We establish an integration formula for integral foliated simplicial volume along ergodic decompositions. This is analogous to the ergodic decomposition formula for the cost of groups.
Nous établissons une formule d’intégration pour le volume simplicial feuilleté intégral sur des décompositions ergodiques. Celle-ci est analogue à la formule de décomposition ergodique pour le coût des groupes.
Keywords: Integral foliated simplicial volume, ergodic decomposition
Mot clés : Volume simplicial feuilleté intégral, décomposiiton ergodique
Clara Löh 1; Giovanni Sartori 2
@article{AMBP_2024__31_1_47_0, author = {Clara L\"oh and Giovanni Sartori}, title = {Integral foliated simplicial volume and ergodic decomposition}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {47--64}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {31}, number = {1}, year = {2024}, doi = {10.5802/ambp.425}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.425/} }
TY - JOUR AU - Clara Löh AU - Giovanni Sartori TI - Integral foliated simplicial volume and ergodic decomposition JO - Annales mathématiques Blaise Pascal PY - 2024 SP - 47 EP - 64 VL - 31 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.425/ DO - 10.5802/ambp.425 LA - en ID - AMBP_2024__31_1_47_0 ER -
%0 Journal Article %A Clara Löh %A Giovanni Sartori %T Integral foliated simplicial volume and ergodic decomposition %J Annales mathématiques Blaise Pascal %D 2024 %P 47-64 %V 31 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.425/ %R 10.5802/ambp.425 %G en %F AMBP_2024__31_1_47_0
Clara Löh; Giovanni Sartori. Integral foliated simplicial volume and ergodic decomposition. Annales mathématiques Blaise Pascal, Volume 31 (2024) no. 1, pp. 47-64. doi : 10.5802/ambp.425. https://ambp.centre-mersenne.org/articles/10.5802/ambp.425/
[1] Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc., Volume 14 (2012) no. 5, pp. 1657-1677 | DOI | Zbl
[2] Integral foliated simplicial volume and circle foliations, J. Topol. Anal., Volume 15 (2023) no. 1, pp. 155-184 | DOI | MR | Zbl
[3] Integral foliated simplicial volume and -actions, Forum Math., Volume 33 (2021) no. 3, pp. 773-788 | DOI | Zbl
[4] Stable integral simplicial volume of -manifolds, J. Topol., Volume 14 (2021) no. 2, pp. 608-640 | DOI | Zbl
[5] Integral foliated simplicial volume of aspherical manifolds, Isr. J. Math., Volume 216 (2016), pp. 707-751 | DOI | Zbl
[6] Coût des relations d’équivalence et des groupes, Invent. Math., Volume 139 (2000) no. 1, pp. 41-98 | DOI | Zbl
[7] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999, xx+585 pages (Based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates) | Zbl
[8] Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, 2010, xii+237 pages | DOI
[9] Classical Descriptive Set Theory, Graduate Studies in Mathematics, 156, Springer, 2012
[10] Topics in Orbit Equivalence, Lecture Notes in Mathematics, 1852, Springer, 2004, x+134 pages | DOI
[11] On the triangulation of manifolds and the Hauptvermutung, Bull. Am. Math. Soc., Volume 75 (1969), pp. 742-749 | DOI | Zbl
[12] Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013, xvi+708 pages
[13] Cost vs. integral foliated simplicial volume, Groups Geom. Dyn., Volume 14 (2020) no. 3, pp. 899-916 | DOI | Zbl
[14] Amenable covers and integral foliated simplicial volume, New York J. Math., Volume 28 (2022), pp. 1112-1136 | Zbl
[15] Integral foliated simplicial volume of hyperbolic -manifolds, Groups Geom. Dyn., Volume 10 (2016), pp. 825-865 | Zbl
[16] On spaces having the homotopy type of a -complex, Trans. Am. Math. Soc., Volume 90 (1959), pp. 272-280 | DOI | Zbl
[17] -Betti Numbers of -Spaces and the Integral Foliated Simplicial Volume, Ph. D. Thesis, Westfälische Wilhelms-Universität Münster (2005) (http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563)
[18] On the homotopy type of compact topological manifolds, Bull. Am. Math. Soc., Volume 74 (1968), pp. 738-742 | DOI | Zbl
[19] Groups of automorphisms of Borel spaces, Trans. Am. Math. Soc., Volume 109 (1963), pp. 191-220 | DOI | Zbl
Cited by Sources: