81 (1996) no. 2, pp. 323-466 | MR | Zbl
[6] On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain, Commun. Pure Appl. Math., Volume 41 (1988) no. 3, pp. 253-294 | DOI | MR | Zbl
[7] The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., Volume 95 (1991) no. 1, pp. 106-172 | DOI | MR | Zbl
[8] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996) no. 3, pp. 633-677 | MR | Zbl
[9] Existence results for the prescribed scalar curvature on , Ann. Inst. Fourier, Volume 61 (2011) no. 3, pp. 971-986 | Numdam | MR | Zbl
[10] Prescribing the scalar curvature problem on higher-dimensional manifolds, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 5, pp. 1857-1879 | DOI | MR | Zbl
[11] Prescribing a higher order conformal invariant on , Commun. Anal. Geom., Volume 11 (2003) no. 5, pp. 837-858 | DOI | MR | Zbl
[12] On fractional GJMS operators, Commun. Pure Appl. Math., Volume 69 (2016) no. 6, pp. 1017-1061 | DOI | Zbl
[13] Fractional Laplacian in conformal geometry, Adv. Math., Volume 226 (2011) no. 2, pp. 1410-1432 | DOI | Zbl
[14] A perturbation result in prescribing scalar curvature on , Duke Math. J., Volume 64 (1991) no. 1, pp. 27-69 | MR | Zbl
[15] Prescribing scalar curvature on . I: A priori estimates, J. Differ. Geom., Volume 57 (2001) no. 1, pp. 67-171 | MR | Zbl
[16] Existence results for the fractional Nirenberg problem, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4043-4086 | DOI | MR | Zbl
[17] On the Chen-Lin conjecture for the prescribed scalar curvature problem, J. Geom. Anal., Volume 33 (2023) no. 9, 298, 398, 50 pages | MR | Zbl
[18] Conformal transformation of metrics on the -sphere, Nonlinear Anal., Theory Methods Appl., Volume 82 (2013), pp. 66-81 | DOI | MR | Zbl
[19] On the prescribed Q-curvature problem on , J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2999-3043 | DOI | MR | Zbl
[20] Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., Volume 22 (2012) no. 3, pp. 845-863 | DOI | MR | Zbl
[21] Hitchhiker’s guide to the fractional Sobolev, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl
[22] Infinitely many non-radial sign-changing solutions for a Fractional Laplacian equation with critical nonlinearity (2014) | arXiv | Zbl
[23] Juhl’s formulae for GJMS operators and -curvatures, J. Am. Math. Soc., Volume 26 (2013) no. 4, pp. 1191-1207 | DOI | Zbl
[24] Conformally invariant powers of the Laplacian I. Existence, J. Lond. Math. Soc. (2), Volume 46 (1992) no. 3, pp. 557-565 | DOI | MR | Zbl
[25] Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118 | DOI | MR | Zbl
[26] Sufficient and necessary conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu, Volume B26 (2011), pp. 159-175 | MR | Zbl
[27] On a fractional Nirenberg problem. I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1111-1171 | MR | Zbl
[28] On a fractional Nirenberg problem. II: existence of solutions, Int. Math. Res. Not., Volume 2015 (2015) no. 6, pp. 1555-1589 | MR | Zbl
[29] The Nirenberg problem and its generalizations: A unified approach, Math. Ann., Volume 369 (2017) no. 1-2, pp. 109-151 | MR | Zbl
[30] Prescribing scalar curvature on and related topics. I., J. Differ. Equations, Volume 120 (1995) no. 2, pp. 319-410 | MR | Zbl
[31] Prescribing scalar curvature on and related problems. II: Existence and compactness, Commun. Pure Appl. Math., Volume 49 (1996) no. 6, pp. 541-597 | MR | Zbl
[32] Uniqueness theorems through the method of moving spheres, Duke Math. J., Volume 80 (1995) no. 2, pp. 383-417 | MR | Zbl
[33] Lectures on the h-cobordism theorem, Princeton Mathematical Notes, Princeton University Press, 1965, 113 pages | DOI | MR
[34] Conformal metrics with prescribed fractional -curvatures on the standard -dimensional sphere, Differ. Geom. Appl., Volume 68 (2020), 101562, 21 pages | MR | Zbl
[35] An infinite dimensional version of Sard’s theorem, Am. J. Math., Volume 87 (1965), pp. 861-866 | DOI | MR | Zbl
[36] A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | MR | Zbl
[37] Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 2, pp. 837-859 | MR | Zbl
[38] Prescribing integral curvature equation (2013) | arXiv
Cité par Sources :