Rigidity, counting and equidistribution of quaternionic Cartan chains
Annales mathématiques Blaise Pascal, Volume 28 (2021) no. 1, pp. 45-69.

In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.

Dans ce papier, nous montrons un analogue d’un théorème de Cartan, disant que les transformations du bord des espaces hyperboliques quaternioniens qui préservent les chaînes sont des transformations projectives. Nous donnons un résultat de comptage et d’équidistribution pour les orbites de chaînes arithmétiques dans le groupe de Heisenberg quaternionien.

Published online:
DOI: 10.5802/ambp.399
Classification: 11E39, 11F06, 11N45, 20G20, 53C17, 53C55
Keywords: counting, equidistribution, Cartan chain, quaternionic Heisenberg group, Cygan distance, sub-Riemannian geometry, quaternionic hyperbolic geometry
Mot clés : comptage, équidistribution, chaîne de Cartan, groupe de Heisenberg quaternionien, distance de Cygan, géométrie sous-riemanienne, géométrie hyperbolique quaternionienne

Jouni Parkkonen 1; Frédéric Paulin 2

1 Department of Mathematics and Statistics P.O. Box 35 40014 University of Jyväskylä FINLAND
2 Laboratoire de mathématique d’Orsay UMR 8628 CNRS Université Paris-Saclay 91405 ORSAY Cedex FRANCE
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AMBP_2021__28_1_45_0,
     author = {Jouni Parkkonen and Fr\'ed\'eric Paulin},
     title = {Rigidity, counting and equidistribution  of quaternionic {Cartan} chains},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {45--69},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {28},
     number = {1},
     year = {2021},
     doi = {10.5802/ambp.399},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/}
}
TY  - JOUR
AU  - Jouni Parkkonen
AU  - Frédéric Paulin
TI  - Rigidity, counting and equidistribution  of quaternionic Cartan chains
JO  - Annales mathématiques Blaise Pascal
PY  - 2021
SP  - 45
EP  - 69
VL  - 28
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/
DO  - 10.5802/ambp.399
LA  - en
ID  - AMBP_2021__28_1_45_0
ER  - 
%0 Journal Article
%A Jouni Parkkonen
%A Frédéric Paulin
%T Rigidity, counting and equidistribution  of quaternionic Cartan chains
%J Annales mathématiques Blaise Pascal
%D 2021
%P 45-69
%V 28
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/
%R 10.5802/ambp.399
%G en
%F AMBP_2021__28_1_45_0
Jouni Parkkonen; Frédéric Paulin. Rigidity, counting and equidistribution  of quaternionic Cartan chains. Annales mathématiques Blaise Pascal, Volume 28 (2021) no. 1, pp. 45-69. doi : 10.5802/ambp.399. https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/

[1] Yves Benoist; Hee Oh Effective equidistribution of S-integral points on symmetric varieties, Ann. Inst. Fourier, Volume 62 (2012) no. 5, pp. 1889-1942 | DOI | Numdam | MR | Zbl

[2] Yves Benoist; Jean-François Quint Stationary measures and invariant subsets of homogeneous spaces II, J. Am. Math. Soc., Volume 26 (2013) no. 3, pp. 659-734 | DOI | MR | Zbl

[3] Arthur L. Besse Einstein manifolds, Classics in Mathematics, Springer, 2008 | MR

[4] Olivier Biquard Quaternionic contact structures, Proceedings of the Second Meeting on Quaternionic Structures in Mathematics and Physics (Roma, 1999), World Scientific, 2001, pp. 23-30 | DOI | Zbl

[5] Stefan Breulmann; Volker Helmke The covolume of quaternion groups on the four-dimensional hyperbolic space, Acta Arith., Volume 77 (1996) no. 1, pp. 9-21 | DOI | MR | Zbl

[6] Anne Broise-Alamichel; Jouni Parkkonen; Frédéric Paulin Equidistribution and counting under equilibrium states in negative curvature and trees. Applications to non-Archimedean Diophantine approximation, Progress in Mathematics, 329, Birkhäuser, 2019

[7] Élie Cartan Sur le groupe de la géométrie hypersphérique, Comment. Math. Helv., Volume 4 (1932), pp. 158-171 | DOI | Zbl

[8] William Duke Rational points on the sphere, Ramanujan J., Volume 7 (2003) no. 1-3, pp. 235-239 | DOI | MR | Zbl

[9] Jordan S. Ellenberg; Philippe Michel; Akshay Venkatesh Linnik’s ergodic method and the distribution of integer points on spheres, Automorphic representations and L-functions (Tata Institute of Fundamental Research Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 119-185 | MR | Zbl

[10] William M. Goldman Complex hyperbolic geometry, Oxford Mathematical Monographs, Clarendon Press, 1999

[11] Alexander Gorodnik; Francois Maucourant Proximality and equidistribution on the Furstenberg boundary, Geom. Dedicata, Volume 113 (2005), pp. 197-213 | DOI | MR | Zbl

[12] Mikhail Gromov Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry (Progress in Mathematics), Volume 144, Birkhäuser, 1996, pp. 79-323 | DOI | Zbl

[13] Mikhail Gromov; Richard Schoen Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math., Inst. Hautes Étud. Sci., Volume 76 (1992), pp. 165-246 | DOI | Numdam | Zbl

[14] Hiroyuki Kamada; Shin Nayatani Quaternionic CR geometry, Hokkaido Math. J., Volume 42 (2013) no. 2, pp. 159-207 | MR | Zbl

[15] Inkang Kim Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds, J. Reine Angew. Math., Volume 704 (2015), pp. 85-133 | MR | Zbl

[16] Inkang Kim; John R. Parker Geometry of quaternionic hyperbolic manifolds, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 291-320 | MR | Zbl

[17] George D. Mostow Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, Princeton University Press, 1973

[18] Pierre Pansu Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., Volume 129 (1989) no. 1, pp. 1-60 | DOI | Zbl

[19] Jouni Parkkonen; Frédéric Paulin Spiraling spectra of geodesic lines in negatively curved manifolds, Math. Z., Volume 268 (2011) no. 1-2, pp. 101-142 Erratum in Math. Z., 276(3-4):1215–1216, 2014 | DOI | MR | Zbl

[20] Jouni Parkkonen; Frédéric Paulin Counting and equidistribution in Heisenberg groups, Math. Ann., Volume 367 (2017) no. 1-2, pp. 81-119 | DOI | MR | Zbl

[21] Jouni Parkkonen; Frédéric Paulin Counting common perpendicular arcs in negative curvature, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 3, pp. 900-938 | DOI | MR | Zbl

[22] Jouni Parkkonen; Frédéric Paulin Counting and equidistribution in quaternionic Heisenberg groups, Math. Proc. Camb. Philos. Soc. (2021) (To appear, https://doi.org/10.1017/S0305004121000426) | DOI

[23] Zoé Philippe Invariants globaux des variétés hyperboliques quaternioniques, Ph. D. Thesis, Université de Bordeaux (France) (2016) (https://tel.archives-ouvertes.fr/tel-01661448)

[24] Yun Shi Chain and -circle on quaternionic Heisenberg group and their properties [Chinese], Appl. Math., Ser. A (Chin. Ed.), Volume 31 (2016) no. 1, pp. 90-100 | MR | Zbl

[25] Marie-France Vignéras Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, 1980 | DOI | Zbl

Cited by Sources: