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Existence and multiplicity results for a fractional
curvature problem
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Khadijah Abdullah Sharaf

Hichem Chtioui
Mohamed Gdarat

Abstract

We consider the existence problem of conformal metrics with prescribed fractional curvature on the
standard sphere 𝑆𝑛 , 𝑛 ≥ 2. It is equivalent to solving a fractional nonlinear variational equation involving
a critical nonlinearity. By studying the lack of compactness of the associated variational problem, we
extend the existence results of [2] and [3] to any fractional order 𝜎 ∈ (0, 𝑛

2 ) and prove a general existence
and multiplicity Theorem under an Euler–Hopf type criterion.

1. Introduction

In recent decades, mathematicians and physicists are interested in certain problems of
conformal metrics with prescribed curvatures. We study the problem of finding conformal
metrics with prescribed fractional curvature, which is of interest in geometry, physics and
engineering. See [21] and [26] and references therein.

Let 𝑔0 be the standard metric of the unite sphere 𝑆𝑛, 𝑛 ≥ 2, and let 𝑔 be a new metric
conformally equivalent to 𝑔0. Writing 𝑔 = 𝑢

4
𝑛−2𝜎 𝑔0, where 𝜎 ∈ (0, 𝑛2 ) and 𝑢 is a smooth

positive function on 𝑆𝑛, then the fractional curvature 𝑅𝜎
𝑔 of (𝑆𝑛, 𝑔) is given by:

𝑃𝜎
𝑔0 (𝑢) = 𝑐(𝑛, 𝜎)𝑅

𝜎
𝑔 𝑢

𝑛+2𝜎
𝑛−2𝜎 , on 𝑆𝑛,

where 𝑐(𝑛, 𝜎) = Γ( 𝑛2 + 𝜎)/Γ( 𝑛2 − 𝜎) and 𝑃𝜎
𝑔0 is the conformal fractional operator on

(𝑆𝑛, 𝑔0) defined by

𝑃𝜎
𝑔0 =

Γ(𝐵 + 1
2 + 𝜎)

Γ(𝐵 + 1
2 − 𝜎)

, 𝐵 =

√︄
−Δ𝑔0 +

(
𝑛 − 1

2

)2
.

𝑃𝜎
𝑔0 can be seen as the pull back operator of the fractional Laplacian (−Δ)𝜎 on R𝑛 via

the stereographic projection.
Let 𝐾 : 𝑆𝑛 → R be a given function. According to the formula above, the problem of

finding conformal metrics 𝑔 on 𝑆𝑛 with a fractional curvature 𝑅𝜎
𝑔 equals 𝐾 is equivalent

Keywords: Fractional nonlinear problems, Variational analysis, Critical nonlinearities, Palais–Smale condition,
Critical points at infinity.
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to the solving of the fractional nonlinear equations{
𝑃𝜎
𝑔0 (𝑢) = 𝑐(𝑛, 𝜎)𝐾𝑢

𝑛+2𝜎
𝑛−2𝜎 ,

𝑢 > 0 on 𝑆𝑛,
(𝐸𝜎)

where 𝜎 ∈ (0, 𝑛2 ).
For 𝜎 = 1, (𝐸𝜎) corresponds to the Nirenberg problem. For 𝜎 = 2, it corresponds

to the Paneitz–Branson curvature problem. For 𝜎 = 𝑘 ∈ N, it is the higher order
Nirenberg problems related to the so-called GJMS operators. For these topics, we refer
to [7, 9, 10, 14, 18, 23, 24, 30, 31] and the references therein.

For 𝜎 ∉ N, the fractional curvature problems and related conformally invariant
operators were introduced in the works of Case–Chang [12], Chang–Gonzalez [13] and
Graham–Zworski [25] and have been the subject of various studies. We may refer to [1]
for 𝜎 = 1

2 , [2, 3, 16, 22, 27, 28, 37] for 𝜎 ∈ (0, 1), [29, 34] for 𝜎 ∈ (0, 𝑛2 ), [11] for 𝜎 = 𝑛
2 ,

and [38] for 𝜎 > 𝑛
2 . For the problem on general manifolds, we refer to [20].

The purpose of the present paper is to study problem (𝐸𝜎) on 𝑆𝑛, for 𝑛 ≥ 2 and
𝜎 ∈ (0, 𝑛2 ). We are interested in the lack of compactness of the associated variational
problem. We describe the asymptotic behavior of non-compact gradient lines; identify
the locations of blow-up, which are the so-called critical points at infinity; compute the
index of the associated energy functional at each blow-up point; and derive a criterion for
the existence of solutions in terms of an Euler–Hopf index.

Our main assumption is the following:

( 𝒇 )𝜷 . Assume that 𝐾 is of class 𝐶1 on 𝑆𝑛 such that for any critical point 𝑦, there exists a
real 𝛽 = 𝛽(𝑦) ∈ (1, 𝑛), and a neighborhood 𝑁𝑦 of 𝑦 in which the following expansion
holds (in some geodesic normal coordinates system around 𝑦).

𝐾 (𝑥) = 𝐾 (𝑦) +
𝑛∑︁

𝑘=1
𝑏𝑘 | (𝑥 − 𝑦)𝑘 |𝛽 + 𝑜(|𝑥 − 𝑦 |𝛽),

where, 𝑏𝑘 = 𝑏𝑘 (𝑦) ≠ 0, ∀ 𝑘 = 1, . . . , 𝑛, and
∑𝑛

𝑘=1 𝑏𝑘 ≠ 0.

Under condition ( 𝑓 )𝛽 , any critical point of 𝐾 is isolated in 𝑆𝑛, therefore, 𝐾 admits a
finite number of critical points. We denote

𝑦1, . . . , 𝑦𝑠0 ,

all the critical points of 𝐾 . For any 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑠0, we denote

L𝑖 𝑗 = 𝛽(𝑦𝑖) + 𝛽(𝑦 𝑗 ) − 2
𝛽(𝑦𝑖)𝛽(𝑦 𝑗 )
𝑛 − 2𝜎

.

2



Existence and multiplicity results for a fractional curvature problem

For any real 𝑟 ≥ 1, we define

K𝑟 = {𝑦𝑖 , 𝑖 = 1, . . . , 𝑠0, s.t. 𝛽(𝑦𝑖) = 𝑟},
K<𝑟 = {𝑦𝑖 , 𝑖 = 1, . . . , 𝑠0, s.t. 𝛽(𝑦𝑖) < 𝑟},
K>𝑟 = {𝑦𝑖 , 𝑖 = 1, . . . , 𝑠0, s.t. 𝛽(𝑦𝑖) > 𝑟}.

For 𝑦𝑖 ∈ K>𝑛−2𝜎 , we denote

𝑆𝑦𝑖 =
{
𝑦 𝑗 ∈ K<𝑛−2𝜎 , s.t. L𝑖 𝑗 = 0

}
.

(H1). Assume that for any q-tuple 𝜏𝑞 = (𝑧1, . . . , 𝑧𝑞) ∈ (𝑆𝑦𝑖 )𝑞 , 1 ≤ 𝑞 ≤ #𝑆𝑦𝑖 , such that
𝑧𝑖 ≠ 𝑧 𝑗 ,∀ 𝑖 ≠ 𝑗 , we have

�̃�(𝜏𝑞)

=

𝑞∑︁
𝑗=1

𝑐(𝑧 𝑗 )𝛽(𝑧 𝑗 )
𝑛

��∑𝑛
𝑘=1 𝑏𝑘 (𝑧 𝑗 )

��
𝐾 (𝑧 𝑗 )1+ 𝑛−2𝜎

𝑛

(
𝑛�̃� 2 𝑛−2𝜎

2 𝐾 (𝑧 𝑗 )1+ 𝑛−2𝜎
2 𝐺 (𝑧 𝑗 , 𝑦𝑖)

𝑐(𝑧 𝑗 )𝛽(𝑧 𝑗 ) (𝐾 (𝑧 𝑗 )𝐾 (𝑦𝑖))
𝑛−2𝜎

4
��∑𝑛

𝑘=1 𝑏𝑘 (𝑧 𝑗 )
��
) 2𝛽 (𝑦𝑖 )

𝑛−2𝜎

+
𝑐(𝑦𝑖)𝛽(𝑦𝑖)

∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

𝑛𝐾 (𝑦𝑖)1+ 𝑛−2𝜎
2

≠ 0,

where

(𝑐(𝑧 𝑗 ) =
∫
R𝑛

|𝑥1 |𝛽 (𝑧 𝑗 )

(1 + |𝑥 |2)𝑛
d𝑥 and �̃� =

∫
R𝑛

d𝑥
(1 + |𝑥 |2) 𝑛+2𝜎

2
.

For any 𝜏𝑞 = (𝑧1, . . . , 𝑧𝑞) ∈ (K𝑛−2𝜎)𝑞 , 1 ≤ 𝑞 ≤ #K𝑛−2𝜎 , such that 𝑧𝑖 ≠ 𝑧 𝑗 ,∀ 𝑖 ≠ 𝑗 ,

we define a 𝑞 × 𝑞 matrix 𝑀 (𝜏𝑞) = (𝑚𝑖 𝑗 ) by:

𝑚𝑖𝑖 = 𝑚(𝑧𝑖 , 𝑧𝑖) = −𝑛 − 2𝜎
2

𝑐(𝑧 𝑗 )
∑𝑛

𝑘=1 𝑏𝑘 (𝑧𝑖)
𝐾 (𝑧𝑖)

𝑛
2𝜎

, 𝑖 = 1 . . . , 𝑞,

𝑚𝑖 𝑗 = 𝑚(𝑧𝑖 , 𝑧 𝑗 ) = �̃�2
𝑛−2𝜎

2
𝐺 (𝑧𝑖 , 𝑧 𝑗 )(

𝐾 (𝑧𝑖)𝐾 (𝑧 𝑗 )
) 𝑛−2𝜎

4𝜎
, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑞,

where, 𝐺 (𝑧𝑖 , 𝑧 𝑗 ) = 1
(1−cos 𝑑 (𝑧𝑖 ,𝑧 𝑗 ) )

𝑛−2𝜎
2
.

(H2). Let 𝜌(𝜏𝑞) be the least eigenvalue of 𝑀 (𝜏𝑞). We assume that 𝜌(𝜏𝑞) ≠ 0, for any
𝑞 = 1, . . . , #K𝑛−2𝜎 .

It has been first pointed out by A. Bahri [4], that when the interaction between different
bubbles is of the same order as the self interaction, the functions �̃�(𝜏𝑞) and 𝜌(𝜏𝑞) play a
fundamental role in the theory of the critical points at infinity. For problem (𝐸𝜎), such
kind of phenomenon appears when L𝑖 𝑗 = 0. Note that conditions like (H1) and (H2)
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were used first in [15, Theorem 10.3] for the study of the Nirenberg problem, as standard
conditions to guarantee the existence of solutions. See also [17]. Let

𝐵∞ =


(𝑦1, . . . , 𝑦𝑝), 1 ≤ 𝑝 ≤ 𝑠0, s.t. −∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖) > 0, ∀ 𝑖 = 1, . . . , 𝑝, 𝑦𝑖 ≠ 𝑦 𝑗

and L𝑖 𝑗 ≥ 0, ∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝. Moreover, if we denote, 𝑦1, . . . , 𝑦𝑞 , all the
components of (𝑦1, . . . , 𝑦𝑝), such that, for any 𝑖 = 1, . . . , 𝑞, there exists,
𝑗 = 1, . . . , 𝑞, 𝑗 ≠ 𝑖, satisfying, L𝑖 𝑗 = 0, then, (𝑦1, . . . , 𝑦𝑞) ∈ K𝑞

𝑛−2𝜎 and
𝜌(𝑦1 . . . , 𝑦𝑞) > 0


.

We shall prove the following result.

Theorem 1.1. Let 𝐾 be a positive function satisfying conditions ( 𝑓 )𝛽 , 𝛽 ∈ (1, 𝑛), (H1)
and (H2). If ∑︁

(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

(−1) 𝑝−1+∑𝑝

𝑗=1 (𝑛−𝑖 (𝑦 𝑗 ) ) ≠ 1,

then (𝐸𝜎) has a solution. Moreover, in a generic case, if 𝛽(𝑦𝑖) > 𝑛−2𝜎
2 ,∀ 𝑖 = 1, . . . , 𝑠0,

then

#𝑆 ≥
�����1 −

∑︁
(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

(−1) 𝑝−1+∑𝑝

𝑗=1 (𝑛−𝑖 (𝑦 𝑗 ) )
�����.

Here, 𝑆 is the set of solutions of (𝐸𝜎) and

�̃�(𝑦 𝑗 ) = #
{
𝑏𝑘 (𝑦 𝑗 ), 𝑘 = 1, . . . , 𝑛, s.t. 𝑏𝑘 (𝑦 𝑗 ) < 0

}
.

Note that the criteria of existence of solutions given by Theorem 1.1 extends the ones
of [2] and [3] to any fractional order 𝜎 ∈ (0, 𝑛2 ). In addition, Theorem 1.1 provides a
lower bound of the number of solutions. It holds under the assumption that all the critical
points of the variational functional 𝐽 are non-degenerate. Such an assumption is valid for
generic 𝐾 (modulo a perturbation of the function 𝐾) by Sard–Smale Theorem [35]. For
the degenerate case, (degenerate critical points of 𝐽), the result of Theorem 1.1 remains
open, since the topological contribution of a degenerate critical point is unknown in
general, see [33].

The proof of Theorem 1.1 is based on a refined analysis of the compactness defect
of the variational structure associated to problem (𝐸𝜎). Theorem 3.6 in Section 3
provides a precise characterization of the critical points at infinity (blowup points) under
condition ( 𝑓 )𝛽 , 𝛽 ∈ (1, 𝑛).

Unlike the case of 𝜎 ∈ (0, 1), many interesting curvature problems in differential
geometry arise in studying the non linear fractional equations (𝐸𝜎), 𝜎 ∈ (0, 𝑛2 ). Namely,
the celebrate scalar curvature problem for 𝜎 = 1 and 𝑛 ≥ 3 and the 𝑄-curvature
problem for 𝜎 = 2 and 𝑛 ≥ 5. Moreover, there is a qualitative difference in results and
configurations of blow-up points between the cases 𝜎 ∈ (0, 1) and 𝜎 ∈ (0, 𝑛2 ). Indeed, if
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we place for example in dimension 𝑛 = 4 and if the prescribed function 𝐾 satisfies the
classical non degenerate condition near its critical points, that it is the case of 𝛽(𝑦) = 2,
for all the critical points, we find that the behavior of the concentration phenomenon of
the associated gradient flow depends to the value of 𝜎. Precisely, (see Section 3), the
configuration of blow-up points differ with respect to 𝜎 ∈ (0, 1), 𝜎 ∈ (1, 2) and 𝜎 = 1.
Namely, for 𝜎 ∈ (0, 1), the gradient flow concentrates at several distinct critical points of
𝐾 , for 𝜎 ∈ (1, 2), the concentration phenomenon happens at only one critical point and
for 𝜎 = 1, the concentration phenomenon depend to the matrix defined in (𝐻2). Although
the results on problem (𝐸𝜎), 𝜎 ∈ (0, 𝑛2 ) differ to the ones of [2] and [3], the same kind of
methods allows to conclude.

In the next Section, we state the variational formulation of problem (𝐸𝜎) and we recall
some known results.

Acknowledgement

We are grateful to the anonymous referee for their interesting comments that improved
the quality of the manuscript.

2. Preliminaries

(𝐸𝜎) is a variational problem. The solutions are the critical points (up to positive
multiplicative constants) of the following functional:

𝐽 (𝑢) =
∫
𝑆𝑛 𝑃

𝜎
𝑔0𝑢𝑢d𝑣𝑔0(∫

𝑆𝑛 𝐾𝑢
2𝑛

𝑛−2𝜎 d𝑣𝑔0

) 𝑛−2𝜎
𝑛

, 𝑢 ∈ 𝐻𝜎 (𝑆𝑛),

subjected to the constraint 𝑢 ∈ Σ+. Here,

Σ+ = {𝑢 ∈ Σ, 𝑢 ≥ 0}, Σ = {𝑢 ∈ 𝐻𝜎 (𝑆𝑛), ∥𝑢∥ = 1}

and 𝐻𝜎 (𝑆𝑛) is the fractional Sobolev space defined as the closure of𝐶∞ (𝑆𝑛) with respect
to the norm

∥𝑢∥2 =

∫
𝑆𝑛

𝑃𝜎
𝑔0𝑢𝑢d𝑣𝑔0 .

𝐽 does not satisfy the Palais–Smale condition (P.S). This is a consequence of the lack of
compactness of the embedding 𝐻𝜎 (𝑆𝑛) ↩→ 𝐿

2𝑛
𝑛−2𝜎 (𝑆𝑛). The sequences violating (P.S)

condition are characterized as follows. For 𝑎 ∈ 𝑆𝑛 and 𝜆 > 0, define

𝛿 (𝑎,𝜆) (𝑥) =
𝜆

𝑛−2𝜎
2

(1 + 𝜆2 + (1 − 𝜆2) cos 𝑑𝑔0 (𝑎, 𝑥))
𝑛−2𝜎

2
.
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Up to a positive multiplicative constant, 𝛿 (𝑎,𝜆) satisfies

𝑃𝜎
𝑔0𝛿 (𝑎,𝜆) = 𝛿

𝑛+2𝜎
𝑛−2𝜎
(𝑎,𝜆) , on 𝑆𝑛,

see [27]. Let 𝜔 be a solution of (𝐸𝜎) or zero. Let 𝑝 ∈ N and 𝜆 > 0. We set,

𝑉 (𝑝, 𝜀, 𝜔) =



𝑢 ∈ Σ, ∃ 𝛼0, 𝛼1, . . . , 𝛼𝑝 > 0, ∃ 𝑎1, . . . , 𝑎𝑝 ∈ 𝑆𝑛, ∃ 𝜆1, . . . , 𝜆𝑝 > 𝜀
−1,

s.t.,


𝑢 − 𝛼0𝜔 − ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 )


 ≤ 𝜀, with

����𝛼 4𝜎
𝑛−2𝜎
0 𝐽 (𝑢) 𝑛

𝑛−2𝜎 − 1
���� < 𝜀,����𝛼 4𝜎

𝑛−2𝜎
𝑖

𝐽 (𝑢) 𝑛
𝑛−2𝜎 𝐾 (𝑎𝑖) − 1

���� < 𝜀, ∀ 𝑖 = 1, . . . , 𝑝 and 𝜀𝑖 𝑗 < 𝜀, ∀ 1 ≤ 𝑖 ≠
𝑗 ≤ 𝑝


.

Here, 𝜀𝑖 𝑗 =
(
𝜆𝑖
𝜆 𝑗

+ 𝜆 𝑗

𝜆𝑖
+ 𝜆𝑖𝜆 𝑗

2
(
1 − cos d(𝑎𝑖 , 𝑎 𝑗 )

) )− 𝑛−2𝜎
2 .

Proposition 2.1 ([5, 32, 36]). For any sequence (𝑢𝑘)𝑘 in Σ+ such that 𝐽 (𝑢𝑘) → 𝑐, 𝑐 ∈ R
and 𝜕𝐽 (𝑢𝑘) → 0, there exists 𝑝 ∈ N and (𝜀𝑘)𝑘 > 0𝜀𝑘 → 0 and an extracted subsequence
denoted again (𝑢𝑘)𝑘 such that 𝑢𝑘 ∈ 𝑉 (𝑝, 𝜀𝑘 , 𝜔), where 𝜔 is a solution of (𝐸𝜎) or zero.

It is known that for any 𝑢 ∈ 𝑉 (𝑝, 𝜀, 𝜔), there exists a unique representation as follows:

𝑢 = 𝛼0 (𝜔 + ℎ) +
𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣,

up to a permutation, see [4, Proposition 5.2] and [5, p. 348–350]. Here ℎ ∈ 𝑇𝜔𝑊𝑢 (𝜔)
and 𝑣 ∈ 𝐻𝜎 (𝑆𝑛) ∩ 𝑇𝜔𝑊𝑠 (𝜔) belonging to 𝑉0, where

𝑉0 = {𝑣 : ∥𝑣∥ < 𝜀, ⟨𝑣, 𝜙⟩ = 0, ∀ 𝜙 ∈ 𝐸}.

Here 𝐸 =

{
𝜔, ℎ, 𝛿 (𝑎𝑖 ,𝜆𝑖 ) ,

𝜕𝛿(𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

,
𝜕𝛿(𝑎𝑖 ,𝜆𝑖 )

𝜕𝑎𝑖
, 𝑖 = 1, . . . , 𝑝

}
and ⟨ · , · ⟩ denotes the inner

product related to the norm ∥ · ∥. The following Morse Lemma gets rid of the 𝑣-
contributions.

Proposition 2.2 ([5, 6]). There exists a 𝐶1-mapping which to any (𝛼𝑖 , 𝑎𝑖 , 𝜆𝑖 , ℎ) such
that 𝛼0 (𝜔 + ℎ) +∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉 (𝑝, 𝜀, 𝜔), associates 𝑣 = 𝑣(𝛼𝑖 , 𝑎𝑖 , 𝜆𝑖 , ℎ) ∈ 𝐻𝜎 (𝑆𝑛),
where 𝑣 is the unique solution of

𝐽

(
𝛼0 (𝜔 + ℎ) +

𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣
)
= min

𝑣 satisfying (𝑉0 )
𝐽

(
𝛼0 (𝜔 + ℎ) +

𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣
)
.

In addition there is a change of variables 𝑣 − 𝑣 ≡ 𝑉, such that

𝐽

(
𝛼0 (𝜔 + ℎ) +

𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣
)
= 𝐽

(
𝛼0 (𝜔 + ℎ) +

𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣
)
+ ∥𝑉 ∥2.
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As shown in [5, p. 328], by applying the differential equation ¤𝑉 = −𝜇𝑉, 𝜇 ≫ 1, the
norm of the flow 𝑉 (𝑠) decreases and tends to zero. Therefore, in order to establish our
deformation Lemma, we can work as if 𝑉 = 0.

Following [2, p. 1291], the estimate of ∥𝑣∥ is given as follows.

Proposition 2.3.

∥𝑣∥ ≤ 𝑐
𝑝∑︁
𝑖=1

(
1

𝜆
𝑛
2
𝑖

+ 1
𝜆
𝛽

𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

+ (log𝜆𝑖)
𝑛+2𝜎

2

𝜆
𝑛+2𝜎

2
𝑖

)

+ 𝑐

∑

𝑘≠𝑟 𝜀
𝑛+2𝜎

2(𝑛−2𝜎)
𝑘𝑟

(
log 𝜀−1

𝑘𝑟

) 𝑛+2𝜎
2𝑛 , if 𝑛 ≥ 6𝜎∑

𝑘≠𝑟 𝜀𝑘𝑟
(
log 𝜀−1

𝑘𝑟

) 𝑛−2𝜎
𝑛 , if 𝑛 < 6𝜎.

We now introduce the definition of critical point at infinity of 𝐽.

Definition 2.4 ([4]). A critical point at infinity of 𝐽 in Σ+ is a limit of flow line 𝑢(𝑠) of
the gradient vector field (−𝜕𝐽) such that 𝑢(𝑠) lies in 𝑉 (𝑝, 𝜀, 𝜔), 𝑝 ≥ 1, for any 𝑠 large.
Writing

𝑢(𝑠) = 𝛼0 (𝑠) (𝜔 + ℎ(𝑠)) +
𝑝∑︁
𝑖=1

𝛼𝑖 (𝑠)𝛿 (𝑎𝑖 (𝑠) ,𝜆𝑖 (𝑠) ) + 𝑣(𝑠),

𝛼𝑖 = lim𝛼𝑖 (𝑠) and 𝑦𝑖 = lim 𝑎𝑖 (𝑠),
we then denote

𝛼0𝜔 +
𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑦𝑖 ,∞)

such a critical point at infinity.

3. Critical points at infinity

In this Section, we characterize the critical points at infinity of problem (𝐸𝜎) under
conditions ( 𝑓 )𝛽 , (H1), (H2). Such a characterization hinges on an analysis of the gradient
flow of 𝐽 in all the possible neighborhoods of these critical points at infinity. First,
according to the above definition, these neighborhoods correspond to the sets 𝑉 (𝑝, 𝜀, 𝜔)
such that 𝑝 ≥ 1 and 𝜔 is zero or a solution of (𝐸𝜎). Second, following the results of [2,
p. 1300–1304], the possible neighborhoods of the critical points at infinity are reduced to
the sets:

𝑉𝛿 (𝑝, 𝜀, 𝜔) =
{
𝑢 = 𝛼0 (𝜔 + ℎ) + ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) + 𝑣 ∈ 𝑉 (𝑝, 𝜀, 𝜔) s.t., ∀ 𝑖 = 1, . . . , 𝑝,
∃ 𝑦𝑖 ∈ K with |𝑎𝑖 − 𝑦𝑖 | < 𝛿

𝜆𝑖
and 𝑦𝑖 ≠ 𝑦 𝑗 , ∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝

}
.

Here, K denotes the set of all critical points of 𝐾 .
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3.1. Asymptotic analysis in 𝑉𝛿 (𝑝, 𝜀, 𝜔)

In this Subsection, we study the variation of the energy functional 𝐽 with respect to
𝜆𝑖 , 𝑖 = 1, . . . , 𝑝 and ℎ variables. We follow the computations of [19] and [2], (see also
Propositions 3.1 and 3.2 of [19]).

Proposition 3.1. For any 𝑢 = 𝛼0 (𝜔 + ℎ) + ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 𝜔), we have

⟨𝜕𝐽 (𝑢), ℎ⟩ ≤ −𝑐
[
∥ℎ∥2 +

𝑝∑︁
𝑖=1

𝑜

(
1

𝜆
𝑛−2𝜎

2
𝑖

)]
,

where 𝑐 is a fixed positive constant independent of 𝑢.

Proof. Following [19, Proposition 3.3], we have

⟨𝜕𝐽 (𝑢), ℎ⟩ = 2𝐽 (𝑢)
(
𝛼0∥ℎ∥2 − 𝑛 + 2𝜎

𝑛 − 2𝜎
𝛼

𝑛+2𝜎
𝑛−2𝜎
0 𝐽 (𝑢) 𝑛

𝑛−2𝜎

∫
𝑆𝑛

𝐾𝜔
4𝜎

𝑛−2𝜎 ℎ2d𝑣𝑔0

)
+ 𝑜(∥ℎ∥2) +

𝑝∑︁
𝑖=1

𝑜

(
1

𝜆
𝑛−2𝜎

2
𝑖

)
.

Since 𝛼
4𝜎

𝑛−2𝜎
0 𝐽 (𝑢) 𝑛

𝑛−2𝜎 = 1 + 𝑜(1), we obtain,

⟨𝜕𝐽 (𝑢), ℎ⟩ = 𝛼0Q(ℎ, ℎ) + 𝑜(∥ℎ∥2) +
𝑝∑︁
𝑖=1

𝑜

(
1

𝜆
𝑛−2𝜎

2
𝑖

)
,

where Q(ℎ, ℎ) is a quadratic form defined by

Q(ℎ, ℎ) = ∥ℎ∥2 − 𝑛 + 2𝜎
𝑛 − 2𝜎

∫
𝑆𝑛

𝐾𝜔
4𝜎

𝑛−2𝜎 ℎ2d𝑣𝑔0 ,

which is definite and negative, see [5, p. 354]. This finishes the proof. □

Proposition 3.2. For any 𝑢 = 𝛼0 (𝜔 + ℎ) + ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 𝜔) and for any
𝑖 = 1, . . . , 𝑝, we have〈
𝜕𝐽 (𝑢), 𝛼𝑖𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
= 2𝐽 (𝑢)

[
𝛼0�̂�

𝑛 + 2𝜎
2

𝜔(𝑎𝑖)

𝜆
𝑛−2𝜎

2
𝑖

+ 𝑛 − 2𝜎
2𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝛼2
𝑖

∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

𝐾 (𝑎𝑖)𝜆𝛽 (𝑦𝑖 )𝑖

− �̃�
∑︁
𝑗≠𝑖

𝛼𝑖𝛼 𝑗𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖

]
+ 𝑜(∥ℎ∥2) +

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ),
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where

�̂� =

∫
R𝑛

|𝑥 |2 − 1
(1 + |𝑥 |2) 𝑛+2𝜎

2
d𝑥.

Proof. We have〈
𝜕𝐽 (𝑢), 𝛼𝑖𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
= 2𝐽 (𝑢)

[〈
𝑢, 𝛼𝑖𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
− 𝛼𝑖𝐽 (𝑢)

𝑛
𝑛−2𝜎

∫
𝑆𝑛

𝐾𝑢
𝑛+2𝜎
𝑛−2𝜎 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0

]
We follow the computation of [19, Proposition 3.4]. We have,〈

𝑢, 𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
= 𝛼0𝛼𝑖

〈
𝜔 + ℎ, 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
+

𝑝∑︁
𝑗=1
𝛼𝑖𝛼 𝑗

〈
𝛿 (𝑎 𝑗 ,𝜆 𝑗 ) , 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
.

By expanding 𝜔 around 𝑎𝑖 , we have〈
𝜔 + ℎ, 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
= −𝑛 + 2𝜎

2
�̂�
𝜔(𝑎𝑖)

𝜆
𝑛−2𝜎

2
𝑖

+ 𝑜
(

1

𝜆
𝑛−2𝜎

2
𝑖

)
.

By a computation similar to [4, Sections 1 and 2], we have
𝑝∑︁
𝑗=1
𝛼𝑖𝛼 𝑗

〈
𝛿 (𝑎 𝑗 ,𝜆 𝑗 ) , 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
=

∑︁
𝑖≠ 𝑗

𝛼𝑖𝛼 𝑗𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ).

Expanding 𝑢 𝑛+2𝑠
𝑛−2𝑠 , the integral term reduces to∫

𝑆𝑛

𝐾𝑢
𝑛+2𝜎
𝑛−2𝜎 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0

=

∫
𝑆𝑛

𝐾 (𝛼0𝜔)
𝑛+2𝜎
𝑛−2𝜎 𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0 +
∫
𝑆𝑛

𝐾

(
𝑝∑︁
𝑗=1
𝛼 𝑗𝛿 (𝑎 𝑗 ,𝜆 𝑗 )

) 𝑛+2𝜎
𝑛−2𝜎

𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0

+ 𝑛 + 2𝜎
𝑛 − 2𝜎

∫
𝑆𝑛

𝐾

(
𝑝∑︁
𝑗=1
𝛼 𝑗𝛿 (𝑎 𝑗 ,𝜆 𝑗 )

) 4𝜎
𝑛−2𝜎

(𝛼0𝜔)𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0

+ 𝑜(∥ℎ∥2) + 𝑜
(∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

= 𝐼1 + 𝐼2 + 𝐼3 + 𝑅.
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Stereographic projection combined with expansions of 𝐾 and 𝜔 around ai yield

𝐼1 = −𝑛 + 2𝜎
2

�̂�𝛼
𝑛+2𝜎
𝑛−2𝜎
0

𝜔(𝑎𝑖)

𝜆
𝑛−2𝜎

2
𝑖

+ 𝑜
(

1

𝜆
𝑛−2𝜎

2
𝑖

)
,

𝐼3 = −𝑛 + 2𝜎
2

�̂�𝛼0𝛼
4𝜎

𝑛−2𝜎
𝑖

𝐾 (𝑎𝑖)
𝜔(𝑎𝑖)

𝜆
𝑛−2𝜎

2
𝑖

+ 𝑜
(

1

𝜆
𝑛−2𝜎

2
𝑖

)
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ),

and by the computation of [2, Proposition A-1], we have

𝐼2 =

𝑝∑︁
𝑗=1
𝛼

𝑛+2𝜎
𝑛−2𝜎
𝑗

∫
𝑆𝑛

𝐾 (𝑥)𝛿
𝑛+2𝜎
𝑛−2𝜎
(𝑎 𝑗 ,𝜆 𝑗 )𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0

+ 𝑛 + 2𝜎
𝑛 − 2𝜎

∑︁
𝑗≠𝑖

∫
𝑆𝑛

𝐾 (𝑥)𝛼 𝑗𝛿 (𝑎 𝑗 ,𝜆 𝑗 ) (𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) )
4𝜎

𝑛−2𝜎 𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

d𝑣𝑔0 +
∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ).

= −𝑛 − 2𝜎
𝑛

𝛼
𝑛+2𝜎
𝑛−2𝜎
𝑖

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖)
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
∑︁
𝑗≠𝑖

𝛼
𝑛+2𝜎
𝑛−2𝜎
𝑗

𝐾 (𝑎 𝑗 )�̃�𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖

+
∑︁
𝑗≠𝑖

𝛼 𝑗𝛼
4𝜎

𝑛−2𝜎
𝑖

𝐾 (𝑎𝑖)�̃�𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ).

Using the fact that 𝛼
4𝜎

𝑛−2𝜎
𝑖

𝐾 (𝑎𝑖)𝐽 (𝑢)
𝑛

𝑛−2𝜎 = 1 + 𝑜(1) for any 𝑖 = 1, . . . , 𝑝, Proposition 3.2
follows. □

3.2. Concentration phenomena in 𝑉𝛿 (𝑝, 𝜀, 𝜔)

The objective of this Subsection is to provide a quantitative description of the concentration
phenomena of problem (𝐸𝜎) and determine the locations of the critical points at infinity.
As mentioned above these points take places in 𝑉𝛿 (𝑝, 𝜀, 𝜔), 𝑝 ≥ 1, 𝜔 is a solution of
(𝐸𝜎) or zero and 𝜀 and 𝛿 are positive and small. We shall prove the following result.

Proposition 3.3. Assume that 𝐾 satisfies condition ( 𝑓 )𝛽 with 𝛽 ∈ ( 𝑛−2𝜎
2 , 𝑛). There exists

a decreasing pseudo gradient𝑊 in 𝑉𝛿 (𝑝, 𝜀, 𝜔), 𝑝 ≥ 1, 𝜔 ≠ 0 and 𝜀 and 𝛿 positive and
small such that for any 𝑢 = 𝛼0 (𝜔 + ℎ) + ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 𝜔), we have

(i) ⟨𝜕𝐽 (𝑢),𝑊 (𝑢)⟩ ≤ −𝑐
(

𝑝∑︁
𝑖=1

(
1

𝜆
𝑛−2𝜎

2
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+ ∥ℎ∥2 +

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
,
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(ii)
〈
𝜕𝐽 (𝑢 + 𝑣),𝑊 (𝑢) + 𝜕𝑣

𝜕 (𝛼, 𝑎, 𝜆, ℎ) (𝑊 (𝑢))
〉

≤ −𝑐
(

𝑝∑︁
𝑖=1

(
1

𝜆
𝑛−2𝜎

2
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+ ∥ℎ∥2 +

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
,

(iii) ∥𝑊 (𝑢)∥ ≤ 1
𝑐

and max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is a bounded function on R+.

Here 𝑐 is a positive constant independent of 𝑢.

The above result shows that a deconcentration phenomenon occurs in 𝑉𝛿 (𝑝, 𝜀, 𝜔),
𝜔 ≠ 0. This yields to the following result.

Theorem 3.4. Assume that 𝐾 satisfies condition ( 𝑓 )𝛽 , 𝛽 ∈ ( 𝑛−2𝜎
2 , 𝑛). Then for any

solution 𝜔 of (𝐸𝜎), 𝑉𝛿 (𝑝, 𝜀, 𝜔) contains no critical point at infinity.

We now state the proof of Proposition 3.3.

Proof of Proposition 3.3. Let 𝑢 = 𝛼0 (𝜔 + ℎ) + ∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 𝜔).
We order the𝜆𝑖’s parameters. Assume that

𝜆1 ≤ · · · ≤ 𝜆𝑝 .

We decrease all the 𝜆𝑖 with different speeds. For any 𝑖 = 1, . . . , 𝑝, we set

¤𝜆𝑖 = −2𝑖𝜆𝑖 .

Using Proposition 3.2 and the fact 𝛽(𝑦𝑖) > 𝑛−2𝜎
2 , we have〈

𝜕𝐽 (𝑢), ¤𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
≤ −𝑐𝜔(𝑎𝑖)

𝜆
𝑛−2𝜎

2
𝑖

+ 𝑐
∑︁
𝑗≠𝑖

2𝑖𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ) + 𝑜(∥ℎ∥2).

Define

𝑊 (𝑢) = 𝛼0ℎ −
𝑝∑︁
𝑖=1

𝛼𝑖2𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

By Proposition 3.1,

⟨𝜕𝐽 (𝑢), ℎ⟩ ≤ −𝑐∥ℎ∥2 +
𝑝∑︁
𝑖=1

𝑜

(
1

𝜆
𝑛−2𝜎

2
𝑖

)
.

Therefor by the above two inequalities, we get

⟨𝜕𝐽 (𝑢),𝑊 (𝑢)⟩ ≤ −𝑐
(
∥ℎ∥2 +

𝑝∑︁
𝑖=1

1

𝜆
𝑛−2𝜎

2
𝑖

)
+

∑︁
𝑗≠𝑖

2𝑖𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 ).

11
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Observe that,

2𝑖𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
+ 2 𝑗𝜆 𝑗

𝜕𝜀𝑖 𝑗

𝜕𝜆 𝑗

≤ −𝑐𝜀𝑖 𝑗 , ∀ 1 ≤ 𝑖 < 𝑗 ≤ 𝑝.

Moreover,
|∇𝐾 (𝑎𝑖) | ∼ |𝑎𝑖 − 𝜆𝑖 |𝛽 (𝑦𝑖 )−1

Therefore,
|∇𝐾 (𝑎𝑖) |

𝜆𝑖
<

𝛿

𝜆
𝛽 (𝑦𝑖 )
𝑖

, ∀ 𝑖 = 1, . . . , 𝑝.

Thus,

⟨𝜕𝐽 (𝑢),𝑊 (𝑢)⟩ ≤ −𝑐
(
∥ℎ∥2 +

𝑝∑︁
𝑖=1

1

𝜆
𝑛−2𝜎

2
𝑖

+
∑︁
𝑗≠𝑖

𝜀𝑖 𝑗 +
𝑝∑︁
𝑖=1

|∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
.

Claim (i) of the Proposition follows. Arguing as in [5, Appendix 2], Claim (ii) follows
from (i) and the estimate of ∥𝑣∥ given in Lemma 2.3, ∥𝑊 ∥ is bounded since



𝜆𝑖 𝜕𝛿(𝑎𝑖 ,𝜆𝑖 )𝜕𝜆𝑖



,
𝑖 = 1, . . . , 𝑝 are bounded and by construction the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is a bounded function,
since all the parameters𝜆𝑖 (𝑠), 𝑖 = 1, . . . , 𝑝 decrease along the flow lines of𝑊 . Estimate (iii)
follows and the proof of proposition 3.1 is thereby completed. □

Next, we focus on the neighborhoods of the form 𝑉𝛿 (𝑝, 𝜀, 0), 𝑝 ≥ 1

Proposition 3.5. Assume that 𝐾 is positive and satisfies ( 𝑓 )𝛽 , 𝛽 ∈ (1, 𝑛), (𝐻1) and (𝐻2)
conditions. For any 𝑝 ≥ 1, 𝜀 and 𝛿 positive and small, there exists a decreasing pseudo
gradient𝑊 in 𝑉𝛿 (𝑝, 𝜀, 0) such that for any 𝑢 =

∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 𝜔), we have

(i) ⟨𝜕𝐽 (𝑢),𝑊 (𝑢)⟩ ≤ −𝑐
(∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗 +
𝑝∑︁
𝑖=1

(
|∇𝐾 (𝑎𝑖) |

𝜆𝑖
+ 1
𝜆
𝛽 (𝑦𝑖 )
𝑖

))
,

(ii)
〈
𝜕𝐽 (𝑢 + 𝑣),𝑊 (𝑢) + 𝜕𝑣

𝜕 (𝛼𝑖 , 𝑎𝑖 , 𝜆𝑖)
(𝑊 (𝑢))

〉
≤ −𝑐

(∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗 +
𝑝∑︁
𝑖=1

(
|∇𝐾 (𝑎𝑖) |

𝜆𝑖
+ 1
𝜆
𝛽 (𝑦𝑖 )
𝑖

))
.

(iii) ∥𝑊 (𝑢)∥ ≤ 1
𝑐

and the only case where the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is not bounded, is
when 𝑎𝑖 (𝑠) → 𝑦𝑖 ,∀ 𝑖 = 1, . . . , 𝑝, with (𝑦1, . . . , 𝑦𝑝) ∈ 𝐵∞.

The above proposition shows that the flow lines of𝑊 can only be concentrated when
𝑎𝑖 (𝑠) tends to 𝑦𝑖 , as 𝑠 → +∞, for any 𝑖 = 1, . . . , 𝑝, with (𝑦1, . . . , 𝑦𝑝) ∈ 𝐵∞. We therefore
have the following result.

12
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Theorem 3.6. Under the assumption of Proposition 3.5, the critical points at infinity of
(𝐸𝜎) are

𝑝∑︁
𝑖=1

1
𝐾 (𝑦𝑖)

𝑛−2𝜎
𝑛

𝛿(𝑦𝑖 ,∞), (𝑦1, . . . , 𝑦𝑝) ∈ 𝐵∞.

We now state the proof of Proposition 3.5.

Proof of Proposition 3.5. Let 𝑢 =
∑𝑝

𝑖=1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) ∈ 𝑉𝛿 (𝑝, 𝜀, 0), 𝑝 ≥ 1. The construction
of𝑊 (𝑢) will depend to the following three statements.

Statement 1. We assume that L𝑖 𝑗 > 0, ∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝.

In this case, the following Claim holds.

Claim 1. ∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝,

𝜀𝑖 𝑗 = 𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+ 𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

Indeed, for 𝑖 ≠ 𝑗 , we have

𝜀𝑖 𝑗 ∼
1

(𝜆𝑖𝜆 𝑗 )
𝑛−2𝜎

2
.

Let 𝛾 > 0 and small.
If 𝜆𝛽 (𝑦 𝑗 )− 𝑛−2𝜎

2
𝑗

≤ 𝛾𝜆
𝑛−2𝜎

2
𝑖

, we get 𝜀𝑖 𝑗 = 𝑜
( 1
𝜆
𝛽 (𝑦𝑗 )
𝑗

)
, for 𝛾 small enough.

If 𝜆𝛽 (𝑦 𝑗 )− 𝑛−2𝜎
2

𝑗
≥ 𝛾𝜆

𝑛−2𝜎
2

𝑖
, then for 𝜀 small enough 𝛽(𝑦 𝑗 ) strictly larger than 𝑛−2𝜎

2 . In
this case

𝜀𝑖 𝑗 ≤ 𝑐(𝛾)
1

𝜆

𝑛−2𝜎
2

(
1+ 𝑛−2𝜎

2𝛽 (𝑦𝑗 )−(𝑛−2𝜎)

)
𝑖

.

Using the fact that

𝑛 − 2𝜎
2

(
1 + 𝑛 − 2𝜎

2𝛽(𝑦 𝑗 ) − (𝑛 − 2𝜎)

)
> 𝛽(𝑦𝑖),

we get 𝜀𝑖 𝑗 = 𝑜
( 1
𝜆
𝛽 (𝑦𝑖 )
𝑖

)
and therefore Claim 1 is valid.

The construction of the pseudo gradient in the current statement depends to the
following two cases.

Case 1: ∀ 𝑖 = 1, . . . , 𝑝,−∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖) > 0. We set

¤𝜆𝑖 = 𝜆𝑖 ,

13
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for any, 𝑖 = 1, . . . , 𝑝. The corresponding pseudo gradient is

𝑊1
1 (𝑢) =

𝑝∑︁
𝑖=1

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

By the expansion of Proposition 3.2, we get〈
𝜕𝐽 (𝑢),𝑊1

1 (𝑢)
〉
≤ 𝑐

𝑝∑︁
𝑖=1

∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)
𝜆𝑖

𝛽 (𝑦𝑖 )
+

∑︁
𝑖≠ 𝑗

𝑂
(
𝜀𝑖 𝑗

)
Using the estimation of Claim 1, we obtain〈

𝜕𝐽 (𝑢),𝑊1
1 (𝑢)

〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

1
𝜆𝑖

𝛽 (𝑦𝑖 )
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

Note that, under the action of𝑊1
1 , the parameters 𝜆𝑖 (𝑠) → ∞, for any 𝑖 = 1, . . . , 𝑝.

It is a concentration phenomena.

Case 2: ∃ 𝑖, 1 ≤ 𝑖 ≤ 𝑝, such that −∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖) < 0. Let

𝐼 =

{
𝑖, 1 ≤ 𝑖 ≤ 𝑝, s.t. −

𝑛∑︁
𝑘=1

𝑏𝑘 (𝑦𝑖) < 0

}
.

We set ¤𝜆𝑖 = −𝜆𝑖 , for any 𝑖 ∈ 𝐼. By the expansion of Proposition 3.2 we have〈
𝜕𝐽 (𝑢),−

∑︁
𝑖∈𝐼

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
≤ −

∑︁
𝑖∈𝐼

1
𝜆𝑖

𝛽 (𝑦𝑖 )
+

∑︁
𝑖∈𝐼
𝑗≠𝑖

𝑂 (𝜀𝑖 𝑗 )

≤ −
∑︁
𝑖∈𝐼

1
𝜆𝑖

𝛽 (𝑦𝑖 )
+

∑︁
𝑖∈𝐼
𝑗≠𝑖

𝑂 (𝜀𝑖 𝑗 ),

where,

�̃� :=
{
𝑖, 1 ≤ 𝑖 ≤ 𝑝, 𝜆

𝛽 (𝑦𝑖 )
𝑖

≥ 1
2

min
𝑗∈𝐼

𝜆
𝛽 (𝑦 𝑗 )
𝑗

}
.

Of course, any index 𝑖 of �̃�𝑐 satisfies −∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖) > 0. Let �̂� =

∑
𝑖∈𝐼𝑐 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) .

�̂� satisfies the condition of Case 1. Let𝑊1
1 (�̂�) be the corresponding vector field. We have,〈

𝜕𝐽 (𝑢),𝑊1
1 (�̂�)

〉
≤ −𝑐

∑︁
𝑖∈𝐼𝑐

1
𝜆𝑖

𝛽 (𝑦𝑖 )
+

∑︁
𝑖∈𝐼
𝑗≠𝑖

𝑂 (𝜀𝑖 𝑗 ).

14
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Let

𝑊2
1 (𝑢) = 𝑊

1
1 (�̂�) −

∑︁
𝑖∈𝐼

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

By the above two inequalities,𝑊2
1 satisfies〈

𝜕𝐽 (𝑢),𝑊2
1 (𝑢)

〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
|∇𝐾 (𝑎𝑖) |

𝜆𝑖
+ 1
𝜆𝑖

𝛽 (𝑦𝑖 )

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

Note that the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is a decreasing function along𝑊2
1 . It is a deconcentration

phenomenon. In this statement, we denote𝑊1 the pseudo gradient defined by a convex
combination of𝑊1

1 and𝑊2
1

Statement 2. We assume that L𝑖 𝑗 ≥ 0,∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝 and exist 𝑖0 ≠ 𝑗0 such that
L𝑖0 𝑗0 = 0.

Denote
𝐼 =

{
𝑖, 1 ≤ 𝑖 ≤ 𝑝, s.t. ∃ 𝑗 ≠ 𝑖 with L𝑖 𝑗 = 0

}
.

The construction of the required vector field depends to the following two cases.

Case 1: ∃ 𝑖 ∈ 𝐼 such that 𝛽(𝑦𝑖) = 𝑛 − 2𝜎. Under the assumption that L𝑖 𝑗 ≥ 0,∀ 𝑖 ≠ 𝑗 ,

we obtain the following:
𝛽(𝑦𝑖) = 𝑛 − 2𝜎, ∀ 𝑖 ∈ 𝐼 .

Let �̂� =
∑

𝑖∈𝐼 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) . We introduce the following Lemma.

Lemma 3.7. Under condition (H2), there exists a decreasing pseudo gradient 𝑊
satisfying:

(a)
〈
𝜕𝐽 (𝑢),𝑊 (�̂�)

〉
≤ −𝑐

[∑︁
𝑖∈𝐼

1
𝜆𝑛−2𝜎
𝑖

+
∑︁

𝑖 ≠ 𝑗 ∈ 𝐼𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝐼
𝑗∈𝐼

𝑂 (𝜀𝑖 𝑗 ).

(b) ∥𝑊 (�̂�)∥ ≤ 1
𝑐

and the only case where the max𝑖∈𝐼 𝜆𝑖 (𝑠) is not bounded is when
𝜌
(
(𝑦𝑖)𝑖∈𝐼

)
is positive.

Here, 𝜌
(
(𝑦𝑖)𝑖∈𝐼

)
is the least eigenvalue of the matrix

(
𝑚(𝑦𝑖 , 𝑦 𝑗 )

)
𝑖, 𝑗∈𝐼 defined in the

introduction.

Proof. See [2, Proposition 3.3]. □

According the above Lemma, three Subcases may occur.
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Subcase 1: 𝜌
(
(𝑦𝑖)𝑖∈𝐼

)
> 0 and −∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖) > 0,∀ 𝑖 ∈ 𝐼𝑐. In this case, we define

𝑊1
2 (𝑢) = 𝑊 (�̂�) +

∑︁
𝑖∈𝐼𝑐

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

Using the fact that L𝑖 𝑗 > 0,∀ 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼𝑐, we get〈
𝜕𝐽 (𝑢),𝑊1

2 (𝑢)
〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

A concentration phenomenon happens in this case.

Subcase 1: 𝜌
(
(𝑦𝑖)𝑖∈𝐼

)
> 0. By Lemma 3.7, the max𝑖∈𝐼 𝜆𝑖 (𝑠) remains bounded along the

flow lines �̂�(𝑠) of𝑊 . Let

�̃� :=
{
𝑖, 1 ≤ 𝑖 ≤ 𝑝, s.t. 𝜆𝛽 (𝑦𝑖 )

𝑖
≥ 1

2
min 𝑗 ∈ 𝐼𝜆𝑛−2𝜎

𝑗

}
.

By the estimation of Lemma 3.7, we have〈
𝜕𝐽 (𝑢),𝑊 (�̂�)

〉
≤ −𝑐

(∑︁
𝑖∈𝐼

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗∈𝐼

𝜀𝑖 𝑗

)
+

∑︁
𝑖∈𝐼
𝑗∈𝐼𝑐

𝑂
(
𝜀𝑖 𝑗

)
.

Let𝑈1 =
∑

𝑖∈𝐼𝑐 𝛼𝑖𝛿(𝑎𝑖 , 𝜆𝑖).𝑈1 satisfies the condition of the above Statement 1. We apply
the corresponding vector field𝑊1 (𝑢1). It verifies

⟨𝜕𝐽 (𝑢),𝑊1 (𝑢1)⟩ ≤ −𝑐
(∑︁
𝑖∈𝐼𝑐

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗∈𝐼𝑐

𝜀𝑖 𝑗

)
+

∑︁
𝑖∈𝐼𝑐
𝑗∈𝐼

𝑂
(
𝜀𝑖 𝑗

)
.

Let𝑊2
2 = 𝑊 (�̂�) +𝑊1 (𝑢1). The above two inequalities and the estimation of Claim 1 yield〈

𝜕𝐽 (𝑢),𝑊2
2 (𝑢)

〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

Moreover the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is bounded along the flow of𝑊2
2 .

Subcase 1: ∃ 𝑖 ∈ 𝐼𝑐 such that −∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖) < 0. We denote

𝐼1 =

{
𝑖 ∈ 𝐼𝑐,−

𝑛∑︁
𝑘=1

𝑏𝑘 (𝑦𝑖) < 0

}
.

We decrease all the 𝜆𝑖 , 𝑖 ∈ 𝐼1. We set

𝑍 (𝑢) = −
∑︁
𝑖∈𝐼1

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.
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By the expansion of Proposition 3.2 and Claim 1, we have

⟨𝜕𝐽 (𝑢), 𝑍 (𝑢)⟩ ≤ −𝑐
[∑︁
𝑖∈𝐼1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖∈𝐼1 , 𝑗≠𝑖

𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝐼𝑐1

𝑜

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

)
.

Let
�̃�1 =

{
𝑖, 1 ≤ 𝑖 ≤ 𝑝, 𝜆

𝛽 (𝑦𝑖 )
𝑖

≥ 1
2

min
𝑗∈𝐼1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

}
.

The above expansion can be improved as follows.

⟨𝜕𝐽 (𝑢), 𝑍 (𝑢)⟩ ≤ −𝑐
[∑︁
𝑖∈𝐼1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖∈𝐼1 𝑗≠𝑖

𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝐼𝑐1

𝑜

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

)
.

Let �̃� =
∑

𝑖∈𝐼𝑐1
𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) . For any 𝑖 ∈ �̃�𝑐1 , 𝛽(𝑦𝑖) = 𝑛 − 2𝜎. We apply the corresponding

vector field𝑊 of Lemma 3.7. We have〈
𝜕𝐽 (𝑢),𝑊 (�̃�)

〉
≤ −𝑐

( ∑︁
𝑖∈𝐼𝑐1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗∈𝐼𝑐1

𝜀𝑖 𝑗

)
+

∑︁
𝑖∈𝐼𝑐1
𝑗≠𝑖

𝑂 (𝜀𝑖 𝑗 ).

For 𝑚 > 0 small enough, let𝑊3
2 (𝑢) = 𝑚𝑊 (�̃�) + 𝑍 (𝑢). From the above two inequalities,

𝑊3
2 satisfies 〈

𝜕𝐽 (𝑢),𝑊3
2 (𝑢)

〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆𝑖
𝛽 (𝑦𝑖 )

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

It is clear that the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) remains bounded along𝑊3
2 .

Case 2: ∀ 𝑖 ∈ 𝐼, 𝛽(𝑦𝑖) ≠ 𝑛 − 2𝜎. Under the assumption L𝑖 𝑗 ≥ 0,∀ 𝑖 ≠ 𝑗 , there is only
one index 𝑗0, 1 ≤ 𝑗0 ≤ 𝑝 such that 𝛽(𝑦 𝑗0 ) > 𝑛 − 2𝜎. The indices set 𝐼 is then reduced to:

𝐼 = { 𝑗0} ∪
{
𝑖 = 1, . . . , 𝑝, s.t. L𝑖 𝑗0 = 0

}
.

Setting,
𝑁 𝑗0 =

{
𝑖 = 1, . . . , 𝑝, s.t. L𝑖 𝑗0 = 0

}
.

It is easy to see that 𝛽(𝑦𝑖) < 𝑛 − 2𝜎,∀ 𝑖 ∈ 𝑁 𝑗0 . We introduce the following Lemma that
we will prove in the appendix of this paper.

Lemma 3.8. Under condition (H1), there exists a pseudo gradient 𝑍 (𝑢) with the following
properties.

(a) ⟨𝜕𝐽 (𝑢), 𝑍 (𝑢)⟩ ≤ −𝑐
∑︁
𝑖∈𝑁 𝑗0

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ 𝜀𝑖 𝑗0
)
+

∑︁
𝑖∈𝑁𝑐

𝑗0

𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
.
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(b) ∥𝑍 (𝑢)∥ ≤ 1
𝑐

and max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) remains bounded along the flow lines of 𝑍 .

Define,

𝑁 𝑗0 =

{
𝑖 = 1, . . . , 𝑝, s.t. 𝜆𝛽 (𝑦𝑖 )

𝑖
≥ 1

2
min
𝑗∈𝑁 𝑗0

𝜆
𝛽 (𝑦 𝑗 )
𝑗

}
.

The first inequality of Lemma 3.8 yields

⟨𝜕𝐽 (𝑢), 𝑍 (𝑢)⟩ ≤ −𝑐
[ ∑︁
𝑖∈𝑁 𝑗0

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
∑︁
𝑖∈𝑁 𝑗0

𝜀𝑖 𝑗0

]
+

∑︁
𝑖∈𝑁𝑐

𝑗0

𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
Let �̂� =

∑
𝑖∈𝑁𝑐

𝑗0
𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) . Of course L𝑖 𝑗 > 0,∀ 𝑖 ≠ 𝑗 ∈ 𝑁𝑐

𝑗0
. We apply𝑊1 (�̂�), where𝑊1

is the vector field defined in statement 1. We have,

⟨𝜕𝐽 (𝑢),𝑊1 (�̂�)⟩ ≤ −𝑐
[ ∑︁
𝑖∈𝑁𝑐

𝑗0

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
∑︁

𝑖≠ 𝑗∈𝑁𝑐
𝑗0

𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝑁𝑐

𝑗0
𝑗∈𝑁 𝑗0

𝑜
(
𝜀𝑖 𝑗

)
For 𝑖 ∈ 𝑁𝑐

𝑗0
and 𝑗 ∈ 𝑁 𝑗0 ,L𝑖 𝑗 > 0. Therefore, 𝜀𝑖 𝑗 = 𝑜

( 1
𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+ 𝑜

( 1
𝜆
𝛽 (𝑦𝑖 )
𝑗

)
. Thus,

⟨𝜕𝐽 (𝑢),𝑊1 (�̂�)⟩ ≤ −𝑐
[ ∑︁
𝑖∈𝑁𝑐

𝑗0

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
∑︁

𝑖≠ 𝑗∈𝑁𝑐
𝑗0

𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝑁 𝑗0

𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
Setting𝑊4

2 (𝑢) = 𝑍 (𝑢) +𝑊1 (�̂�). From the above inequalities, we have〈
𝜕𝐽 (𝑢),𝑊4

2 (𝑢)
〉
≤ −𝑐

[
𝑝∑︁
𝑖=1

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

]
.

Note that max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) is a bounded function along the flow lines of 𝑊4
2 . In this

statement, we denote 𝑊2 the pseudo gradient defined by a convex combination of
𝑊 𝑖

2, 𝑖 = 1, 2, . . . , 4.

Statement 3. We assume that there exist 𝑖 ≠ 𝑗 such that 𝛼𝑖 𝑗 < 0.

We order 𝜆𝛽 (𝑦𝑖 )
𝑖

, 𝑖 = 1, . . . , 𝑝. Assume that

𝜆
𝛽 (𝑦𝑖1 )
𝑖1

≤ · · · ≤ 𝜆𝛽 (𝑦𝑖𝑝 )
𝑖𝑝

.

Let 𝑀 ≫ 1 and let

𝐼1 =

{
𝑖 = 1, . . . , 𝑝, s.t. 𝜆𝛽 (𝑦𝑖 )

𝑖
≤ 𝑀𝜆

𝛽 (𝑦𝑖1 )
𝑖1

}
.

We discuss the construction of the pseudo gradient in the current statement with respect
to the following three cases.

18



Existence and multiplicity results for a fractional curvature problem

Case 1: #𝐼1 = 1. It follows that

1

𝜆
𝛽 (𝑦𝑖 𝑗 )
𝑖 𝑗

= 𝑜

(
1

𝜆
𝛽 (𝑦𝑖1 )
𝑖1

)
,∀ 𝑗 = 2, . . . , 𝑝,

For 𝑀 large enough. We decrease all the 𝜆𝑖 𝑗 ’s, 𝑗 = 2, . . . , 𝑝. By the expansion of
Proposition 3.2, we have〈

𝜕𝐽 (𝑢),−
𝑝∑︁
𝑗=1
𝛼𝑖 𝑗𝜆𝑖 𝑗

𝜕𝛿 (𝑎𝑖 𝑗 ,𝜆𝑖 𝑗 )

𝜕𝜆𝑖 𝑗

〉
≤ −𝑐

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗 + 𝑜
(

1

𝜆
𝛽 (𝑦𝑖1 )
𝑖1

)
.

Let

𝑊1
3 (𝑢) =

(
−

𝑛∑︁
𝑘=1

𝑏𝑘 (𝑦𝑖1 )
)
𝜆𝑖1

𝜕𝛿 (𝑎𝑖1 ,𝜆𝑖1 )

𝜕𝜆𝑖1
−

𝑝∑︁
𝑗=1
𝛼𝑖 𝑗𝜆𝑖 𝑗

𝜕𝛿 (𝑎𝑖 𝑗 ,𝜆𝑖 𝑗 )

𝜕𝜆𝑖 𝑗
.

The max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) remains bounded along𝑊1
3 . Moreover,〈

𝜕𝐽 (𝑢),𝑊1
3 (𝑢)

〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.

Case 2: #𝐼1 ≥ 2 and L𝑖 𝑗 ≥ 0,∀ 𝑖 ≠ 𝑗 ∈ 𝐼1. We denote �̂� =
∑

𝑖∈𝐼1 𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 ) . �̂� verifies
the properties of statement 1 or statement 2.

Let𝑊𝑖 (�̂�), 𝑖 = 1 or 2 be the corresponding vector field. We have

⟨𝜕𝐽 (𝑢),𝑊𝑖 (�̂�)⟩ ≤ −𝑐
[∑︁
𝑖∈𝐼1

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗∈𝐼1

𝜀𝑖 𝑗

]
+

∑︁
𝑖∈𝐼1 , 𝑗∈𝐼𝑐1

𝑂 (𝜀𝑖 𝑗 ).

Note that 𝐼𝑐1 ≠ ∅, since there exists at least 𝑖 ≠ 𝑗 satisfying L𝑖 𝑗 < 0. We decrease all 𝜆𝑖’s,
𝑖 ∈ 𝐼𝑐1 . We get 〈

𝜕𝐽 (𝑢),−
∑︁
𝑖∈𝐼𝑐1

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
≤ −𝑐

∑︁
𝑖∈𝐼𝑐1
𝑗≠𝑖

𝜀𝑖 𝑗 + 𝑜
(

1

𝜆
𝛽 (𝑦𝑖1 )
𝑖1

)
.

Let 𝑚 > 0 small enough and let

𝑊2
3 (𝑢) = 𝑚𝑊𝑖 (�̂�) −

∑︁
𝑖∈𝐼𝑐1

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

We have, 〈
𝜕𝐽 (𝑢),𝑊2

3 (𝑢)
〉
≤ −𝑐

(
𝑝∑︁
𝑖=1

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

)
.
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Case 3: #𝐼 ≥ 2 and there exists 𝑖 ≠ 𝑗 ∈ 𝐼 such that L𝑖 𝑗 < 0. In this case, 𝛽(𝑦𝑖) > 𝑛−2𝜎
or 𝛽(𝑦 𝑗 ) > 𝑛 − 2𝜎. Assume for example that 𝛽(𝑦 𝑗 ) > 𝑛 − 2𝜎.

The following Claim holds.

Claim 2.
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

= 𝑜(𝜀𝑖 𝑗 ), as 𝜀 is small.

Indeed,

1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

𝜀−1
𝑖 𝑗 ∼

𝜆
𝑛−2𝜎

2
𝑖

𝜆
𝛽 (𝑦 𝑗 )− 𝑛−2𝜎

2
𝑗

.

Using the fact that 𝜆𝛽 (𝑦𝑖 )
𝑖

≤ 𝑀𝜆
𝛽 (𝑦 𝑗 )
𝑗

, since 𝑖, 𝑗 ∈ 𝐼, we obtain

1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

𝜀−1
𝑖 𝑗 ≤ 𝑀

𝜆

𝛽 (𝑦𝑗 )
𝛽 (𝑦𝑖 )

𝑛−2𝜎
2

𝑗

𝜆
𝛽 (𝑦 𝑗 )− 𝑛−2𝜎

2
𝑗

≤ 𝑀

𝜆
− 𝑛−2𝜎

2𝛽 (𝑦𝑖 )

(
𝛽 (𝑦𝑖 )+𝛽 (𝑦 𝑗 )−

2𝛽 (𝑦𝑖 )𝛽 (𝑦𝑗 )
𝑛−2𝜎

)
𝑗

Therefore,
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

𝜀−1
𝑖 𝑗 −→ 0, as 𝜀 −→ 0,

since L𝑖 𝑗 < 0. Claim 22 is valid.
Let

𝑊3
3 (𝑢) = −

𝑝∑︁
𝑟=1

𝛼𝑟𝜆𝑟
𝜕𝛿 (𝑎𝑟 ,𝜆𝑟 )
𝜕𝜆𝑟

.

By the expansion of Proposition 3.2, we have〈
𝜕𝐽 (𝑢),𝑊3

3
〉
≤ −𝑐

∑︁
𝑘≠𝑟

𝜀𝑘𝑟 +
𝑝∑︁

𝑟=1
𝑂

(
1

𝜆
𝛽 (𝑦𝑟 )
𝑟

)
.

Observe that, for 𝑟 ∈ 𝐼1, we have 𝜆𝛽 (𝑦𝑟 )𝑟 ∼ 𝜆
𝛽 (𝑦 𝑗 )
𝑗

and for 𝑟 ∈ 𝐼𝑐, we have 1
𝜆
𝛽 (𝑦𝑟 )
𝑟

=

𝑜

(
1

𝜆
𝛽 (𝑦𝑖1 )
𝑖1

)
.

Therefore, by Claim 2
1

𝜆
𝛽 (𝑦𝑟 )
𝑟

= 𝑜(𝜀𝑖 𝑗 ), ∀ 𝑟 = 1, . . . , 𝑝.
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Thus, 〈
𝜕𝐽 (𝑢),𝑊3

3 (𝑢)
〉
≤ −𝑐

[
𝑝∑︁
𝑖=1

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ |∇𝐾 (𝑎𝑖) |
𝜆𝑖

)
+

∑︁
𝑖≠ 𝑗

𝜀𝑖 𝑗

]
.

In the current statement, we denote𝑊3 the vector field defined by a convex combination
of𝑊 𝑖

3, 𝑖 = 1, 2, 3. By construction the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) remains bounded along the flow
lines of𝑊3.

The required pseudo gradient𝑊 of Proposition 3.3, is defined by a convex combination
of𝑊1,𝑊2 and𝑊3. By construction it verifies (i) and (iii) for any 𝑢 ∈ 𝑉 (𝑝, 𝜀, 0). Concerning
(ii), it follows from (i) and the estimate of ∥𝑣∥, following [8, Appendix 2]. This completes
the proof of Proposition 3.3. □

4. Proof of Theorem 1.1

We now prove our existence and multiplicity result.

Proof. Under the assumption of Theorem 3.6, the critical points at infinity of in
𝑉 (𝑝, 𝜀, 0), 𝑝 ≥ 1, are:

(𝑦1, . . . , 𝑦𝑝)∞ =

𝑝∑︁
𝑖=1

1
𝐾 (𝑦𝑖)

𝑛−2𝜎
𝑛

𝛿 (𝑦𝑖 ,∞) , with (𝑦1, . . . , 𝑦𝑝) ∈ 𝐵∞.

Following [8, Lemma 4.2], 𝐽 can be expanded near each (𝑦1, . . . , 𝑦𝑝)∞ as follows.

𝐽

(
𝑝∑︁
𝑖=1

𝛼𝑖𝛿 (𝑎𝑖 ,𝜆𝑖 )+𝑣

)

=

(
𝑝∑︁
𝑖=1

1
𝐾 (𝑦𝑖)

𝑛−2𝜎
𝑛

) 2𝜎
𝑛

[
1 −

(
|ℎ|2 +

𝑛∑︁
𝑘=1

𝑏𝑘 (𝑦𝑖) | (𝑎𝑖 − 𝑦𝑖)𝑘 |𝛽 (𝑦𝑖 )
)
+

𝑝∑︁
𝑖=1

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

]
+ ∥𝑣∥2,

where ℎ ∈ R𝑝−1 are the related coordinates of the expansion of 𝐽 according to the 𝛼𝑖’s
variables.

Using the fact that 𝑏𝑘 (𝑦𝑖) ≠ 0,∀ 𝑖 = 1, . . . , 𝑝 and ∀ 𝑘 = 1, . . . , 𝑛, the index of 𝐽 at
(𝑦1, . . . , 𝑦𝑝)∞ is given by

𝑖𝑛𝑑 (𝐽, 𝑦1, . . . , 𝑦𝑝) =
𝑝∑︁
𝑖=1

(𝑛 − �̃�(𝑦𝑖)) + 𝑝 − 1,

where �̃�(𝑦𝑖) = #{𝑏𝑘 (𝑦𝑖), 𝑘 = 1, . . . , 𝑛, s.t. 𝑏𝑘 (𝑦𝑖) < 0}.
For any critical point at infinity (𝜔, 𝑦1, . . . , 𝑦𝑝)∞ of 𝐽 in 𝑉 (𝑝, 𝜀, 𝜔), 𝑝 ≥ 1, 𝜔 is a

solution of (𝐸𝜎) or zero, we denote 𝑊𝑢 (𝜔, 𝑦1, . . . , 𝑦𝑝)∞ the unstable manifold of the
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gradient vector field at (𝜔, 𝑦1, . . . , 𝑦𝑝)∞. We apply the deformation Lemma to deform
the variational space Σ+. We have

Σ+ ≃
⋃

𝜕𝐽 (𝜔)=0
𝑊𝑢 (𝜔) ∪

⋃
𝜕𝐽 (𝜔)=0,

𝑝≥1

𝑊𝑢 (𝜔, 𝑦1, . . . , 𝑦𝑝)∞ ∪
⋃

(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

𝑊𝑢 (𝑦1, . . . , 𝑦𝑝)∞.

(4.1)
The symbol ≃ designates: retracts by deformation. This implies that (𝐸𝜎) has at least one
solution. Otherwise, the above retraction will be reduced to

Σ+ ≃
⋃

(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

𝑊𝑢 (𝑦1, . . . , 𝑦𝑝)∞ (4.2)

and thus,

1 =
∑︁

(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

(−1)𝑖𝑛𝑑 (𝐽,𝑦1 ,...,𝑦𝑝 ) ,

by computing the Euler−Poincare characteristic of the both sides of(4.2). This contradicts
the assumption of Theorem 1.1.

Now, if 𝛽(𝑦) > 𝑛−2𝜎
2 , for any critical point 𝑦 of 𝐾, Theorem 3.4 rules out the existence

of the critical points at infinity of 𝐽 in 𝑉 (𝑝, 𝜀, 𝜔), 𝑝 ≥ 1 and 𝜔 ≠ 0. Thus (4.1) is
reduced to

Σ+ ≃
⋃

𝜕𝐽 (𝜔)=0
𝑊𝑢 (𝜔) ∪

⋃
(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

𝑊𝑢 (𝑦1, . . . , 𝑦𝑝)∞. (4.3)

By computing the EulerPoincare characteristic of the both sides of (4.3), we get

1 =
∑︁

𝜕𝐽 (𝜔)=0
(−1)𝑖𝑛𝑑 (𝐽,𝜔) +

∑︁
(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

(−1)𝑖𝑛𝑑 (𝐽,𝑦1 ,...,𝑦𝑝 ) ,

Therefore

#𝑆 ≥

������1 −
∑︁

(𝑦1 ,...,𝑦𝑝 ) ∈𝐵∞

(−1)𝑖𝑛𝑑 (𝐽,𝑦1 ,...,𝑦𝑝 )

������ ,
where 𝑆 = {𝜔 ∈ Σ+, 𝜕𝐽 (𝜔) = 0}. This finishes the proof of Theorem 1.1. □

5. Appendix

We now prove Lemma 3.8
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Proof of Lemma 3.8. Let 𝑖 ∈ 𝑁 𝑗0 . By the expansion of Proposition 3.2, we have

〈
𝜕𝐽 (𝑢), 𝛼𝑖𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
= 𝐽 (𝑢) 2−𝑛

2

[
𝑛 − 2𝜎
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)
𝜆
𝛽 (𝑦𝑖 )
𝑖

+ 2
𝑛−2𝜎

2 (𝑛 − 2𝜎)�̃�
∑︁
𝑗≠𝑖

𝐺 (𝑦𝑖 , 𝑦 𝑗 )
(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗 ))

𝑛−2𝜎
4

1
(𝜆𝑖𝜆 𝑗 )

𝑛−2𝜎
2

]
+

∑︁
𝑖≠ 𝑗

𝑜(𝜀𝑖 𝑗 ) + 𝑜
(

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

)
,

since

𝜆𝑖
𝜕𝜀𝑖 𝑗

𝜕𝜆𝑖
= −𝑛 − 2𝜎

2
2

𝑛−2𝜎
2

𝐺 (𝑦𝑖 , 𝑦 𝑗 )
(𝜆𝑖𝜆 𝑗 )

𝑛−2𝜎
2
, for any 𝑖 ≠ 𝑗

and

𝐾 (𝑎𝑖)𝐽 (𝑢)
𝑛

𝑛−2𝜎 𝛼
4𝜎

𝑛−2𝜎
𝑖

= 1 + 𝑜(1), for any 𝑖 = 1, . . . , 𝑝.

Let 𝛿0 > 0 small enough and let

𝐼𝛿0 =


𝑖 ∈ 𝑁 𝑗0 , s.t.

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝑛𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝜆
𝛽 (𝑦𝑖 )
𝑖

>
1

(1 − 𝛿0)
2 𝑛−2𝜎

2 �̃�

(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))
𝑛−2𝜎

4

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )
(𝜆𝑖𝜆 𝑗0 )

𝑛−2𝜎
2


.

The construction of the required pseudo gradient of Lemma 3.8 is related to the following
2 cases.

Case 1: 𝐼𝛿0 ≠ ∅. For any 𝑖 ∈ 𝐼𝛿0 , we set

𝑉𝑖 (𝑢) =
(
−

𝑛∑︁
𝑘=1

𝑏𝑘 (𝑦𝑖)
)
𝛼𝑖𝜆𝑖

𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.
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From the above expansion, we have

⟨𝜕𝐽 (𝑢), 𝑉𝑖 (𝑢)⟩ = 𝐽 (𝑢)
2−𝑛

2

(
−𝑛 − 2𝜎

𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

(∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

)2

𝜆
𝛽 (𝑦𝑖 )
𝑖

− 2
𝑛−2𝜎

2 (𝑛 − 2𝜎)�̃�
∑︁
𝑗≠𝑖

(∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

)
(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗 ))

𝑛−2𝜎
4

𝐺 (𝑦𝑖 , 𝑦 𝑗 )
(𝜆𝑖𝜆 𝑗 )

𝑛−2𝜎
2

)
+ 𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+

∑︁
𝑗≠𝑖

𝑜(𝜀𝑖 𝑗 )

= 𝐽 (𝑢) 2−𝑛
2

(
−𝑛 − 2𝜎

𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

(∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

)2

𝜆
𝛽 (𝑦𝑖 )
𝑖

− 2
𝑛−2𝜎

2 (𝑛 − 2𝜎)�̃�
∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖)
(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))

𝑛−2𝜎
4

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )
(𝜆𝑖𝜆 𝑗0 )

𝑛−2𝜎
2

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
,

since ∀ 𝑗 = 1, . . . , 𝑝, 𝑗 ≠ 𝑗0 and 𝑗 ≠ 𝑖, we have L𝑖 𝑗 > 0, so by Claim 1,

𝜀𝑖 𝑗 = 𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+ 𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

If
(∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖)
)
> 0, we get

⟨𝜕𝐽 (𝑢), 𝑉𝑖 (𝑢)⟩ ≤ −𝑐
(

1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

+ 𝜀𝑖 𝑗0
)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

If
(∑𝑛

𝑘=1 𝑏𝑘 (𝑦𝑖)
)
< 0, we get (using the fact that 𝑖 ∈ 𝐼𝛿0 ),

⟨𝜕𝐽 (𝑢), 𝑉𝑖 (𝑢)⟩ ≤ 𝐽 (𝑢) 2−𝑛
2

(
−𝑛 − 2𝜎

𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

(∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

)2

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ (1 − 𝛿0)
𝑛 − 2𝜎
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝑛𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

(∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

)2

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
,

≤ −𝑐
𝜆
𝛽 (𝑦 𝑗 )
𝑗

+
𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.
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Thus, 〈
𝜕𝐽 (𝑢),

∑︁
𝑖∈𝐼𝛿0

𝑉𝑖 (𝑢)
〉
≤ −𝑐

∑︁
𝑖 ∈ 𝐼𝛿0

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

Observe that, under the action of
∑

𝑖∈𝐼𝛿0
𝑉𝑖 (𝑢), the max1≤𝑖≤𝑝 𝜆𝑖 (𝑠) remains bounded,

since for any 𝑖 ∈ 𝐼𝛿0 , 𝜆
𝛽 (𝑦𝑖 )− 𝑛−2𝜎

𝑛

𝑖
is upper bounded by 𝑀𝜆

𝑛−2𝜎
𝑛

𝑗0
. Now, for the indices

𝑖 ∈ 𝑁 𝑗0 \ 𝐼𝛿0 , we have 𝜆𝑖 ≥ 𝑚𝜆𝑖0 , where 𝑖0 ∈ 𝐼𝛿0 and 𝑚 > 0, small enough.
Therefore, 〈

𝜕𝐽 (𝑢),
∑︁
𝑖∈𝐼𝛿0

𝑉𝑖 (𝑢)
〉
≤ −𝑐

∑︁
𝑖∈𝑁 𝑗0

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

+
𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

Let 𝑚1 > 0 small enough and let

𝑋1 (𝑢) =
∑︁
𝑖∈𝐼𝛿0

𝑉𝑖 (𝑢) − 𝑚
∑︁
𝑖∈𝑁 𝑗0

𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

We have

⟨𝜕𝐽 (𝑢), 𝑋1 (𝑢)⟩ ≤ −𝑐
∑︁
𝑖∈𝑁 𝑗0

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+
∑︁
𝑗≠𝑖

𝜀𝑖 𝑗

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
,

≤ −𝑐
∑︁
𝑖∈𝑁 𝑗0

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ 𝜀𝑖 𝑗0
)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

Lemma 3.8, follows in this case.

Case 2: 𝐼𝛿0 ≠ ∅. We move 𝜆 𝑗0 . By the expansion of Proposition 3.2, we have〈
𝜕𝐽 (𝑢), 𝛼 𝑗0𝜆 𝑗0

𝜕𝛿 (𝑎 𝑗0 ,𝜆 𝑗0 )

𝜕𝜆 𝑗0

〉
= 𝐽 (𝑢) 2−𝑛

2

[
𝑛 − 2𝜎
𝑛

𝛽(𝑦 𝑗0 )𝑐(𝑦 𝑗0 )

𝐾 (𝑦 𝑗0 )
2(1−𝜎)+𝑛

2

∑𝑛
𝑘=1 𝑏𝑘 (𝑦 𝑗0 )

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

+ 2
𝑛−2𝜎

2 (𝑛 − 2𝜎)�̃�
∑︁
𝑖∈𝑁 𝑗0

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )
(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))

𝑛−2𝜎
4

1
(𝜆𝑖𝜆 𝑗0 )

𝑛−2𝜎
2

]
+

𝑝∑︁
𝑖=1

𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
,

since for any 𝑖 ∈ 𝑁𝑐
𝑗0
, 𝑖 ≠ 𝑗0, we have L𝑖 𝑗0 > 0, therefore by Claim 1,

𝜀𝑖 𝑗0 = 𝑜

(
1

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

)
+ 𝑜

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
.
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We decompose 𝑁 𝑗0 into two parts.

𝑁1
𝑗0
=


𝑖 ∈ 𝑁 𝑗0 ,

1 − 2𝛿0
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝜆
𝛽 (𝑦𝑖 )
𝑖

< �̃�
2 𝑛−2𝜎

2(
𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 )

) 𝑛−2𝜎
4

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )(
𝜆𝑖 𝜆 𝑗0

) 𝑛−2𝜎
2

<
1 + 2𝛿0
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝜆
𝛽 (𝑦𝑖 )
𝑖


and

𝑁2
𝑗0
=


𝑖 ∈ 𝑁 𝑗0 , �̃�

2 𝑛−2𝜎
2(

𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 )
) 𝑛−2𝜎

4

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )(
𝜆𝑖 𝜆 𝑗0

) 𝑛−2𝜎
2

≥ 1 + 2𝛿0
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝜆
𝛽 (𝑦𝑖 )
𝑖


.

We have,

〈
𝜕𝐽 (𝑢), 𝜆 𝑗0

𝜕𝛿 (𝑎 𝑗0 ,𝜆 𝑗0 )

𝜕𝜆 𝑗0

〉
= 𝐽 (𝑢) 2−𝑛

2

[
𝑛 − 2𝜎
𝑛

𝛽(𝑦 𝑗0 )𝑐(𝑦 𝑗0 )

𝐾 (𝑦 𝑗0 )
2(1−𝜎)+𝑛

2

∑𝑛
𝑘=1 𝑏𝑘 (𝑦 𝑗0 )

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

+ �̃�(𝑛 − 2𝜎)2 𝑛−2𝜎
2

∑︁
𝑖∈𝑁 1

𝑗0

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )
(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))

𝑛−2𝜎
4

1
(𝜆𝑖𝜆 𝑗0 )

𝑛−2𝜎
2

]

+
∑︁
𝑖∈𝑁2

𝑗0

𝑂 (𝜀𝑖 𝑗0 ) +
𝑝∑︁
𝑗=1
𝑜
( 1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

Observe that for any 𝑖 ∈ 𝑁1
𝑗0
,

�̃�
2 𝑛−2𝜎

2

(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))
𝑛−2𝜎

4

𝐺 (𝑦𝑖 , 𝑦 𝑗0 )
(𝜆𝑖𝜆 𝑗0 )

𝑛−2𝜎
2

∼
𝛽(𝑦 𝑗0 )𝑐(𝑦 𝑗0 )

𝐾 (𝑦 𝑗0 )
2(1−𝜎)+𝑛

2

∑𝑛
𝑘=1 𝑏𝑘 (𝑦 𝑗0 )

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

,
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as 𝛿0 is small enough. Therefore〈
𝜕𝐽 (𝑢), 𝜆 𝑗0

𝜕𝛿 (𝑎 𝑗0 ,𝜆 𝑗0 )

𝜕𝜆 𝑗0

〉
∼ 𝐽 (𝑢) 2−𝑛

2

[
𝑛 − 2𝜎
𝑛

𝛽(𝑦 𝑗0 )𝑐(𝑦 𝑗0 )
∑𝑛

𝑘=1 𝑏𝑘 (𝑦 𝑗0 )

𝐾 (𝑦 𝑗0 )
2(1−𝜎)+𝑛

2

+
∑︁
𝑖∈𝑁 1

𝑗0

𝑛 − 2𝜎
𝑛

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝐾𝑖 𝑗0

]
1

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

+
∑︁
𝑖∈𝑁 2

𝑗0

𝑂 (𝜀𝑖 𝑗0 ) +
𝑝∑︁
𝑗=1
𝑜
( 1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
,

where

𝐾𝑖 𝑗1 =

[
𝛽(𝑦𝑖)𝑐(𝑦𝑖)

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��(𝐾 (𝑦𝑖)𝐾 (𝑦 𝑗0 ))
𝑛−2𝜎

4

𝑛2 𝑛−2𝜎
2 𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2 𝐺 (𝑦𝑖 , 𝑦 𝑗0 )

] 2𝛽 (𝑦𝑗0 )
𝑛−2𝜎

.

Let,

𝜌( 𝑗0, 𝑁 𝑗0 ) :=
𝛽(𝑦 𝑗0 )𝑐(𝑦 𝑗0 )

∑𝑛
𝑘=1 𝑏𝑘 (𝑦 𝑗0 )

𝐾 (𝑦 𝑗0 )
2(1−𝜎)+𝑛

2

+
∑︁

𝑖 ∈ 𝑁2
𝑗0

𝛽(𝑦𝑖)𝑐(𝑦𝑖)
𝐾 (𝑦𝑖)

2(1−𝜎)+𝑛
2

��∑𝑛
𝑘=1 𝑏𝑘 (𝑦𝑖)

��
𝐾𝑖 𝑗1

.

Under condition (H1), 𝜌( 𝑗0, 𝑁 𝑗0 ) ≠ 0. We set

𝑍 𝑗0 (𝑢) = − sign 𝜌( 𝑗0, 𝑁 𝑗0 )𝜆 𝑗0

𝜕𝛿 (𝑎 𝑗0 ,𝜆 𝑗0 )

𝜕𝜆 𝑗0

.

Along 𝑍 𝑗0 (𝑢),max1≤𝑖≤𝑝 is bounded since 𝜆𝛽 (𝑦 𝑗0 )
𝑗0

is upper bound by 𝜆𝛽 (𝑦𝑖 )
𝑖

, 𝑖 ∈ 𝑁 𝑗0 and
𝜆𝑖 does not move under the action of 𝑍 𝑗0 (𝑢).

The preceding expansion yields

〈
𝜕𝐽 (𝑢), 𝑍 𝑗0 (𝑢)

〉
≤ − 𝑐

𝜆
𝛽 (𝑦 𝑗0 )
𝑗0

+
∑︁
𝑖∈𝑁2

𝑗0

𝑂
(
𝜀𝑖 𝑗0

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
≤ −𝑐

∑︁
𝑖∈𝑁1

𝑗0

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ 𝜀𝑖 𝑗0
)
+

∑︁
𝑖∈𝑁2

𝑗0

𝑂
(
𝜀𝑖 𝑗0

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
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For the indices 𝑖 ∈ 𝑁2
𝑗0
,〈

𝜕𝐽 (𝑢),−
∑︁
𝑖∈𝑁2

𝑗0

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

〉
≤ −𝑐

∑︁
𝑖∈𝑁2

𝑗0
𝑗≠𝑖

𝜀𝑖 𝑗 +
∑︁
𝑖∈𝑁2

𝑗0

𝑂

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

)
.

≤ −𝑐
∑︁
𝑖∈𝑁2

𝑗0

(
𝜀𝑖 𝑗0 +

1
𝜆
𝛽 (𝑦𝑖 )
𝑖

)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
Let 𝑚2 > 0 small enough and let

𝑋2 (𝑢) = 𝑚2𝑍 𝑗0 (𝑢) −
∑︁
𝑖∈𝑁2

𝑗0

𝛼𝑖𝜆𝑖
𝜕𝛿 (𝑎𝑖 ,𝜆𝑖 )
𝜕𝜆𝑖

.

It satisfies

⟨𝜕𝐽 (𝑢), 𝑋2 (𝑢)⟩ ≤ −𝑐
∑︁
𝑖∈𝑁 𝑗0

(
1

𝜆
𝛽 (𝑦𝑖 )
𝑖

+ 𝜀𝑖 𝑗0
)
+

𝑝∑︁
𝑗=1
𝑜

(
1

𝜆
𝛽 (𝑦 𝑗 )
𝑗

)
.

The required pseudo gradient 𝑍 of Lemma 3.8 is defined by a convex combination of
𝑋1 (𝑢) and 𝑋2 (𝑢). □
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