We define an extension operator and study boundedness of Hardy–Littlewood–Sobolev inequality and weighted Hardy–Littlewood–Sobolev inequality on upper Half space for the Dunkl transform.
@article{AMBP_2021__28_2_117_0, author = {V. P. Anoop and Sanjay Parui}, title = {Hardy{\textendash}Littlewood{\textendash}Sobolev {Inequality} for {Upper} {Half} {Space}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {117--140}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {28}, number = {2}, year = {2021}, doi = {10.5802/ambp.401}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.401/} }
TY - JOUR AU - V. P. Anoop AU - Sanjay Parui TI - Hardy–Littlewood–Sobolev Inequality for Upper Half Space JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 117 EP - 140 VL - 28 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.401/ DO - 10.5802/ambp.401 LA - en ID - AMBP_2021__28_2_117_0 ER -
%0 Journal Article %A V. P. Anoop %A Sanjay Parui %T Hardy–Littlewood–Sobolev Inequality for Upper Half Space %J Annales mathématiques Blaise Pascal %D 2021 %P 117-140 %V 28 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.401/ %R 10.5802/ambp.401 %G en %F AMBP_2021__28_2_117_0
V. P. Anoop; Sanjay Parui. Hardy–Littlewood–Sobolev Inequality for Upper Half Space. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 2, pp. 117-140. doi : 10.5802/ambp.401. https://ambp.centre-mersenne.org/articles/10.5802/ambp.401/
[1] Higher Transcendental Functions, Macgraw Hill Book Company, 1953
[2] Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., Volume 2015 (2015) no. 3, pp. 651-687 | DOI | MR | Zbl
[3] Two results on the Dunkl maximal operator, Stud. Math., Volume 203 (2011) no. 1, pp. 47-68 | DOI | MR | Zbl
[4] Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space, Commun. Contemp. Math., Volume 18 (2016) no. 5, 1550067, 20 pages | MR | Zbl
[5] Positive -bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., Volume 49 (2019), pp. 555-605 | DOI | MR | Zbl
[6] Riesz potential and maximal function for Dunkl transform, Potential Anal., Volume 55 (2021), pp. 513-538 | DOI | MR | Zbl
[7] Dunkl operators: theory and applications, Orthogonal Polynomials and Special Functions (Lecture Notes in Mathematics), Volume 1817, Springer, 2003 | DOI | MR | Zbl
[8] Fractional integrals on dimensional Euclidean space, J. Math. Mech., Volume 7 (1958), pp. 503-514 | MR | Zbl
[9] Convolution operator and maximal function for the Dunkl transform, J. Anal. Math., Volume 97 (2005), pp. 25-55 | DOI | MR | Zbl
[10] Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math., Volume 199 (2007), pp. 181-195 | DOI | MR | Zbl
Cité par Sources :