[Produits directs quantiques et la classe de Künneth]
Nous introduisons une classe de Künneth dans le cadre quantique équivariant inspirés par les travaux pionniers de J. Chabert, H. Oyono-Oyono et S. Echterhoff ; qui permet de relier la propriété de Baum–Connes quantique à la formule de Künneth en généralisant certains résultats clés de Chabert–Oyono-Oyono–Echterhoff aux groupes quantiques discrets. Enfin, nous observons que la -algèbre définissant un groupe quantique compact dont le dual satisfait la propriété de Baum–Connes quantique forte appartient à la classe de Künneth. Ceci permet d’obtenir des calculs de K-théorie pour des produits directs quantiques basés sur des travaux antérieurs de Voigt et Vergnioux–Voigt.
We introduce a Künneth class in the quantum equivariant setting inspired by the pioneer work by J. Chabert, H. Oyono-Oyono and S. Echterhoff, which allows to relate the quantum Baum–Connes property with the Künneth formula by generalising some key results of Chabert–Oyono-Oyono–Echterhoff to discrete quantum groups. Finally, we make the observation that the -algebra defining a compact quantum group with dual satisfying the strong quantum Baum–Connes property belongs to the Künneth class. This allows to obtain some K-theory computations for quantum direct products based on earlier work by Voigt and Vergnioux–Voigt.
Keywords: Baum–Connes conjecture, compact/Discrete quantum groups, K-theory, Künneth formula, quantum direct product, tensor product of C$^*$-algebras, torsion, triangulated categories, universal coefficient theorem
Mot clés : Conjecture de Baum–Connes, groupes quantiques compacts/discrets, K-théorie, formule de Künneth, produits directs quantiques, produit tensoriel de C$^*$-algèbres, torsion, catégories triangulées, théorème universel des coefficients
Rubén Martos 1
@article{AMBP_2024__31_1_11_0, author = {Rub\'en Martos}, title = {Quantum direct products and the {K\"unneth} class}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {11--45}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {31}, number = {1}, year = {2024}, doi = {10.5802/ambp.424}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/} }
TY - JOUR AU - Rubén Martos TI - Quantum direct products and the Künneth class JO - Annales mathématiques Blaise Pascal PY - 2024 SP - 11 EP - 45 VL - 31 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/ DO - 10.5802/ambp.424 LA - en ID - AMBP_2024__31_1_11_0 ER -
%0 Journal Article %A Rubén Martos %T Quantum direct products and the Künneth class %J Annales mathématiques Blaise Pascal %D 2024 %P 11-45 %V 31 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/ %R 10.5802/ambp.424 %G en %F AMBP_2024__31_1_11_0
Rubén Martos. Quantum direct products and the Künneth class. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 1, pp. 11-45. doi : 10.5802/ambp.424. https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/
[1] Torsion-freeness for fusion rings and tensor -categories, J. Noncommut. Geom., Volume 13 (2019) no. 1, pp. 35-58 | DOI | Zbl
[2] On the Baum–Connes conjecture for discrete quantum groups with torsion and the quantum Rosenberg conjecture, Proc. Am. Math. Soc., Volume 149 (2021), pp. 5237-5254 | DOI | Zbl
[3] -algèbres de Hopf et théorie de Kasparov équivariante, -Theory, Volume 2 (1989) no. 6, pp. 683-721 | DOI | Zbl
[4] -theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, 1998 | Zbl
[5] Going-down functors, the Künneth formula, and the Baum–Connes conjecture, Geom. Funct. Anal., Volume 14 (2004) no. 3, pp. 491-528 | Zbl
[6] Closed quantum subgroups of locally compact quantum groups, Adv. Math., Volume 231 (2012) no. 6, pp. 3473-3501 | DOI | Zbl
[7] Actions of compact quantum groups, Topological quantum groups (Banach Center Publications), Volume 111, Polish Academy of Sciences, 2017, pp. 33-100 | Zbl
[8] Projective representation theory for compact quantum groups and the quantum Baum-Connes assembly map (2021) (to appear in J. Noncommut. Geom.) | arXiv
[9] On the classification of inductive limits of sequences of semisimple finitedimensional algebras, J. Algebra, Volume 38 (1976) no. 1, pp. 29-44 | DOI | Zbl
[10] Operator Algebras of Free Wreath Products, Adv. Math., Volume 441 (2024), 109546, 53 pages | Zbl
[11] Torsion and -theory for some free wreath products, Int. Math. Res. Not., Volume 2020 (2018) no. 6, pp. 1639-1670 | DOI | Zbl
[12] Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. Éc. Norm. Supér., Volume 3 (1889) no. 6, pp. 9-102 | DOI | Numdam | Zbl
[13] A characterization of -theory, Pac. J. Math., Volume 126 (1987) no. 2, pp. 253-276 | DOI | Zbl
[14] E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI | Zbl
[15] Triangulated Categories (Thorsten Holm; Peter Jorgensen; Raphaël Rouquier, eds.), London Mathematical Society Lecture Note Series, 375, Cambridge University Press, 2010 | DOI | Zbl
[16] La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom., Volume 6 (2012) no. 1, pp. 1-197 | DOI | Zbl
[17] Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3828-3883 | DOI | Zbl
[18] The Baum–Connes conjecture for Quantum Groups. Stability properties and -theory computations, Ph. D. Thesis, Université Paris VII (2018)
[19] The Baum–Connes property for a quantum (semi-)direct product, J. Noncommut. Geom., Volume 13 (2020) no. 4, pp. 1295-1357 | DOI | Zbl
[20] Permanence of the torsion-freeness property for divisible discrete quantum subgroups, Math. Scand., Volume 130 (2024) no. 2, pp. 257-299 | Zbl
[21] Homological algebra in bivariant K-theory and other triangulated categories II, Tbil. Math. J., Volume 1 (2008), p. 165--210 | Zbl
[22] The Baum–Connes conjecture via localisation of categories, Topology, Volume 45 (2006) no. 2, pp. 209-259 | DOI | Zbl
[23] An analogue of the Baum-Connes isomorphism for coactions of compact groups, Math. Scand., Volume 100 (2007) no. 2, pp. 301-316 | DOI | Zbl
[24] Equivariant Poincaré duality for quantum group actions, J. Funct. Anal., Volume 258 (2010) no. 5, pp. 1466-1503 | DOI | Zbl
[25] Finite quantum groupoids and their applications, New directions in Hopf algebras (Mathematical Sciences Research Institute Publications), Volume 43, Cambridge University Press, 2002, pp. 211-262 | Zbl
[26] The Künneth theorem and the universal coefficient theorem for equivariant -theory and -theory, Memoirs of the American Mathematical Society, 348, American Mathematical Society, 1986, 95 pages
[27] On the Second Cohomology Groups of Semidirect Products, Math. Z., Volume 129 (1972), pp. 365-379 | DOI | Zbl
[28] The universal property of equivariant -theory, J. Reine Angew. Math., Volume 504 (1998), pp. 55-71 | DOI | Zbl
[29] The -theory of free quantum groups, Math. Ann., Volume 357 (2013) no. 1, pp. 355-400 | DOI | Zbl
[30] The Baum–Connes conjecture for free orthogonal quantum groups, Adv. Math., Volume 227 (2011) no. 5, pp. 1873-1913 | DOI | Zbl
[31] On the structure of quantum automorphism groups, J. Reine Angew. Math., Volume 732 (2017), pp. 255-273 | DOI | Zbl
[32] Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc., Volume 71 (1995), pp. 695-720 | DOI | Zbl
Cité par Sources :