We introduce a Künneth class in the quantum equivariant setting inspired by the pioneer work by J. Chabert, H. Oyono-Oyono and S. Echterhoff, which allows to relate the quantum Baum–Connes property with the Künneth formula by generalising some key results of Chabert–Oyono-Oyono–Echterhoff to discrete quantum groups. Finally, we make the observation that the -algebra defining a compact quantum group with dual satisfying the strong quantum Baum–Connes property belongs to the Künneth class. This allows to obtain some K-theory computations for quantum direct products based on earlier work by Voigt and Vergnioux–Voigt.
Nous introduisons une classe de Künneth dans le cadre quantique équivariant inspirés par les travaux pionniers de J. Chabert, H. Oyono-Oyono et S. Echterhoff ; qui permet de relier la propriété de Baum–Connes quantique à la formule de Künneth en généralisant certains résultats clés de Chabert–Oyono-Oyono–Echterhoff aux groupes quantiques discrets. Enfin, nous observons que la -algèbre définissant un groupe quantique compact dont le dual satisfait la propriété de Baum–Connes quantique forte appartient à la classe de Künneth. Ceci permet d’obtenir des calculs de K-théorie pour des produits directs quantiques basés sur des travaux antérieurs de Voigt et Vergnioux–Voigt.
Keywords: Baum–Connes conjecture, compact/Discrete quantum groups, K-theory, Künneth formula, quantum direct product, tensor product of C$^*$-algebras, torsion, triangulated categories, universal coefficient theorem
Mot clés : Conjecture de Baum–Connes, groupes quantiques compacts/discrets, K-théorie, formule de Künneth, produits directs quantiques, produit tensoriel de C$^*$-algèbres, torsion, catégories triangulées, théorème universel des coefficients
Rubén Martos 1
@article{AMBP_2024__31_1_11_0, author = {Rub\'en Martos}, title = {Quantum direct products and the {K\"unneth} class}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {11--45}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {31}, number = {1}, year = {2024}, doi = {10.5802/ambp.424}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/} }
TY - JOUR AU - Rubén Martos TI - Quantum direct products and the Künneth class JO - Annales mathématiques Blaise Pascal PY - 2024 SP - 11 EP - 45 VL - 31 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/ DO - 10.5802/ambp.424 LA - en ID - AMBP_2024__31_1_11_0 ER -
%0 Journal Article %A Rubén Martos %T Quantum direct products and the Künneth class %J Annales mathématiques Blaise Pascal %D 2024 %P 11-45 %V 31 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/ %R 10.5802/ambp.424 %G en %F AMBP_2024__31_1_11_0
Rubén Martos. Quantum direct products and the Künneth class. Annales mathématiques Blaise Pascal, Volume 31 (2024) no. 1, pp. 11-45. doi : 10.5802/ambp.424. https://ambp.centre-mersenne.org/articles/10.5802/ambp.424/
[1] Torsion-freeness for fusion rings and tensor -categories, J. Noncommut. Geom., Volume 13 (2019) no. 1, pp. 35-58 | DOI | Zbl
[2] On the Baum–Connes conjecture for discrete quantum groups with torsion and the quantum Rosenberg conjecture, Proc. Am. Math. Soc., Volume 149 (2021), pp. 5237-5254 | DOI | Zbl
[3] -algèbres de Hopf et théorie de Kasparov équivariante, -Theory, Volume 2 (1989) no. 6, pp. 683-721 | DOI | Zbl
[4] -theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, 1998 | Zbl
[5] Going-down functors, the Künneth formula, and the Baum–Connes conjecture, Geom. Funct. Anal., Volume 14 (2004) no. 3, pp. 491-528 | Zbl
[6] Closed quantum subgroups of locally compact quantum groups, Adv. Math., Volume 231 (2012) no. 6, pp. 3473-3501 | DOI | Zbl
[7] Actions of compact quantum groups, Topological quantum groups (Banach Center Publications), Volume 111, Polish Academy of Sciences, 2017, pp. 33-100 | Zbl
[8] Projective representation theory for compact quantum groups and the quantum Baum-Connes assembly map (2021) (to appear in J. Noncommut. Geom.) | arXiv
[9] On the classification of inductive limits of sequences of semisimple finitedimensional algebras, J. Algebra, Volume 38 (1976) no. 1, pp. 29-44 | DOI | Zbl
[10] Operator Algebras of Free Wreath Products, Adv. Math., Volume 441 (2024), 109546, 53 pages | Zbl
[11] Torsion and -theory for some free wreath products, Int. Math. Res. Not., Volume 2020 (2018) no. 6, pp. 1639-1670 | DOI | Zbl
[12] Sur les substitutions orthogonales et les divisions régulières de l’espace, Ann. Sci. Éc. Norm. Supér., Volume 3 (1889) no. 6, pp. 9-102 | DOI | Numdam | Zbl
[13] A characterization of -theory, Pac. J. Math., Volume 126 (1987) no. 2, pp. 253-276 | DOI | Zbl
[14] E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI | Zbl
[15] Triangulated Categories (Thorsten Holm; Peter Jorgensen; Raphaël Rouquier, eds.), London Mathematical Society Lecture Note Series, 375, Cambridge University Press, 2010 | DOI | Zbl
[16] La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom., Volume 6 (2012) no. 1, pp. 1-197 | DOI | Zbl
[17] Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3828-3883 | DOI | Zbl
[18] The Baum–Connes conjecture for Quantum Groups. Stability properties and -theory computations, Ph. D. Thesis, Université Paris VII (2018)
[19] The Baum–Connes property for a quantum (semi-)direct product, J. Noncommut. Geom., Volume 13 (2020) no. 4, pp. 1295-1357 | DOI | Zbl
[20] Permanence of the torsion-freeness property for divisible discrete quantum subgroups, Math. Scand., Volume 130 (2024) no. 2, pp. 257-299 | Zbl
[21] Homological algebra in bivariant K-theory and other triangulated categories II, Tbil. Math. J., Volume 1 (2008), p. 165--210 | Zbl
[22] The Baum–Connes conjecture via localisation of categories, Topology, Volume 45 (2006) no. 2, pp. 209-259 | DOI | Zbl
[23] An analogue of the Baum-Connes isomorphism for coactions of compact groups, Math. Scand., Volume 100 (2007) no. 2, pp. 301-316 | DOI | Zbl
[24] Equivariant Poincaré duality for quantum group actions, J. Funct. Anal., Volume 258 (2010) no. 5, pp. 1466-1503 | DOI | Zbl
[25] Finite quantum groupoids and their applications, New directions in Hopf algebras (Mathematical Sciences Research Institute Publications), Volume 43, Cambridge University Press, 2002, pp. 211-262 | Zbl
[26] The Künneth theorem and the universal coefficient theorem for equivariant -theory and -theory, Memoirs of the American Mathematical Society, 348, American Mathematical Society, 1986, 95 pages
[27] On the Second Cohomology Groups of Semidirect Products, Math. Z., Volume 129 (1972), pp. 365-379 | DOI | Zbl
[28] The universal property of equivariant -theory, J. Reine Angew. Math., Volume 504 (1998), pp. 55-71 | DOI | Zbl
[29] The -theory of free quantum groups, Math. Ann., Volume 357 (2013) no. 1, pp. 355-400 | DOI | Zbl
[30] The Baum–Connes conjecture for free orthogonal quantum groups, Adv. Math., Volume 227 (2011) no. 5, pp. 1873-1913 | DOI | Zbl
[31] On the structure of quantum automorphism groups, J. Reine Angew. Math., Volume 732 (2017), pp. 255-273 | DOI | Zbl
[32] Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc., Volume 71 (1995), pp. 695-720 | DOI | Zbl
Cited by Sources: