The RFD and Kac quotients of the Hopf * -algebras of universal orthogonal quantum groups
Annales mathématiques Blaise Pascal, Volume 28 (2021) no. 2, pp. 141-155.

We determine the Kac quotient and the RFD (residually finite dimensional) quotient for the Hopf * -algebras associated to universal orthogonal quantum groups.

Published online:
DOI: 10.5802/ambp.402
Classification: 16T05,  20G42
Keywords: Hopf * -algebra; RFD property; Kac quotient; universal orthogonal quantum groups
Biswarup Das 1; Uwe Franz 2; Adam Skalski 3

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl.Grunwaldzki 2/4, 50-384 Wrocław, Poland
2 Laboratoire de mathématiques de Besançon, Université de Bourgogne Franche-Comté, 16, route de Gray, 25 030 Besançon cedex, France
3 Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00–656 Warszawa, Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AMBP_2021__28_2_141_0,
     author = {Biswarup Das and Uwe Franz and Adam Skalski},
     title = {The {RFD} and {Kac} quotients of the {Hopf}$^*$-algebras of universal orthogonal quantum groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {141--155},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {28},
     number = {2},
     year = {2021},
     doi = {10.5802/ambp.402},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.402/}
}
TY  - JOUR
AU  - Biswarup Das
AU  - Uwe Franz
AU  - Adam Skalski
TI  - The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2021
DA  - 2021///
SP  - 141
EP  - 155
VL  - 28
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.402/
UR  - https://doi.org/10.5802/ambp.402
DO  - 10.5802/ambp.402
LA  - en
ID  - AMBP_2021__28_2_141_0
ER  - 
%0 Journal Article
%A Biswarup Das
%A Uwe Franz
%A Adam Skalski
%T The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups
%J Annales mathématiques Blaise Pascal
%D 2021
%P 141-155
%V 28
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.402
%R 10.5802/ambp.402
%G en
%F AMBP_2021__28_2_141_0
Biswarup Das; Uwe Franz; Adam Skalski. The RFD and Kac quotients of the Hopf$^*$-algebras of universal orthogonal quantum groups. Annales mathématiques Blaise Pascal, Volume 28 (2021) no. 2, pp. 141-155. doi : 10.5802/ambp.402. https://ambp.centre-mersenne.org/articles/10.5802/ambp.402/

[1] Teodor Banica Théorie des représentations du groupe quantique compact libre O(n)., C. R. Math. Acad. Sci. Paris, Volume 322 (1996) no. 3, pp. 241-244 | Zbl

[2] Teodor Banica Le groupe quantique compact libre U(n), Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl

[3] Teodor Banica Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | DOI | MR | Zbl

[4] Teodor Banica; Julien Bichon Hopf images and inner faithful representations., Glasg. Math. J., Volume 52 (2010) no. 3, pp. 677-703 | DOI | MR | Zbl

[5] Teodor Banica; Uwe Franz; Adam Skalski Idempotent states and the inner linearity property, Bull. Pol. Acad. Sci., Math., Volume 60 (2012) no. 2, pp. 123-132 | DOI | MR | Zbl

[6] Angshuman Bhattacharya; Michael Brannan; Alexandru Chirvasitu; Shuzhou Wang Property (T), property (F) and residual finiteness for discrete quantum groups, J. Noncommut. Geom., Volume 14 (2020) no. 2, pp. 567-589 | DOI | MR | Zbl

[7] Martijn Caspers; Adam Skalski On C * -completions of discrete quantum group rings, Bull. Lond. Math. Soc., Volume 51 (2019) no. 4, pp. 691-704 | DOI | MR | Zbl

[8] Alexandru Chirvasitu Centers, cocenters and simple quantum groups, J. Pure Appl. Algebra, Volume 218 (2014) no. 8, pp. 1418-1430 | DOI | MR | Zbl

[9] Alexandru Chirvasitu Residually finite quantum group algebras, J. Funct. Anal., Volume 268 (2015) no. 11, pp. 3508-3533 | DOI | MR | Zbl

[10] Alexandru Chirvasitu Topological generation results for free unitary and orthogonal groups, Int. J. Math., Volume 31 (2020) no. 1, 2050003, 13 pages | DOI | MR | Zbl

[11] Mathijs S. Dijkhuizen; Tom H. Koornwinder CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys., Volume 32 (1994) no. 4, pp. 315-330 | DOI | MR | Zbl

[12] Anatoli Klimyk; Konrad Schmüdgen Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997, xix + 552 pages | DOI | Zbl

[13] An De Rijdt Monoidal equivalence of compact quantum groups, Ph. D. Thesis, KU Leuven (2007) (available at https://perswww.kuleuven.be/~u0018768/students/derijdt-phd-thesis.pdf)

[14] Piotr M. Sołtan Quantum Bohr compactification, Ill. J. Math., Volume 49 (2005) no. 4, pp. 1245-1270 | MR | Zbl

[15] Piotr M. Sołtan Quantum Bohr compactification of discrete quantum groups (2006) (https://arxiv.org/abs/math/0604623)

[16] Reiji Tomatsu A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Commun. Math. Phys., Volume 275 (2007) no. 1, pp. 271-296 | DOI | MR | Zbl

[17] Stefaan Vaes; Roland Vergnioux The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., Volume 140 (2007) no. 1, pp. 35-84 | DOI | MR | Zbl

[18] Alfons VanDaele; Shuzhou Wang Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl

[19] Shuzhou Wang Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | MR | Zbl

[20] Shuzhou Wang Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q), J. Oper. Theory, Volume 48 (2002) no. 3, pp. 573-583 | MR | Zbl

[21] Stanisław L. Woronowicz Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | MR | Zbl

[22] Stanisław L. Woronowicz Compact quantum groups, Quantum symmetries/ Symétries quantiques. Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France, August 1 - September 8, 1995, North-Holland, 1998, pp. 845-884 | Zbl

Cited by Sources: