Quantum direct products and the Künneth class
[Produits directs quantiques et la classe de Künneth]
Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 1, pp. 11-45.

Nous introduisons une classe de Künneth dans le cadre quantique équivariant inspirés par les travaux pionniers de J. Chabert, H. Oyono-Oyono et S. Echterhoff ; qui permet de relier la propriété de Baum–Connes quantique à la formule de Künneth en généralisant certains résultats clés de Chabert–Oyono-Oyono–Echterhoff aux groupes quantiques discrets. Enfin, nous observons que la C * -algèbre définissant un groupe quantique compact dont le dual satisfait la propriété de Baum–Connes quantique forte appartient à la classe de Künneth. Ceci permet d’obtenir des calculs de K-théorie pour des produits directs quantiques basés sur des travaux antérieurs de Voigt et Vergnioux–Voigt.

We introduce a Künneth class in the quantum equivariant setting inspired by the pioneer work by J. Chabert, H. Oyono-Oyono and S. Echterhoff, which allows to relate the quantum Baum–Connes property with the Künneth formula by generalising some key results of Chabert–Oyono-Oyono–Echterhoff to discrete quantum groups. Finally, we make the observation that the C * -algebra defining a compact quantum group with dual satisfying the strong quantum Baum–Connes property belongs to the Künneth class. This allows to obtain some K-theory computations for quantum direct products based on earlier work by Voigt and Vergnioux–Voigt.

Publié le :
DOI : 10.5802/ambp.424
Classification : 46L80, 19K35, 46L06, 22D25, 20G42, 18G15, 18E30
Keywords: Baum–Connes conjecture, compact/Discrete quantum groups, K-theory, Künneth formula, quantum direct product, tensor product of C$^*$-algebras, torsion, triangulated categories, universal coefficient theorem
Mot clés : Conjecture de Baum–Connes, groupes quantiques compacts/discrets, K-théorie, formule de Künneth, produits directs quantiques, produit tensoriel de C$^*$-algèbres, torsion, catégories triangulées, théorème universel des coefficients

Rubén Martos 1

1 Department of Mathematical Sciences University of Copenhagen Universitetspark 5 2100 Copenhagen Ø Denmark
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2024__31_1_11_0,
     author = {Rub\'en Martos},
     title = {Quantum direct products and the {K\"unneth} class},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {11--45},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {31},
     number = {1},
     year = {2024},
     doi = {10.5802/ambp.424},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/}
}
TY  - JOUR
AU  - Rubén Martos
TI  - Quantum direct products and the Künneth class
JO  - Annales mathématiques Blaise Pascal
PY  - 2024
SP  - 11
EP  - 45
VL  - 31
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/
DO  - 10.5802/ambp.424
LA  - en
ID  - AMBP_2024__31_1_11_0
ER  - 
%0 Journal Article
%A Rubén Martos
%T Quantum direct products and the Künneth class
%J Annales mathématiques Blaise Pascal
%D 2024
%P 11-45
%V 31
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/
%R 10.5802/ambp.424
%G en
%F AMBP_2024__31_1_11_0
Rubén Martos. Quantum direct products and the Künneth class. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 1, pp. 11-45. doi : 10.5802/ambp.424. https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/

[1] Yuki Arano; Kenny De Commer Torsion-freeness for fusion rings and tensor C * -categories, J. Noncommut. Geom., Volume 13 (2019) no. 1, pp. 35-58 | DOI | Zbl

[2] Yuki Arano; Adam Skalski On the Baum–Connes conjecture for discrete quantum groups with torsion and the quantum Rosenberg conjecture, Proc. Am. Math. Soc., Volume 149 (2021), pp. 5237-5254 | DOI | Zbl

[3] Saad Baaj; Georges Skandalis C * -algèbres de Hopf et théorie de Kasparov équivariante, K-Theory, Volume 2 (1989) no. 6, pp. 683-721 | DOI | Zbl

[4] Bruce Blackadar K-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, 1998 | Zbl

[5] Jérôme Chabert; Hervé Oyono-Oyono; Siegfried Echterhoff Going-down functors, the Künneth formula, and the Baum–Connes conjecture, Geom. Funct. Anal., Volume 14 (2004) no. 3, pp. 491-528 | Zbl

[6] Matthew Daws; Paweł Kasprzak; Adam Skalski; Piotr M. Sołtan Closed quantum subgroups of locally compact quantum groups, Adv. Math., Volume 231 (2012) no. 6, pp. 3473-3501 | DOI | Zbl

[7] Kenny De Commer Actions of compact quantum groups, Topological quantum groups (Banach Center Publications), Volume 111, Polish Academy of Sciences, 2017, pp. 33-100 | Zbl

[8] Kenny De Commer; Rubén Martos; Ryszard Nest Projective representation theory for compact quantum groups and the quantum Baum-Connes assembly map (2021) (to appear in J. Noncommut. Geom.) | arXiv

[9] George A. Elliot On the classification of inductive limits of sequences of semisimple finitedimensional algebras, J. Algebra, Volume 38 (1976) no. 1, pp. 29-44 | DOI | Zbl

[10] Pierre Fima; Arthur Troupel Operator Algebras of Free Wreath Products, Adv. Math., Volume 441 (2024), 109546, 53 pages | Zbl

[11] Amaury Freslon; Rubén Martos Torsion and K-theory for some free wreath products, Int. Math. Res. Not., Volume 2020 (2018) no. 6, pp. 1639-1670 | DOI | Zbl

[12] Édouard Goursat Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. Éc. Norm. Supér., Volume 3 (1889) no. 6, pp. 9-102 | DOI | Numdam | Zbl

[13] Nigel Higson A characterization of KK-theory, Pac. J. Math., Volume 126 (1987) no. 2, pp. 253-276 | DOI | Zbl

[14] Nigel Higson; Gennadi Kasparov E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI | Zbl

[15] Triangulated Categories (Thorsten Holm; Peter Jorgensen; Raphaël Rouquier, eds.), London Mathematical Society Lecture Note Series, 375, Cambridge University Press, 2010 | DOI | Zbl

[16] Vincent Lafforgue La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom., Volume 6 (2012) no. 1, pp. 1-197 | DOI | Zbl

[17] François Lemeux; Pierre Tarrago Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3828-3883 | DOI | Zbl

[18] Rubén Martos The Baum–Connes conjecture for Quantum Groups. Stability properties and K-theory computations, Ph. D. Thesis, Université Paris VII (2018)

[19] Rubén Martos The Baum–Connes property for a quantum (semi-)direct product, J. Noncommut. Geom., Volume 13 (2020) no. 4, pp. 1295-1357 | DOI | Zbl

[20] Rubén Martos Permanence of the torsion-freeness property for divisible discrete quantum subgroups, Math. Scand., Volume 130 (2024) no. 2, pp. 257-299 | Zbl

[21] Ralf Meyer Homological algebra in bivariant K-theory and other triangulated categories II, Tbil. Math. J., Volume 1 (2008), p. 165--210 | Zbl

[22] Ralf Meyer; Ryszard Nest The Baum–Connes conjecture via localisation of categories, Topology, Volume 45 (2006) no. 2, pp. 209-259 | DOI | Zbl

[23] Ralf Meyer; Ryszard Nest An analogue of the Baum-Connes isomorphism for coactions of compact groups, Math. Scand., Volume 100 (2007) no. 2, pp. 301-316 | DOI | Zbl

[24] Ryszard Nest; Christian Voigt Equivariant Poincaré duality for quantum group actions, J. Funct. Anal., Volume 258 (2010) no. 5, pp. 1466-1503 | DOI | Zbl

[25] Dmitri Nikshych; Leonid Vainerman Finite quantum groupoids and their applications, New directions in Hopf algebras (Mathematical Sciences Research Institute Publications), Volume 43, Cambridge University Press, 2002, pp. 211-262 | Zbl

[26] Jonathan Rosenberg; Claude Schochet The Künneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory, Memoirs of the American Mathematical Society, 348, American Mathematical Society, 1986, 95 pages

[27] Ken-ichi Tahara On the Second Cohomology Groups of Semidirect Products, Math. Z., Volume 129 (1972), pp. 365-379 | DOI | Zbl

[28] Klaus Thomsen The universal property of equivariant KK-theory, J. Reine Angew. Math., Volume 504 (1998), pp. 55-71 | DOI | Zbl

[29] Roland Vergnioux; Christian Voigt The K-theory of free quantum groups, Math. Ann., Volume 357 (2013) no. 1, pp. 355-400 | DOI | Zbl

[30] Christian Voigt The Baum–Connes conjecture for free orthogonal quantum groups, Adv. Math., Volume 227 (2011) no. 5, pp. 1873-1913 | DOI | Zbl

[31] Christian Voigt On the structure of quantum automorphism groups, J. Reine Angew. Math., Volume 732 (2017), pp. 255-273 | DOI | Zbl

[32] Shuzhou Wang Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc., Volume 71 (1995), pp. 695-720 | DOI | Zbl

Cité par Sources :