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Rigidity, counting and equidistribution
of quaternionic Cartan chains

Jouni Parkkonen
Frédéric Paulin

Abstract

In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations
of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting
and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.

Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniennes
Résumé

Dans ce papier, nous montrons un analogue d’un théorème de Cartan, disant que les transformations
du bord des espaces hyperboliques quaternioniens qui préservent les chaînes sont des transformations
projectives. Nous donnons un résultat de comptage et d’équidistribution pour les orbites de chaînes
arithmétiques dans le groupe de Heisenberg quaternionien.

1. Introduction

The sphere at infinity 𝜕∞𝑋 of a negatively curved symmetric space 𝑋 carries many rich
structures, from the geometric, analytic and arithmetic points of view. When the sectional
curvature is not constant, the possibilities are particularly rich, for instance with the
Carnot–Carathéodory, sub-Riemannian or (hyper) CR structures (see for instance [4,
10, 12, 14, 17]), leading to strong rigidity properties, as Pansu’s rigidity theorem for
quasi-isometries [18]. Arithmetic subgroups of the isometry group of 𝑋 endow the sphere
at infinity of 𝑋 with arithmetic structures, and problems of equidistribution of rational
points or subvarieties in 𝜕∞𝑋 , as well as in other homogeneous manifolds, have been
intensively studied (see for instance [1, 2, 6, 8, 9, 11, 15, 22] and many others).
In this paper, we study the quaternionic hyperbolic spaces 𝑋 , whose extreme rigidity

is exemplified by the Margulis–Gromov–Schoen theorem in [13], proving, contrarily to
the real or complex case, the arithmeticity of lattices in the isometry group of 𝑋 . As
announced in [22], we prove a von Staudt–Cartan type of rigidity result for the family
of all 3-sphere chains in the sphere at infinity of 𝑋 , and, analogously to the complex
hyperbolic case treated in [20], an effective equidistribution result for the arithmetic

Keywords: counting, equidistribution, Cartan chain, quaternionic Heisenberg group, Cygan distance, sub-
Riemannian geometry, quaternionic hyperbolic geometry.
2020 Mathematics Subject Classification: 11E39, 11F06, 11N45, 20G20, 53C17, 53C55.
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chains in orbits of arithmetic groups built using maximal orders in rational quaternion
algebras.
More precisely, let H be Hamilton’s quaternion algebra over R, with 𝑥 ↦→ 𝑥 its

conjugation, n : 𝑥 ↦→ 𝑥𝑥 its reduced norm, tr : 𝑥 ↦→ 𝑥 + 𝑥 its reduced trace. Let 𝑞 be the
quaternionic Hermitian form on the right vector space H3 over H defined by

𝑞(𝑧0, 𝑧1, 𝑧2) = − tr(𝑧0𝑧2) + n(𝑧1),

and PU𝑞 its projective unitary group. It is the isometry group of the quaternionic hyperbolic
plane H2H, realised as the negative cone of 𝑞 in the right projective plane P

2
r (H), and

normalised to have maximal sectional curvature −1. See Section 2 for a more complete
description.
The boundary at infinity 𝜕∞H2H of H2H is the isotropic cone of 𝑞 in P

2
r (H), and the

intersections with 𝜕∞H2H of the quaternionic projective lines meetingH2H are called chains.
We study them, giving their elementary properties and complete geometric descriptions
in Section 3. Our first result is similar to Cartan’s theorem (see [7, 10]) in the complex
hyperbolic case. See Theorem 3.3 for a version in any dimension.

Theorem 1.1. A chain-preserving transformation from the boundary at infinity of the
quaternionic hyperbolic plane to itself is a projective unitary transformation.

The boundary at infinity 𝜕∞H2H of H2H, with the point ∞ = [1 : 0 : 0] removed,
identifies by the map (𝑤0, 𝑤) ↦→ [𝑤0 : 𝑤 : 1] with the quaternionic Heisenberg group

Heis7 = {(𝑤0, 𝑤) ∈ H × H : tr𝑤0 = n(𝑤)},

with group law
(𝑤0, 𝑤) (𝑤′

0, 𝑤
′) = (𝑤0 + 𝑤′

0 + 𝑤𝑤′, 𝑤 + 𝑤′). (1.1)
We endow the metabelian simply connected real Lie group Heis7 with its Cygan dis-
tance 𝑑Cyg, which is the unique left-invariant distance such that 𝑑Cyg ((𝑤0, 𝑤), (0, 0)) =
(4 n(𝑤0))

1
4 . The chains 𝐶 contained in Heis7 are ellipsoids, and have a natural center

cen(𝐶) and radius (see Section 3).
Let 𝐴 be a definite (𝐴⊗QR = H) quaternion algebra overQ, with discriminant 𝐷𝐴. Let

O be a maximal order in 𝐴. We refer for instance to [25] for background on quaternion
algebras and orders. The group PU𝑞 (O) of elements of PU𝑞 represented by matrices
with coefficients in O is a (necessarily arithmetic) lattice in PU𝑞 . A chain 𝐶0 is said to be
arithmetic over O if the orbit of some point of 𝐶0 under the stabiliser of 𝐶0 in PU𝑞 (O) is
dense in 𝐶0. The stabiliser PU𝑞 (O)∞ of [1 : 0 : 0] in PU𝑞 (O) preserves the diameters
of the chains for 𝑑Cyg. The following result (see Theorem 4.2 for an explicit and more
general version) is an asymptotic counting result of the arithmetic chains in an orbit under
the arithmetic group PU𝑞 (O) when their Cygan diameter tends to 0.
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Theorem 1.2. Let 𝐶0 be an arithmetic chain in 𝜕∞H2H. There exists a constant 𝜅 > 0 and
an explicit constant 𝑐 > 0 such that, as 𝜖 → 0, the number of chains modulo PU𝑞 (O)∞
in the PU𝑞 (O)-orbit of 𝐶0, with Cygan diameter at least 𝜖 , is equal to 𝑐𝜖−10 (1 + O(𝜖 𝜅 )).

An arithmetic chain𝐶0 bounds inH2H a homothetic copy of the real hyperbolic space of
dimension 4. We denote by Covol(𝐶0) the volume of the quotient of this real hyperbolic
space, normalised to have sectional curvature −1, by the stabiliser PU𝑞 (O)𝐶0 of 𝐶0 in
PU𝑞 (O), and by 𝑚0 the order of the pointwise stabiliser of this real hyperbolic space in
PU𝑞 (O). We endow the real Lie group Heis7 with its Haar measure HaarHeis7 normalised
in such a way that the total mass of the induced measure on the quotient of Heis7 by its
(uniform) latticeHeis7 ∩(O ×O) is 𝐷2

𝐴

4 (see for instance [22, Lem. 8·4] for an explanation
of this normalisation). Let 𝑚𝐴 = 72 if 𝐷𝐴 is even, and 𝑚𝐴 = 1 otherwise. Finally, we
denote byΔ𝑥 the unit Dirac mass at any point 𝑥. The following result proves that the centers
of the arithmetic chains in an orbit under the arithmetic group PU𝑞 (O) equidistribute in
the quaternionic Heisenberg group.

Theorem 1.3. For the weak-star convergence of measures on Heis7, we have

𝑚0𝑚𝐴𝜋
6∏

𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1)

25515 224 Covol(𝐶0)
𝜖10

∑︁
[𝑔] ∈PU𝑞 (O)/PU𝑞 (O)𝐶0
𝜖 ≤diam𝑑Cyg (𝑔𝐶0)<∞

Δcen(𝑔𝐶0)

∗
⇀ HaarHeis7 .

We refer to Section 4 for a version with congruences and error terms, and a more
developped study of explicit examples of arithmetic chains.
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2. Quaternionic hyperbolic spaces and Heisenberg groups

In this section, we briefly recall some background on the quaternionic hyperbolic
spaces and quaternionic Heisenberg groups, as mostly contained in [22, §3 and §6], see
also [16, 23] (with different choices of quaternionic Hermitian form and normalisation of
the curvature).
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LetH be Hamilton’s quaternion algebra overR, with 𝑥 ↦→ 𝑥 its conjugation, n : 𝑥 ↦→ 𝑥𝑥

its reduced norm, tr : 𝑥 ↦→ 𝑥 + 𝑥 its reduced trace and Im : 𝑥 ↦→ 1
2 (𝑥 − 𝑥) its imaginary

part map. We denote by (1, 𝑖, 𝑗 , 𝑘) the canonical basis of H as a real vector space, so that
𝑥0 + 𝑥1𝑖 + 𝑥2 𝑗 + 𝑥3𝑘 = 𝑥0 − 𝑥1𝑖 − 𝑥2 𝑗 − 𝑥3𝑘 . Let

ImH = {𝑥 ∈ H : tr 𝑥 = 0} = R𝑖 + R 𝑗 + R𝑘

be the R-subspace of purely imaginary quaternions of H. For all 𝑤 = (𝑤1, . . . , 𝑤𝑁 ) and
𝑤′ = (𝑤′

1, . . . , 𝑤
′
𝑁
) in the right vector spaceH𝑁 overH, we denote by𝑤·𝑤′ =

∑𝑁
𝑝=1 𝑤𝑝𝑤

′
𝑝

their standard quaternionic Hermitian product, and we define n(𝑤) = 𝑤 ·𝑤 =
∑𝑁

𝑝=1 n(𝑤𝑝).
We endow H𝑁 with the standard Euclidean structure (𝑤, 𝑤′) ↦→ 1

2 tr(𝑤 · 𝑤′).
We fix 𝑛 ∈ N− {0, 1}. On the right vector space H×H𝑛−1 ×H over H with coordinates

(𝑧0, 𝑧, 𝑧𝑛), let 𝑞 be the nondegenerate quaternionic Hermitian form

𝑞(𝑧0, 𝑧, 𝑧𝑛) = − tr(𝑧0𝑧𝑛) + n(𝑧) (2.1)

of Witt signature (1, 𝑛), and let Φ : H𝑛+1 × H𝑛+1 → H, defined by

Φ :
(
(𝑧0, 𝑧, 𝑧𝑛), (𝑧′0, 𝑧

′, 𝑧′𝑛)
)
↦→ −𝑧0𝑧′𝑛 − 𝑧𝑛𝑧

′
0 + 𝑧 · 𝑧′, (2.2)

be the associated quaternionic sesquilinear form.
The Siegel domain model of the quaternionic hyperbolic 𝑛-space H𝑛

H is{
(𝑤0, 𝑤) ∈ H × H𝑛−1 : tr𝑤0 − n(𝑤) > 0

}
,

endowed with the Riemannian metric

d𝑠2H𝑛
H
=

1
(tr𝑤0 − n(𝑤))2

(
n(d𝑤0 − d𝑤 · 𝑤) + (tr𝑤0 − n(𝑤)) n(d𝑤)

)
.

Its boundary at infinity is

𝜕∞H𝑛
H =

{
(𝑤0, 𝑤) ∈ H × H𝑛−1 : tr𝑤0 − n(𝑤) = 0

}
∪ {∞}.

A quaternionic geodesic line in H𝑛
H is the image by an isometry of H𝑛

H of the intersection
of H𝑛

H with the quaternionic line H × {0}. With our normalisation of the metric, a
quaternionic geodesic line is a totally geodesic submanifold of real dimension 4 and
constant sectional curvature −4.
The closed horoballs in H𝑛

H centred at∞ ∈ 𝜕∞H𝑛
H are the subsets

H𝑠 = {(𝑤0, 𝑤) ∈ H𝑛
H : tr𝑤0 − n(𝑤) ≥ 𝑠}, (2.3)

and the horospheres centred at∞ are their boundaries 𝜕H𝑠, where 𝑠 ranges in ]0, +∞[.
Note that, for every 𝑠 ∈ ]0, 1], we have

𝑑 (𝜕H1, 𝜕H𝑠) = − ln 𝑠
2

. (2.4)
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The Siegel domain H𝑛
H embeds in the right quaternionic projective 𝑛-space P

𝑛
r (H) by

the map (using homogeneous coordinates)

(𝑤0, 𝑤) ↦→ [𝑤0 : 𝑤 : 1] .

By this map, we identify H𝑛
H with its image, which when endowed with the isometric

Riemannian metric, is called the projective model of H𝑛
H. Note that this image is the

negative cone of the quaternionic Hermitian form 𝑞 defined in Equation (2.1) : we
have H𝑛

H =
{
[𝑧0 : 𝑧 : 𝑧𝑛] ∈ P𝑛r (H) : 𝑞(𝑧0, 𝑧, 𝑧𝑛) < 0

}
. This embedding extends

continuously to the boundary at infinity, by mapping the point (𝑤0, 𝑤) ∈ 𝜕∞H𝑛
H − {∞}

to [𝑤0 : 𝑤 : 1] and ∞ to [1 : 0 : 0], so that the image of 𝜕∞H𝑛
H is the isotropic cone

of 𝑞: we have 𝜕∞H𝑛
H =

{
[𝑧0 : 𝑧 : 𝑧𝑛] ∈ P𝑛r (H) : 𝑞(𝑧0, 𝑧, 𝑧𝑛) = 0

}
. A projective point

[𝑧0 : 𝑧 : 𝑧𝑛] ∈ P𝑛r (H) is positive if 𝑞(𝑧0, 𝑧, 𝑧𝑛) > 0.
For every 𝑁 ∈ N, let 𝐼𝑁 be the identity 𝑁 × 𝑁 matrix. Let

𝐽 =
©­­«
0 0 −1
0 𝐼𝑛−1 0
−1 0 0

ª®®¬ .
The conjugate-transpose matrix of a quaternionic matrix 𝑋 = (𝑥𝑝,𝑝′)1≤𝑝≤𝑟 ,1≤𝑝′≤𝑠 in
M𝑟 ,𝑠 (H) is 𝑋∗ = (𝑥∗

𝑝,𝑝′ = 𝑥𝑝′, 𝑝)1≤𝑝≤𝑠,1≤𝑝′≤𝑟 ∈ M𝑠,𝑟 (H). Let

U𝑞 = {𝑔 ∈ GL𝑛+1 (H) : 𝑞 ◦ 𝑔 = 𝑞} = {𝑔 ∈ GL𝑛+1 (H) : 𝑔∗𝐽𝑔 = 𝐽}

be the unitary group of 𝑞. Its left linear action on H𝑛+1 induces a projective action on
P𝑛r (H) with kernel its center, which is reduced to {±𝐼𝑛+1}. The projective unitary group

PU𝑞 = U𝑞/{±𝐼𝑛+1}

of 𝑞 acts faithfully on P𝑛r (H), preserving H𝑛
H, and its restriction to H𝑛

H is the full isometry
group of H𝑛

H.
A matrix

𝑋 =
©­­«
𝑎 𝛾∗ 𝑏

𝛼 𝑀 𝛽

𝑐 𝛿∗ 𝑑

ª®®¬ ∈ GL𝑛+1 (H),
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with 𝑎, 𝑏, 𝑐, 𝑑 ∈ H, 𝛼, 𝛽, 𝛾, 𝛿 ∈ H𝑛−1 (identified with their columnmatrices inM𝑛−1,1 (H))
and 𝑀 ∈ M𝑛−1,𝑛−1 (H), belongs to U𝑞 if and only if

𝑐𝑎 − 𝛼∗𝛼 + 𝑎𝑐 = 0

𝑑𝑏 − 𝛽∗𝛽 + 𝑏𝑑 = 0
−𝛿𝛾∗ + 𝑀∗𝑀 − 𝛾𝛿∗ = 𝐼𝑛−1

𝑑𝑎 − 𝛽∗𝛼 + 𝑏𝑐 = 1
𝛿𝑎 − 𝑀∗𝛼 + 𝛾𝑐 = 0
𝛿𝑏 − 𝑀∗𝛽 + 𝛾𝑑 = 0.

(2.5)

With Sp(𝑛 − 1) = {𝑔 ∈ GL𝑛+1 (H) : 𝑔∗𝑔 = 𝐼𝑛−1}, an easy computation shows that the
block upper triangular subgroup of U𝑞 is

B𝑞 =


©­­«
𝜇𝑟 𝜁∗ 1

2𝑟 (n(𝜁) + 𝑢)𝜇
0 𝑈 1

𝑟
𝑈𝜁𝜇

0 0 𝜇

𝑟

ª®®¬ :
𝜁 ∈ H𝑛−1, 𝑢 ∈ ImH,
𝑈 ∈ Sp(𝑛 − 1), 𝜇 ∈ Sp(1), 𝑟 > 0

 .

Its image PB𝑞 = B𝑞/{±𝐼𝑛+1} in PU𝑞 is equal to the stabiliser of∞ in PU𝑞 .
The quaternionic Heisenberg group Heis4𝑛−1 of dimension 4𝑛− 1 is the real Lie group

structure on H𝑛−1 × ImH with law

(𝜁, 𝑢) (𝜁 ′, 𝑢′) = (𝜁 + 𝜁 ′, 𝑢 + 𝑢′ + 2 Im 𝜁 · 𝜁 ′)

and inverses (𝜁, 𝑢)−1 = (−𝜁,−𝑢). It identifies with the punctured boundary at infinity
𝜕∞H𝑛

H − {∞} by the map (𝜁, 𝑢) ↦→ (𝑤0, 𝑤) where

(𝑤0, 𝑤) =
(
n(𝜁) + 𝑢

2
, 𝜁

)
hence (𝜁, 𝑢) = (𝑤, 2 Im𝑤0), (2.6)

and with a subgroup of PB𝑞 ⊂ PU𝑞 , preserving every horoballH𝑠 for 𝑠 > 0, by the map

(𝜁, 𝑢) ↦→ ±
©­­«
1 𝜁∗ n(𝜁 )+𝑢

2
0 𝐼𝑛−1 𝜁

0 0 1

ª®®¬ .
Equation (2.6) allows to recover the definition of Heis7 given in the Introduction, for
which the inverses are (𝑤0, 𝑤)−1 = (−𝑤0 + n(𝑤),−𝑤).
For every (𝜁, 𝑢) ∈ Heis4𝑛−1, the map (𝜁 ′, 𝑢′) ↦→ (𝜁, 𝑢) (𝜁 ′, 𝑢′) is the Heisenberg

translation by (𝜁, 𝑢). For every 𝜁 ∈ H𝑛−1, the Heisenberg translation by (𝜁, 0) is
called a horizontal (Heisenberg) translation. For every 𝑢 ∈ ImH, the Heisenberg
translation by (0, 𝑢) is called a vertical (Heisenberg) translation. The canonical map
Π𝑣 : Heis4𝑛−1 → H𝑛−1 defined by (𝜁, 𝑢) ↦→ 𝜁 is a real Lie group morphism, called the
vertical projection, whose kernel is the center of Heis4𝑛−1. For every 𝑈 ∈ Sp(𝑛 − 1),
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the map (𝜁, 𝑢) ↦→ (𝑈𝜁, 𝑢) is the Heisenberg rotation by 𝑈. For every 𝜆 > 0, the map
ℎ𝜆 : (𝜁, 𝑢) ↦→ (𝜆𝜁, 𝜆2𝑢) is the Heisenberg dilation by 𝜆.
The Cygan distance 𝑑Cyg on Heis4𝑛−1 is the unique left-invariant distance on the real

Lie group Heis4𝑛−1 such that

𝑑Cyg ((𝜁, 𝑢), (0, 0)) =
(
n(𝜁)2 + n(𝑢)

)1/4
, (2.7)

or equivalently 𝑑Cyg ((𝑤0, 𝑤), (0, 0)) = (4 n(𝑤0))
1
4 by Equation (2.6). We introduce

(see [19, 20] in the complex case) the modified Cygan distance 𝑑 ′′Cyg, as the unique
left-invariant map from Heis4𝑛−1 ×Heis4𝑛−1 to [0, +∞[ such that

𝑑 ′′Cyg ((𝜁, 𝑢), (0, 0)) =
(n(𝜁)2 + n(𝑢))1/2(

(n(𝜁)2 + n(𝑢))1/2 + n(𝜁)
)1/2 , (2.8)

or equivalently by Equation (2.6)

𝑑 ′′Cyg ((𝑤0, 𝑤), (0, 0)) =
2 n(𝑤0)1/2

(2 n(𝑤0)1/2 + n(𝑤))1/2
.

Though not actually a distance, the map 𝑑 ′′
Cyg is symmetric and satisfies

1
√
2
𝑑Cyg ≤ 𝑑 ′′Cyg ≤ 𝑑Cyg.

For every nonempty bounded subset 𝐸 of Heis4𝑛−1, we define the diameter of 𝐸 for this
almost distance as

diam𝑑′′
Cyg

(𝐸) = sup
𝑥,𝑦∈𝐸

𝑑 ′′Cyg (𝑥, 𝑦).

Note that the Cygan distance and the modified Cygan distance are invariant under
Heisenberg translations and rotations, and that for every 𝜆 > 0, the Heisenberg dilation
ℎ𝜆 is a homothety of ratio 𝜆 for both distances.

Lemma 2.1. For every geodesic line ]𝑥, 𝑦[ in H𝑛
H disjoint from the horoball H1, the

distance in H𝑛
H between H1 and ]𝑥, 𝑦[ is equal to

𝑑 (H1, ]𝑥, 𝑦[) = − ln
(
1
√
2
𝑑 ′′
Cyg (𝑥, 𝑦)

)
.

Proof. By the invariance under Heisenberg translations ofH1, of the distance in H𝑛
H and

of the modified Cygan distance, we may assume that 𝑥 = (𝑤0, 𝑤) ∈ 𝜕∞H𝑛
H − {∞, (0, 0)}

and 𝑦 = (0, 0) ∈ 𝜕∞H𝑛
H − {∞}. By [22, Lem. 6·4], the geodesic line from (𝑤0, 𝑤) to

(0, 0) is, up to translation at the source, the map

𝛾𝑤0 ,𝑤 : 𝑡 ↦→
(
𝑤0 (1 + 𝑒2𝑡𝑤0)−1, 𝑤(1 + 𝑒2𝑡𝑤0)−1).
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The point 𝛾𝑤0 ,𝑤 (𝑡) belongs to the horosphereH𝑠 (𝑡) , where, since tr𝑤0 = n(𝑤),

𝑠(𝑡) = tr(𝑤0 (1 + 𝑒2𝑡𝑤0)−1) − n(𝑤(1 + 𝑒2𝑡𝑤0)−1) =
2𝑒2𝑡 n(𝑤0)
n(1 + 𝑒2𝑡𝑤0)

.

Let 𝑟 = n(𝑤0)1/2 be the norm of the vector 𝑤0 and 𝜃 the angle between the vectors 1 and
𝑤0 in the Euclidean space H. Then the map

𝑡 ↦→ 𝑠(𝑡) = 2𝑒2𝑡𝑟2

𝑒4𝑡𝑟2 + 2𝑟𝑒2𝑡 cos 𝜃 + 1
reaches its maximum at 𝑒2𝑡 = 1

𝑟
. Since tr𝑤0 = n(𝑤), the value of this maximum is

𝑠max =
2 n(𝑤0)1/2

2 + tr(𝑤0 n(𝑤0)−1/2)
=

2 n(𝑤0)
2 n(𝑤0)1/2 + n(𝑤)

=
1
2
𝑑 ′′Cyg ((𝑤0, 𝑤), (0, 0))

2.

The result then follows from Equation (2.4). �

3. Chains

In this section, we define the quaternionic Cartan chains and give their elementary
geometric properties, see also [24]. In the complex case, the notion of chain is attributed
to von Staudt by [7]. The exposition follows the one of [10] in the complex case. We fix
𝑚 ∈ {1, . . . , 𝑛 − 1}.

3.1. A vocabulary of chains

An 𝑚-chain 𝐶 in 𝜕∞H𝑛
H is the intersection with 𝜕∞H𝑛

H of a quaternionic projective space
𝐿𝐶 of dimension 𝑚 meeting H𝑛

H. Note that 𝐶 determines 𝐿𝐶 and conversely. A chain
is a 1-chain, and a hyperchain is an (𝑛 − 1)-chain. An 𝑚-chain is vertical if it contains
∞ = [1 : 0 : 0], and finite otherwise.
If 𝑃 = [𝑧0 : 𝑧 : 𝑧𝑛] ∈ P𝑛r (H), let

𝑃⊥ =
{
[𝑧′0 : 𝑧

′ : 𝑧′𝑛] ∈ P𝑛r (H) : Φ
(
(𝑧0, 𝑧, 𝑧𝑛), (𝑧′0, 𝑧

′, 𝑧′𝑛)
)
= 0

}
be the orthogonal quaternionic projective subspace of 𝑃. The map 𝑃 ↦→ 𝑃⊥, from the set
of positive projective points to the set of quaternionic projective hyperplanes in P𝑛r (H)
meeting H𝑛

H, is a PU𝑞-equivariant bijection. Therefore, the map

𝑃 ↦→ 𝐶𝑃 = 𝑃⊥ ∩ 𝜕∞H𝑛
H

is a PU𝑞-equivariant bijection from the set of positive projective points to the set of
hyperchains. The point 𝑃 is called the polar point of the hyperchain 𝐶𝑃 , or of the
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quaternionic projective hyperplane 𝑃⊥. If 𝑃 = [𝑧0 : 𝑧 : 𝑧𝑛], we have

𝐶𝑃 ∩ (𝜕∞H𝑛
H − {∞}) =

{
[𝑤0 : 𝑤 : 1] : −

(
n(𝑤)
2

− Im𝑤0

)
𝑧𝑛 + 𝑤 · 𝑧 − 𝑧0 = 0

}
. (3.1)

This hyperchain𝐶𝑃 is hence vertical if and only if 𝑧𝑛 = 0, inwhich case𝐶𝑃∩(𝜕∞H𝑛
H−{∞})

is the preimage by the vertical projection Π𝑣 : Heis4𝑛−1 → H𝑛−1 of the quaternionic
affine hyperplane of H𝑛−1 with equation 𝑧 · 𝑤 = 𝑧0 in the unknown 𝑤. Similarly a vertical
chain is the preimage of a point of H𝑛−1 by the vertical projection Π𝑣 .
When 𝐶 = 𝐶𝑃 is a finite hyperchain, that is, when 𝑧𝑛 ≠ 0, then 𝐶 is a codimension 4

ellipsoid in the Euclidean space H𝑛−1 × ImH, whose vertical projection is the Euclidean
sphere inH𝑛−1 with real codimension 1 and equation n(𝑤)−tr(𝑤 · (𝑧𝑧−1𝑛 ))+tr(𝑧0𝑧−1𝑛 ) = 0
in the unknown 𝑤, with center 𝑧𝑧−1𝑛 and radius

𝑅𝐶 =
𝑞(𝑧0, 𝑧, 𝑧𝑛)1/2

n(𝑧𝑛)1/2
.

This radius 𝑅𝐶 of the Euclidean sphere Π𝑣 (𝐶) is called the radius of the finite hyperchain
𝐶. The map Π𝑣 |𝐶 from 𝐶 to Π𝑣 (𝐶) is a homeomorphism. When 𝑧 = 0 and 𝑧0𝑧−1𝑛 ∈ R, the
hyperchain𝐶 = 𝐶𝑃 is contained in the horizontal subspace {(𝜁, 𝑢) ∈ H𝑛−1×ImH : 𝑢 = 0}
of Heis4𝑛−1, by Equation (2.6).
Similarly, a finite chain is a 3-dimensional ellipsoid in the Euclidean spaceH𝑛−1×ImH,

whose vertical projection is a Euclidean 3-sphere in H𝑛−1. In particular, any chain is
homeomorphic to the 3-sphere S3.

3.2. Transitivity properties of PU𝑞 on chains

Through any two distinct projective points belonging to 𝜕∞H𝑛
H passes one and only one

quaternionic projective line, and this projective line meetsH𝑛
H. Hence through two distinct

points of 𝜕∞H𝑛
H passes one and only one chain. By Witt’s theorem, the group PU𝑞 acts

transitively on the set of quaternionic projective spaces 𝐿 of dimension 𝑚 meeting H𝑛
H,

hence it acts transitively on the set of 𝑚-chains.
Note that two 𝑚-chains having the same vertical projection differ by a vertical

Heisenberg translation, that the group generated by Heisenberg translations and rotations
acts transitively on the set of vertical 𝑚-chains, and that PB𝑞 (that contains the Heisenberg
dilations, rotations and translations) acts transitively on the set of finite 𝑚-chains.
The next result gives the topological structure of a family of chains, called a fan in the

complex hyperbolic case (see for instance [10, p. 131]).

Proposition 3.1. The union 𝐹 of all chains containing a given point 𝑃 ∈ 𝜕∞H𝑛
H and

passing through an 𝑚-chain 𝐶 of 𝜕∞H𝑛
H not containing 𝑃 is homeomorphic to the
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topological quotient space (S3 × S4𝑚−1)/∼ where ∼ is the equivalence relation generated
by (𝑥0, 𝑥) ∼ (𝑥0, 𝑦) for all 𝑥, 𝑦 ∈ S4𝑚−1, where 𝑥0 is any fixed point in S3.

Proof. By the transitivity properties of PU𝑞 , we may assume that 𝑃 = ∞. Hence 𝐶 is
a finite chain, and by the transitivity properties of the Heisenberg translations, we may
assume that𝐶 is a Euclidean sphere of dimension 4𝑚−1 contained in the horizontal space
{(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 0}. Thus 𝐹 =

⋃
(𝜁 ,𝑢) ∈𝐶 Π−1

𝑣 (𝜁, 𝑢) is clearly homeomorphic
to the above quotient of S3 × S4𝑚−1. �

3.3. Reflexions on chains

The chains are fixed point sets at infinity of natural isometries ofH𝑛
H, that we now describe.

If 𝐿 is a proper quaternionic projective subspace of P𝑛r (H) meeting H𝑛
H, there exists a

unique involution 𝜄𝐿 in PU𝑞 with fixed point set 𝐿, called the reflexion on 𝐿. Note that the
set of fixed points of 𝜄𝐿 in 𝜕∞H𝑛

H is the 𝑚-chain 𝐿 ∩ 𝜕∞H𝑛
H, where 𝑚 is the quaternionic

dimension of 𝐿, assuming that 𝑚 ≠ 0.
For instance, 𝐶 =

{
[𝑧0 : 𝑧1 : · · · : 𝑧𝑛] ∈ 𝜕∞H𝑛

H : 𝑧𝑚 = 0, . . . , 𝑧𝑛−1 = 0
}
∪ {∞} is a

vertical 𝑚-chain, called the standard vertical 𝑚-chain and the reflexion 𝜄𝐿𝐶
is the map

[𝑧0 : 𝑧1 : · · · : 𝑧𝑛] ↦→ [𝑧0 : 𝑧1 : · · · : 𝑧𝑚−1 : −𝑧𝑚 : · · · : −𝑧𝑛−1 : 𝑧𝑛] .

The vertical 𝑚-chains are the images of the standard vertical 𝑚-chain by the Heisenberg
translations and Heisenberg rotations: they are the subspaces

(𝐸 × ImH) ∪ {∞}

where 𝐸 is a quaternionic affine subspace of H𝑛−1 with dimension 𝑚 − 1 (hence a point
when 𝑚 = 1).

Lemma 3.2. Let 𝐿 and 𝐿 ′ be quaternionic projective subspaces of P𝑛r (H) meeting H𝑛
H

such that one is not contained in the other, whose sum of dimensions is 𝑛. The following
assertions are equivalent.

(1) The reflexions 𝜄𝐿 and 𝜄𝐿′ commute.

(2) The reflexion 𝜄𝐿 preserves 𝐿 ′.

(3) The reflexion 𝜄𝐿′ preserves 𝐿.

(4) We have (𝜄𝐿 ◦ 𝜄𝐿′)2 = id.

(5) The totally geodesic subspaces 𝐿 ∩H𝑛
H and 𝐿 ′ ∩H𝑛

H intersect perpendicularly in
the Riemannian manifold H𝑛

H.
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(6) The subspace 𝐿 ∩ H𝑛
H is a fiber of the orthogonal projection on 𝐿 ′ ∩ H𝑛

H in H𝑛
H.

(7) The subspace 𝐿 ′ ∩ H𝑛
H is a fiber of the orthogonal projection on 𝐿 ∩ H𝑛

H in H𝑛
H.

Proof. The proof is similar to the one of [10, Lem. 4.3.1] in the complex hyperbolic case.
Note that 𝐿 ∩H𝑛

H, being the set of fixed points of the isometry 𝜄𝐿 of the negatively curved
Riemannian manifold H𝑛

H, is indeed totally geodesic.
Two involutions commute if and only if their composition is an involution or the

identity, hence Assertions (1) and (4) are equivalent. Since the centralizer of a projective
transformation preserves its fixed point set, Assertion (1) implies Assertions (2) and (3). If
Assertion (2) is satisfied, then 𝜄𝐿 ◦ 𝜄𝐿′ ◦ 𝜄−1

𝐿
= 𝜄 𝜄𝐿 (𝐿′) = 𝜄𝐿′ , so that Assertion (1) is satisfied.

Similarly, Assertion (3) implies Assertion (1). Finally, the totally geodesic subspaces
𝐿 ′ ∩ H𝑛

H and 𝐿 ∩ H𝑛
H in H𝑛

H

• either have disjoint closures in H𝑛
H ∪ 𝜕∞H𝑛

H, or

• are disjoint and have closures meeting in 𝜕∞H𝑛
H, or

• meet in H𝑛
H.

In the first two cases, the composition 𝜄𝐿 ◦ 𝜄𝐿′ has infinite order, and in the last case,
𝜄𝐿 ◦ 𝜄𝐿′ can be an involution if and only if 𝐿 ′ ∩ H𝑛

H and 𝐿 ∩ H𝑛
H are perpendicular. �

An 𝑚-chain 𝐶 and an (𝑛 − 𝑚)-chain 𝐶 ′ are orthogonal if neither of the corresponding
quaternionic projective subspaces 𝐿𝐶 and 𝐿𝐶′ contains the other and if they satisfy one of
the equivalent assertions of Lemma 3.2. For instance, the hyperchains orthogonal to the
standard vertical chain ({0} × ImH) ∪ {∞} are exactly the Euclidean spheres centered at
(0, 𝑢0) in the horizontal subspace {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 𝑢0} of Heis4𝑛−1, for some
𝑢0 in ImH.

3.4. Description of the center and radius of chains

We now define and study the centers of chains, whose equidistribution we will prove in
Section 4.
The center of an 𝑚-chain 𝐶 is cen(𝐶) = 𝜄𝐿𝐶

(∞). In particular, cen(𝐶) = ∞ if and
only if 𝐶 is vertical. For every element 𝛾 ∈ PB𝑞 (which fixes ∞), the reflexion on the
𝑚-chain 𝛾𝐶 is 𝛾𝜄𝐿𝐶

𝛾−1, so that the center of 𝛾𝐶 is

cen(𝛾𝐶) = 𝛾 cen(𝐶). (3.2)

When 𝑃0 = [− 12 : 0 : 1], the hyperchain 𝐶𝑃0 with polar point 𝑃0 is, by Equation (3.1),
the sphere centered at (0, 0) with radius 1 in the horizontal codimension 3 Euclidean
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subspace {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 0} in Heis4𝑛−1. The reflexion on 𝐿 = 𝐿𝐶𝑃0
is the

involutive map 𝜄𝐿 : (𝑤0, 𝑤) ↦→ ( 14𝑤
−1
0 , 12𝑤𝑤

−1
0 ), induced by

±
©­­«
0 0 1/2
0 𝐼𝑛−1 0
2 0 0

ª®®¬ ∈ PU𝑞 .

Thus, cen(𝐶𝑃0 ) = 𝜄𝐿 (∞) = (0, 0).
Let 𝑃 = [𝑧0 : 𝑧 : 𝑧𝑛] be a positive projective point with 𝑧𝑛 ≠ 0. An easy computation

shows that the Heisenberg translation 𝛾 by[
n(𝑧)
2 n(𝑧𝑛)

− Im(𝑧0𝑧−1𝑛 ) : −𝑧𝑧−1𝑛 : 1
]

maps 𝑃 to
[
−𝑅2

2 : 0 : 1
]
where 𝑅 = 𝑅𝐶𝑃

=
𝑞 (𝑧0 ,𝑧,𝑧𝑛)1/2
n(𝑧𝑛)1/2

is the radius of the finite
hyperchain 𝐶𝑃 , and the Heisenberg dilation

ℎ𝑅 : (𝑤0, 𝑤) ↦→ (𝑅2𝑤0, 𝑅𝑤)

maps 𝑃0 to
[
−𝑅2

2 : 0 : 1
]
. Hence the center of the finite hyperchain 𝐶𝑃 with polar point

𝑃 is, by Equation (3.2), equal to

cen(𝐶𝑃) = 𝛾−1ℎ𝑅 cen(𝐶𝑃0 ) = 𝛾−1 (0, 0) =
[
2 Im(𝑧0𝑧𝑛) + n(𝑧)

2 n(𝑧𝑛)
: 𝑧𝑧−1𝑛 : 1

]
,

or cen(𝐶𝑃) =
(
𝑧𝑧−1𝑛 , 2 Im(𝑧0𝑧−1𝑛 )

)
in the (𝜁, 𝑢)-coordinates ofHeis4𝑛−1 by Equation (2.6).

Thus, by Equation (3.1), if 𝐶 is a finite hyperchain in Heis4𝑛−1 with center (𝜁0, 𝑢0) and
radius 𝑟0, then

𝐶 =
{
(𝜁, 𝑢) ∈ H𝑛−1 × ImH : n(𝜁 − 𝜁0) = 𝑟20 and 𝑢 = 𝑢0 + 2 Im(𝜁0𝜁)

}
.

In particular, a finite hyperchain is uniquely determined by its center and its radius, and the
hyperchains contained in the horizontal Euclidean space {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 0}
are exactly the Euclidean spheres centered at (0, 0).

3.5. A von Staudt–Cartan rigidity theorem

The following theorem shows that the chain-preserving transformations of the boundary of
the quaternionic hyperbolic spaces are projective transformations. This is a quaternionic
version of the result of Cartan in the complex case (see for instance [10, Thm. 4.3.12]),
close to von Staudt’s fundamental theorem of real projective geometry.

Theorem 3.3. A bijection 𝑓 from 𝜕∞H𝑛
H to itself, mapping chains to chains, is (the

restriction to 𝜕∞H𝑛
H of) an element of PU𝑞 .
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Proof. Up to composing by an element of PU𝑞 , wemay assume that 𝑓 fixes∞ = [1 : 0 : 0].
Hence 𝑓 preserves the set of vertical chains, which are the ones containing∞. The set of
vertical chains identifies with the horizontal space H𝑛−1 of the quaternionic Heisenberg
group by the vertical projection Π𝑣 , which sends a vertical chain 𝐶 to the unique point
of H𝑛−1 whose preimage by Π𝑣 is 𝐶. Hence 𝑓 induces a bijection 𝑓 from H𝑛−1 to itself,
which sends the vertical projections of the finite chains to the vertical projections of the
finite chains.
The vertical projections of the finite chains are exactly all the Euclidean 3-spheres

in H𝑛−1. Given two distinct points 𝑥, 𝑦 in H𝑛−1, the complement of the union of all the
Euclidean 3-spheres containing 𝑥 and 𝑦 is the real affine line containing 𝑥 and 𝑦, with 𝑥
and 𝑦 removed. Hence 𝑓 is a bijection of H𝑛−1 sending real affine lines to real affine lines.
By the fundamental theorem of real affine geometry, this map is an affine transformation
of H𝑛−1. Since the affine transformations of H𝑛−1 are vertical projections of elements
of the stabiliser PB𝑞 of ∞ in PU𝑞 , up to composing 𝑓 by an element of PB𝑞 , we may
assume that 𝑓 is the identity map of H𝑛−1, and also that 𝑓 (0) = 0.
Let 𝑥 ∈ 𝜕∞H𝑛

H − {∞}, and let us prove that 𝑓 (𝑥) = 𝑥. First assume that Π𝑣 (𝑥) ≠ 0.
Then the unique chain 𝐶𝑥 passing through 0 and 𝑥 is a finite chain, and the vertical
projections of 𝐶𝑥 and 𝑓 (𝐶𝑥) coincide, since 𝑓 = id. By the uniqueness of a chain with
given vertical projection up to a vertical translation, since 𝑓 (0) = 0, we have 𝑓 (𝐶𝑥) = 𝐶𝑥 .
But if 𝑓 (𝑥) ≠ 𝑥, then since 𝑓 (𝑥) and 𝑥 have the same vertical projections, the chains 𝐶𝑥

and 𝑓 (𝐶𝑥) through 0 would be different. Hence 𝑓 (𝑥) = 𝑥. This is in particular true for
any given 𝑥 = 𝑥0 ≠ 0 in the horizontal space H𝑛−1 × {0}. Replacing 0 by such an 𝑥0 in
the above argument allows to prove that 𝑓 (𝑥) = 𝑥 when Π𝑣 (𝑥) = 0. �

A similar proof shows that an injective map 𝑓 from 𝜕∞H𝑛
H to itself, such that any three

points belong to a same chain if and only if their images by 𝑓 belong to a same chain, is
the restriction of an element of PU𝑞 .

3.6. Relation with the hyper CR structure

In this subsection, we give a characterisation of the chains in terms of the natural hyper CR
structure on 𝜕∞H𝑛

H. We refer for example to [3] and [14] for background on hyperkähler
manifolds and hyper CR manifolds, respectively.
We endow the manifold P𝑛r (H) with its natural hyperkähler structure, and we denote by

(I, J,K) the corresponding triple of almost complex structures. The boundary at infinity
𝑊 = 𝜕∞H𝑛

H is a smooth real hypersurface in the real manifold P
𝑛
r (H) of real dimension 4𝑛,

and 𝐸 = 𝑇𝑊 ∩ I𝑇𝑊 ∩ J𝑇𝑊 ∩K𝑇𝑊 is a real codimension 3 subbundle of the real tangent
bundle 𝑇P𝑛r (H) |𝑊 , invariant under PU𝑞 , defining a hyper CR structure on𝑊 . When 𝑥 is
the point (0, 0) in the (𝜁, 𝑢)-coordinates of Heis4𝑛−1 = 𝜕∞H𝑛

H − {∞}, then, identifying
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H𝑛−1 × ImH with its real tangent space at 𝑥, the fiber 𝐸𝑥 of 𝐸 over 𝑥 is the horizontal
subspace {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 0}.
A calibration of 𝐸 is a 1-form 𝜔 on𝑊 with values in ImH such that 𝐸 = ker𝜔. Its

Levi form is d𝜔. For instance, in the (𝜁, 𝑢)-coordinates of Heis4𝑛−1, the form

𝜔 = d𝑢 − 2 Im(𝜁 · d𝜁)

is a calibration of 𝐸 (when restricted to 𝜕∞H𝑛
H − {∞}). An easy computation shows that

this calibration is invariant under Heisenberg translations and rotations: For every such
transformation 𝛾, we have 𝛾∗𝜔 = 𝜔. The fact that 𝜔 is indeed a calibration follows by
invariance since ker d𝑢 = {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝑢 = 0}. This calibration 𝜔 is scaled by
the Heisenberg dilations as follows : for every 𝜆 > 0, we have (ℎ𝜆)∗𝜔 = 𝜆2𝜔.
In the following result, we denote by 𝑣 = 𝑣1𝑖 + 𝑣2 𝑗 + 𝑣3𝑘 the standard coordinate

in ImH, and by d𝑣 the tautological (ImH)-valued 1-form on ImH, so that for every
𝑥 ∈ ImH, the map d𝑣𝑥 : 𝑇𝑥 ImH = ImH → ImH is the identity map. We denote by
𝜔1, 𝜔2, 𝜔3 the standard coordinates of the calibration 𝜔, so that

𝜔 = 𝜔1𝑖 + 𝜔2 𝑗 + 𝜔3𝑘.

Given a chain 𝐶 in 𝜕H𝑛
H, let 𝜇 = 𝜇𝐶 be the (Borel positive) measure on Heis4𝑛−1

with support 𝐶 ∩ Heis4𝑛−1 associated with the volume form 𝜔1 ∧ 𝜔2 ∧ 𝜔3 on 𝐶. For
instance, if 𝐶 = {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝜁 = 0} ∪ {∞} is the standard vertical chain, then
𝜔 |𝐶 = d𝑢 |𝐶 , so that 𝜇𝐶 is the (infinite) measure

𝜇𝐶 = d𝑢1d𝑢2d𝑢3,

whose restriction to the Euclidean space 𝐶 − {∞} = {0} × ImH is the standard Lebesgue
measure.
Given a nonzero measure 𝜇 with compact support on a finite dimensional real affine

space 𝑉 , the barycenter (or centroid) of 𝜇 is the point bar(𝜇) of 𝑉 defined by

bar(𝜇) = 1
𝜇(𝑉)

∫
𝑥∈𝑉

𝑥 d𝜇(𝑥).

For instance, when 𝜇 is supported on a finite set 𝑆, then bar(𝜇) is the usual affine
barycenter of the weighted family of points

{(
𝑠,

𝜇 ({ 𝑠})
𝜇 (𝑆)

)}
𝑠∈𝑆 .

We denote the open ball of center 0 and radius 𝑟 in the Euclidean space ImH by 𝐵(𝑟).
Recall that the radius of a finite chain 𝐶 is denoted by 𝑅𝐶 .

Proposition 3.4. Let 𝐶 be a chain in 𝜕∞H𝑛
H and 𝑐 ∈ 𝐶.

(1) If 𝐶 is a finite chain, then the center of the chain 𝐶 is equal to the barycenter of
the measure 𝜇𝐶 :

cen(𝐶) = bar(𝜇𝐶 ).
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(2) If𝐶 is a vertical chain, there is a diffeomorphism 𝜏 = 𝜏𝐶 : ImH→ 𝐶−{∞} such
that 𝜏∗𝜔 = d𝑣, unique up to postcomposition by a vertical Heisenberg translation.
For every Heisenberg translation or rotation 𝛾, we have 𝜏𝛾𝐶 = 𝛾 ◦ 𝜏𝐶 .

(3) If 𝐶 is a finite chain, there exists a smooth diffeomorphism 𝜏 = 𝜏𝐶,𝑐 from
𝐵(2𝜋𝑅2

𝐶
) to 𝐶 − {𝑐}, admitting a continuous extension to 𝜕𝐵(2𝜋𝑅2

𝐶
) sending

this sphere to 𝑐, such that 𝜏∗𝜔 = d𝑣. This mapping is unique up to postcomposition
by a Heisenberg rotation preserving 𝐶 and 𝑐, and 2𝜋𝑅2

𝐶
is the unique radius for

which such a mapping exists.

For every Heisenberg translation or rotation 𝛾, we have 𝜏𝛾𝐶,𝛾𝑐 = 𝛾 ◦ 𝜏𝐶,𝑐 .

Proof. (1). Note that Heis4𝑛−1 = H𝑛−1 × ImH has a natural structure of a real affine
space, and that the elements of PB𝑞 act by affine transformations on Heis4𝑛−1. This
can be seen for instance by saying that Heis4𝑛−1, identified with the boundary of the
projective model of H𝑛

H minus {∞}, is a PB𝑞-invariant affine subspace of the affine chart
of the quaternionic projective space defined by the quaternionic projective hyperplane{
[𝑧0 : 𝑧 : 𝑧𝑛] ∈ P𝑛r (H) : 𝑧𝑛 = 0

}
, and that the quaternionic projective transformations

preserving this hyperplane act by affine transformations on the associated affine chart.
Another way is to check, by an easy computation, that the Heisenberg translations,
rotations and dilations preserve the barycenters in the real affine space H𝑛−1 × ImH: For
instance, for all (𝜁0, 𝑢0), (𝜁, 𝑢), (𝜁 ′, 𝑢′) ∈ Heis4𝑛−1 and 𝑡 ∈ [0, 1], we have

(𝜁0, 𝑢0) ·
(
𝑡 (𝜁, 𝑢) + (1 − 𝑡) (𝜁 ′, 𝑢′)

)
= 𝑡 (𝜁0, 𝑢0) · (𝜁, 𝑢) + (1 − 𝑡) (𝜁0, 𝑢0) · (𝜁 ′, 𝑢′).

In particular, the barycenters of measures 𝜇 with compact support on Heis4𝑛−1 are
equivariant under the Heisenberg translations, rotations and dilations: For every such
transformation 𝛾, we have

bar(𝛾∗𝜇) = 𝛾 bar(𝜇). (3.3)
In order to prove Assertion (1), by Equations (3.2) and (3.3), and by the transitivity

properties of the Heisenberg translations and dilations on chains, we may assume that
𝑛 = 2 and that 𝐶 is a Euclidean sphere with center (0, 0) and radius 1 in the horizontal
subspace {(𝜁, 𝑢) ∈ H𝑛−1 × H : 𝑢 = 0}. Since the ImH-valued 1-form 𝜔 |𝐶 is invariant
under the Heisenberg rotations, the volume form 𝜔1 ∧ 𝜔2 ∧ 𝜔3 on 𝐶 is invariant under
the Heisenberg rotations. Since the only measure on 𝐶 invariant under the Heisenberg
rotations is, up to a scalar multiple, the Lebesgue measure on the Euclidean sphere 𝐶, the
measure 𝜇𝐶 is a multiple of the Lebesgue measure on 𝐶. This can also be proved by a
direct computation: On the Euclidean sphere 𝐶, with 𝜁 = 𝜁0 + 𝜁1𝑖 + 𝜁2 𝑗 + 𝜁3𝑘 , we have

𝜔1 ∧ 𝜔2 ∧ 𝜔3 = −8
3∑︁
𝑖=0

(−1)𝑖𝜁𝑖 d𝜁0 ∧ · · · ∧ d̂𝜁𝑖 ∧ · · · ∧ d𝜁3.
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Since the barycenter of this measure is exactly the origin (0, 0), which is the center of the
finite chain 𝐶, this proves Assertion (1).

(2). First assume that 𝐶 is the standard vertical chain

𝐶∞ = {(𝜁, 𝑢) ∈ H𝑛−1 × ImH : 𝜁 = 0} ∪ {∞}.

Let 𝜏 = 𝜏𝐶∞ : 𝑣 ↦→ (0, 𝑣). Then 𝜏 is a diffeomorphism from ImH onto 𝐶∞ − {∞}, such
that 𝜏∗ (d𝑢 − 2 Im(𝜁d𝜁)) = d𝑣. For every vertical Heisenberg translation 𝛾, the map 𝛾 ◦ 𝜏
is also a diffeomorphism from ImH onto 𝐶∞ − {∞}, and since 𝜔 is invariant under the
Heisenberg translations, we also have (𝛾 ◦ 𝜏)∗𝜔 = d𝑣.
If 𝜎 : ImH → 𝐶∞ − {∞} is another diffeomorphism such that 𝜎∗𝜔 = d𝑣, then for

every 𝑣 ∈ ImH, we have 𝜎′(𝑣) −𝜏′(𝑣) ∈ 𝑇𝐶∞∩ker𝜔 = {0}, thus the maps 𝜎 and 𝜏 differ
by an element of the vector subspace 𝐶∞. Therefore there exists a vertical Heisenberg
translation 𝛾 such that 𝜎 = 𝛾 ◦ 𝜏.
Now, if 𝐶 is another vertical chain, there exists a composition 𝛾 of Heisenberg transla-

tions and rotations such that 𝐶 = 𝛾𝐶∞. Defining 𝜏𝐶 = 𝛾 ◦ 𝜏𝐶∞ gives a diffeomorphism
from ImH onto𝐶−{∞} such that 𝜏𝐶∗𝜔 = d𝑣, by the invariance of𝜔 under the Heisenberg
translations and rotations. This proves Assertion (2).

(3). First assume that 𝐶 is the Euclidean 3-sphere{
(𝜁, 𝑢) ∈ H𝑛−1 × ImH : n(𝜁1) = 𝑅2 and 𝑢 = 𝜁2 = · · · = 𝜁𝑛−1 = 0

}
,

and that 𝑐 = (𝜁𝑐 = (−𝑅, 0, . . . , 0), 𝑢𝑐 = 0). Note that 𝑅 is the radius of the finite chain 𝐶.
By the properties of the exponential map of the Lie group of unit quaternions, whose
tangent space at the identity element 1 is ImH, the smooth map

𝜏 = 𝜏𝐶,𝑐 : 𝑣 ↦→
(
𝜁 = (𝑅𝑒−𝑣/(2𝑅2) , 0, . . . , 0), 𝑢 = 0

)
from ImH to 𝐶 is a diffeomorphism from 𝐵(2𝜋𝑅2) onto 𝐶 − {𝑐}. It extends continuously
(and even smoothly) to the sphere 𝜕𝐵(2𝜋𝑅2), mapping this sphere to 𝑐. Considering 𝜁
as a function of 𝑣, we have d𝜁 = (− 1

2𝑅 𝑒
−𝑣/(2𝑅2)d𝑣, 0, . . . , 0). Hence, since 𝑣 and d𝑣 are

purely imaginary quaternions, we have

𝜏∗𝜔 = −2 Im(𝜁 · d𝜁) = −2 Im
( (
𝑅𝑒−𝑣̄/(2𝑅

2) ) (− 1
2𝑅

𝑒−𝑣/(2𝑅
2)d𝑣

))
= d𝑣.

The uniqueness of 𝜏 up to postcomposition by a Heisenberg rotation preserving 𝐶 and 𝑐,
and the extension to the other chains, follow as previously from the fact that the chains
are transverse to the quaternionic contact structure on Heis4𝑛−1 and by invariance of the
calibration 𝜔 under the Heisenberg translations and rotations. �
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4. Counting and equidistribution of arithmetic chains in hyperspherical
geometry

In this section, we prove (generalised versions of) Theorems 1.2 and 1.3 of the introduction.
We start by recalling a general statement, coming from a special case of the main results
of [21], that has been made explicit in [22].
Let Γ be a lattice in PU𝑞 . Let 𝐷− and 𝐷+ be nonempty proper closed convex subsets of

H𝑛
H, with stabilisers Γ𝐷− and Γ𝐷+ in Γ respectively, such that the families (𝛾𝐷−)𝛾∈Γ/Γ𝐷−

and (𝛾𝐷+)𝛾∈Γ/Γ𝐷+ are locally finite in H𝑛
H. For all 𝛾, 𝛾

′ in Γ, the convex sets 𝛾𝐷− and
𝛾′𝐷+ have a common perpendicular if and only if their closures 𝛾𝐷− and 𝛾′𝐷+ in
H𝑛
H ∪ 𝜕∞H𝑛

H do not intersect. We denote by 𝛼𝛾,𝛾′ this common perpendicular, starting
from 𝛾𝐷− at time 𝑡 = 0, and by ℓ(𝛼𝛾,𝛾′) its length. The multiplicity of 𝛼𝛾,𝛾′ is

𝑚𝛾,𝛾′ =
1

card(𝛾Γ𝐷−𝛾−1 ∩ 𝛾′Γ𝐷+𝛾′−1)
,

which equals 1 for all 𝛾, 𝛾′ ∈ Γ when Γ acts freely on 𝑇1H𝑛
H (for instance when Γ is

torsion-free). For all 𝑠 > 0 and 𝑥 ∈ 𝜕𝐷−, let

𝑚𝑠 (𝑥) =
∑︁

𝛾∈Γ/Γ𝐷+ :𝐷− ∩ 𝛾𝐷+ = ∅, 𝛼𝑒,𝛾 (0)=𝑥, ℓ (𝛼𝑒,𝛾) ≤𝑠

𝑚𝑒,𝛾

be the multiplicity of 𝑥 as the origin of common perpendiculars with length at most 𝑠
from 𝐷− to the elements of the Γ-orbit of 𝐷+.
For every 𝑠 > 0, let

N𝐷− ,𝐷+ (𝑠) =
∑︁

(𝛾,𝛾′) ∈Γ\( (Γ/Γ𝐷− )×(Γ/Γ𝐷+ )) : 𝛾𝐷− ∩ 𝛾′𝐷+ = ∅, ℓ (𝛼𝛾,𝛾′ ) ≤𝑠

𝑚𝛾,𝛾′ ,

where Γ acts diagonally on Γ × Γ. When Γ has no torsion, N𝐷− ,𝐷+ (𝑠) is the number
(with multiplicities coming from the fact that Γ𝐷±\𝐷± is not assumed to be embedded in
Γ\H𝑛

H) of the common perpendiculars of length at most 𝑠 between the images of 𝐷
− and

𝐷+ in Γ\H𝑛
H.

The following statement is a special case of [22, Thm. 8·1]. We denote by Δ𝑥 the unit
Dirac mass at a point 𝑥.

Theorem 4.1. Let 𝐷− be a horoball in H𝑛
H centred at a parabolic fixed point of Γ and let

𝐷+ be a quaternionic geodesic line in H𝑛
H such that Γ𝐷+\𝐷+ has finite volume. Let 𝑚+ be

the order of the pointwise stabiliser of 𝐷+ in Γ and let

𝑐(𝐷−, 𝐷+) = 2(𝑛 − 1) (2𝑛 − 1)
𝜋2𝑚+

Vol(Γ𝐷−\𝐷−) Vol(Γ𝐷+\𝐷+)
Vol(Γ\H𝑛

H)
.
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There exists 𝜅 > 0 such that, as 𝑠 → +∞,

N𝐷− ,𝐷+ (𝑠) = 𝑐(𝐷−, 𝐷+)𝑒 (4𝑛+2)𝑠
(
1 + O(𝑒−𝜅𝑠)

)
.

Furthermore, the origins of the common perpendiculars from 𝐷− to the images of 𝐷+

under the elements of Γ equidistribute in 𝜕𝐷− to the induced Riemannian measure: As
𝑠 → +∞, we have

2(2𝑛 + 1) Vol(Γ𝐷−\𝐷−)
𝑐(𝐷−, 𝐷+) 𝑒−(4𝑛+2)𝑠

∑︁
𝑥∈𝜕𝐷−

𝑚𝑠 (𝑥) Δ𝑥

∗
⇀ vol𝜕𝐷− . (4.1)

For smooth functions 𝜓 with compact support on 𝜕𝐷−, there is an error term in the
equidistribution claim of Theorem 4.1 when the measures on both sides are evaluated on
𝜓, of the form O(𝑒−𝜅𝑠 ‖𝜓‖ℓ) where 𝜅 > 0 and ‖𝜓‖ℓ is the Sobolev norm of 𝜓 for some
ℓ ∈ N.
From now on, we assume that 𝑛 = 2. Let 𝐴, 𝐷𝐴, 𝑚𝐴 and O be as in the Introduction.

We denote by |O× | the order of the unit group of O , equal to 24 if 𝐷𝐴 = 2, to 12 if
𝐷𝐴 = 3, or else to 2, 4 or 6. See for instance [25]. As usual, by

∏
𝑝 |𝐷𝐴

, we mean a product
where 𝑝 ranges over the prime positive numbers dividing 𝐷𝐴.
For every chain 𝐶 in 𝜕∞H2H, let 𝐿𝐶 be the quaternionic projective line in P2r (H) such

that𝐶 = 𝐿𝐶 ∩ 𝜕∞H2H, and let 𝐷𝐶 = 𝐿𝐶 ∩H2H be the associated quaternionic geodesic line.
For every finite index subgroup 𝐺 of the arithmetic lattice PU𝑞 (O), we denote by 𝐺𝐶 the
stabiliser of 𝐶 in 𝐺, by 𝐺∞ the stabiliser of ∞ in 𝐺, and by Covol𝐺 (𝐶) the volume of
the orbifold 𝐺𝐶\𝐷𝐶 for the Riemannian metric of constant sectional curvature −1 on
the real hyperbolic 4-space 𝐷𝐶 . Recall that a chain 𝐶 is arithmetic over O if and only if
the stabiliser in PU𝑞 (O) (or equivalently in 𝐺) of the quaternionic geodesic line 𝐷𝐶 has
finite covolume on 𝐷𝐶 .

Theorem 4.2. Let 𝐶0 be an arithmetic chain over a maximal order O in a definite
quaternion algebra over Q. Let 𝐺 be a finite index subgroup of PU𝑞 (O). Then there exists
a constant 𝜅 > 0 such that, as 𝜖 > 0 tends to 0, the number 𝜓𝐶0 ,𝐺 (𝜖) of chains modulo
𝐺∞ in the 𝐺-orbit of 𝐶0 with 𝑑Cyg-diameter at least 𝜖 is equal to

35 223 36𝐷2
𝐴
Covol𝐺 (𝐶0) [PU𝑞 (O)∞ : 𝐺∞]

𝜋6𝑚𝐶0 ,𝐺 𝑚𝐴 |O× |2∏𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]

𝜖−10
(
1 + O(𝜖 𝜅 )

)
,

where 𝑚𝐶0 ,𝐺 is the order of the pointwise stabiliser of 𝐷𝐶0 in 𝐺.

Recall that the center cen(𝐶) of a finite chain 𝐶 is the image of∞ = [1 : 0 : 0] under
the reflexion on 𝐿𝐶 . The following result is an equidistribution result in the quaternionic
Heisenberg group of the centers of the arithmetic chains in a given orbit under (a finite
index subgroup of) PU𝑞 (O).
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Theorem 4.3. Let 𝐶0, 𝐺 and 𝑚𝐶0 ,𝐺 be as in Theorem 4.2. As 𝜖 > 0 tends to 0, we have

𝑚𝐶0 ,𝐺𝑚𝐴𝜋
6∏

𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]
35 224 36 Covol𝐺 (𝐶0)

𝜖10
∑︁

𝐶∈𝐺 ·𝐶0
diam𝑑Cyg (𝐶) ≥𝜖

Δcen(𝐶)

∗
⇀ HaarHeis7 .

As in Theorem 4.1, there exist 𝜅 > 0 and ℓ ∈ N such that for every smooth function 𝜓
with compact support on Heis7, there is an error term in this equidistribution result when
the measures on both sides are evaluated on 𝜓, of the form O(𝑠−𝜅 ‖𝜓‖ℓ) where ‖𝜓‖ℓ is
the Sobolev norm of 𝜓.
We begin by a technical result used in the proofs of the above theorems, which does

not require the assumption 𝑛 = 2. Recall that 𝑑 ′′
Cyg is the modified Cygan distance defined

in Section 2.

Lemma 4.4. For every 𝑚-chain 𝐶 in H𝑛
H, we have diam𝑑Cyg (𝐶) =

√
2 diam𝑑′′

Cyg
(𝐶).

Proof. If 𝐶 is a vertical 𝑚-chain, then both diameters are +∞. We hence assume that 𝐶 is
finite. Since the Heisenberg translations and rotations preserve 𝑑Cyg and 𝑑 ′′Cyg, and by the
transitivity properties of the Heisenberg translations and rotations on the set of 𝑚-chains
(see Section 3.2), we may assume that 𝐶 is a Euclidean sphere centered at (0, 0) with
dimension 4𝑚 − 1, contained in the horizontal plane H𝑛−1 × {0} of Heis4𝑛−1. Since the
Heisenberg dilations (𝜁, 𝑢) ↦→ (𝜆𝜁, 𝜆2𝑢) with 𝜆 > 0 are homotheties of ratio 𝜆 for 𝑑Cyg
and 𝑑 ′′

Cyg, we may assume that the radius of 𝐶 is equal to 1.
For every (𝜁, 0) ∈ 𝐶, we thus have 𝑑Cyg ((𝜁, 0), (0, 0)) = 1 by Equation (2.7), hence

diam𝑑Cyg (𝐶) ≤ 2 by the triangle inequality. Since

𝑑Cyg ((𝜁, 0), (−𝜁, 0)) = 𝑑Cyg ((𝜁, 0) · (𝜁, 0), (0, 0)) = 𝑑Cyg ((2𝜁, 0), (0, 0)) = 2,

we have diam𝑑Cyg (𝐶) = 2.
Using the transitivity properties of Sp(𝑛 − 1) on the unit sphere 𝐶 of the Euclidean

space H𝑛−1 in the same way as in the proof of [20, Lem. 8] in the complex hyperbolic
case, we may assume that 𝑛 = 3, and that

diam𝑑′′
Cyg

(𝐶) = sup
𝑢∈H,𝜙∈[0, 𝜋 ]: n(𝑢)=1

𝑑 ′′Cyg
(
(1, 0, 0), (𝑢 cos 𝜙, sin 𝜙, 0)

)
.
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By a computation similar to the one in [20, Lem. 8], using Equation (2.8) and the fact
that 4 n(Im 𝑢) = 4 − (tr 𝑢)2 for any unit quaternion 𝑢, we have

𝑑 ′′
Cyg

(
(1, 0, 0), (𝑢 cos 𝜙, sin 𝜙, 0)

)2
= 𝑑 ′′Cyg

(
(0, 0, 0), (−1, 0, 0) · (𝑢 cos 𝜙, sin 𝜙, 0)

)2
= 𝑑 ′′Cyg

(
(0, 0, 0),

(
𝑢 cos 𝜙 − 1, sin 𝜙,−2 cos 𝜙 Im 𝑢)

)2
=

(2 − cos 𝜙 tr 𝑢)2 + 4 cos2 𝜙 n(Im 𝑢)
((2 − cos 𝜙 tr 𝑢)2 + 4 cos2 𝜙 n(Im 𝑢)) 12 + (2 − cos 𝜙 tr 𝑢)

=
2

1
(1+cos2 𝜙−cos 𝜙 tr𝑢)

1
2
+ 2−tr𝑢 cos 𝜙
2(1+cos2 𝜙−cos 𝜙 tr𝑢)

.

As 1 + cos2 𝜙 − cos 𝜙 tr 𝑢 ≤ 2 − cos 𝜙 tr 𝑢 ≤ 4, we have

𝑑 ′′Cyg
(
(1, 0, 0), (𝑢 cos 𝜙, sin 𝜙, 0)

)2 ≤ 2.
Furthermore, the equality holds when 𝑢 = 1 and 𝜙 = 𝜋. This proves the result. �

Proof of Theorem 4.2 and Theorem 4.3. The diameter of a chain for the Cygan distance
is invariant under the stabiliser in PU𝑞 of the horosphere 𝜕H1, hence is invariant under
𝐺∞. The counting function 𝜓𝐶0 ,𝐺 is thus well defined.
Note thatH1 is a horoball centered at the fixed point of a parabolic element in PU𝑞 (O)

(take the vertical Heisenberg translation by (0, 2𝑢) for any nonzero 𝑢 ∈ O ∩ ImH ). We
will apply Theorem 4.1 with Γ = 𝐺, with 𝐷− = H1, which is hence a horoball centered at
the fixed point of a parabolic element in 𝐺, and with 𝐷+ = 𝐷𝐶0 , which is the quaternionic
geodesic line in H2H with boundary at infinity equal to 𝐶0. In particular 𝑚

+ = 𝑚𝐶0 ,𝐺 .
Let us compute the constant 𝑐(𝐷−, 𝐷+) appearing in the statement of Theorem 4.1.

We have Vol(𝐺\H2H) = [PU𝑞 (O) : 𝐺] Vol(PU𝑞 (O)\H2H), where, by [22, Thm. 1·4],

Vol(PU𝑞 (O)\H2H) =
𝜋4𝑚𝐴

175 213 35
∏
𝑝 |𝐷𝐴

(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1),

and by [22, Lem. 8·4],

Vol(Γ𝐷−\𝐷−) = [PU𝑞 (O)∞ : 𝐺∞] Vol(PU𝑞 (O)H1\H1) =
𝐷2

𝐴
[PU𝑞 (O)∞ : 𝐺∞]
160 |O× |2

. (4.2)

By definition, we have

Vol(Γ𝐷+\𝐷+) = 16Covol𝐺 (𝐶0),
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since the sectional curvature of 𝐷+ is constant −4 and 𝐷+ has real dimension 4. We hence
have

𝑐(𝐷−, 𝐷+) =
35 213 36𝐷2

𝐴
Covol𝐺 (𝐶0) [PU𝑞 (O)∞ : 𝐺∞]

𝜋6𝑚𝐶0 ,𝐺𝑚𝐴 |O× |2∏𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]

. (4.3)

Let 𝑔 ∈ 𝐺 be such that the quaternionic geodesic line 𝑔𝐷+ is disjoint fromH1 (which
is the case except for 𝑔 in finitely many double classes in 𝐺H1\𝐺/𝐺𝐷+). Let 𝛿𝑔 be the
common perpendicular fromH1 to 𝑔𝐷+. Its length ℓ(𝛿𝑔) is the minimum of the distances
fromH1 to a geodesic line between two points of 𝜕∞ (𝑔𝐷+) = 𝑔𝐶0. Hence, by Lemmas 2.1
and 4.4, we have

ℓ(𝛿𝑔) = min
𝑥,𝑦∈𝑔𝐶0 , 𝑥≠𝑦

𝑑 (H1, ]𝑥, 𝑦[) = − max
𝑥,𝑦∈𝑔𝐶0 , 𝑥≠𝑦

ln
𝑑 ′′Cyg (𝑥, 𝑦)√

2

= − ln
diam𝑑′′

Cyg
(𝑔𝐶0)

√
2

= − ln
diam𝑑Cyg (𝑔𝐶0)

2
. (4.4)

Respectively by the definition of the counting function 𝜓𝐶0 ,𝐺 in the statement of
Theorem 4.2, since the stabiliser of 𝐶0 in 𝐺 is equal to 𝐺𝐷𝐶0

= 𝐺𝐷+ , by Equation (4.4),
by Theorem 4.1, and by Equation (4.3), we have, as 𝜖 > 0 tends to 0,

𝜓𝐶0 ,𝐺 (𝜖)
= card𝐺∞\{𝐶 ∈ 𝐺 · 𝐶0 : diam𝑑Cyg (𝐶) ≥ 𝜖}
= card{[𝑔] ∈ 𝐺∞\𝐺/𝐺𝐷𝐶0

: diam𝑑Cyg (𝑔𝐶0) ≥ 𝜖}

= card
{
[𝑔] ∈ 𝐺H1\𝐺/𝐺𝐷𝐶0

: ℓ(𝛿𝑔) ≤ − ln 𝜖
2

}
+ O(1)

= N𝐷− ,𝐷+

(
− ln 𝜖

2

)
+ O(1) = 𝑐(𝐷−, 𝐷+)𝑒−10 ln 𝜖

2
(
1 + O(𝑒𝜅 ln 𝜖

2 )
)

=
35 223 36𝐷2

𝐴
Covol𝐺 (𝐶0) [PU𝑞 (O)∞ : 𝐺∞]

𝜋6𝑚𝐶0 ,𝐺𝑚𝐴 |O× |2∏𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]

𝜖−10
(
1 + O(𝜖 𝜅 )

)
.

This proves Theorem 4.2. Let us now prove Theorem 4.3.
We apply the equidistribution result in Equation (4.1) of the origins or(𝛿𝑔) of the

common perpendiculars 𝛿𝑔 from 𝐷− = H1 to the images 𝑔𝐷+ for 𝑔 ∈ 𝐺. As 𝑠 → +∞,
we hence have, using Equations (4.3) and (4.2),

𝑚𝐶0 ,𝐺𝑚𝐴𝜋
6∏

𝑝 |𝐷𝐴
(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]
35 217 36 Covol𝐺 (𝐶0)

𝑒−10𝑠∑︁
[𝑔] ∈𝐺/𝐺𝐷+ : ℓ (𝛿𝑔) ≤𝑠

Δor(𝛿𝑔)
∗
⇀ vol𝜕H1 . (4.5)
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Let 𝑓 : 𝜕∞H2H − {∞} = Heis7 → 𝜕H1 be the orthogonal projection map, which is
the homeomorphism (𝑤0, 𝑤) ↦→ (𝑤0 + 12 , 𝑤). The pushforward of the Haar measure
HaarHeis7 by 𝑓 is

𝑓∗ HaarHeis7 = 8 vol𝜕H1 , (4.6)
see for example the end of the proof of Theorem 8·3 in [22].
Note that, for every chain 𝐶, if 𝑟𝐶 is the reflexion on the quaternionic projective line

containing 𝐶, then the geodesic line from∞ to cen(𝐶) = 𝑟𝐶 (∞), being invariant under
𝑟𝐶 , is orthogonal to the quaternionic geodesic line with boundary at infinity 𝐶. Hence for
every 𝑔 ∈ 𝐺, we have

𝑓 −1 (or(𝛿𝑔)) = cen(𝑔𝐶0).
Let us use in Equation (4.5) the change of variables 𝑠 = − ln 𝜖

2 and the continuity of
the pushforward of measures by 𝑓 −1. By Equations (4.4) and (4.6), as 𝜖 > 0 tends to 0,
we obtain that the measures
𝑚𝐶0 ,𝐺𝑚𝐴𝜋

6∏
𝑝 |𝐷𝐴

(𝑝 − 1) (𝑝2 + 1) (𝑝3 − 1) [PU𝑞 (O) : 𝐺]
35 224 36 Covol𝐺 (𝐶0)

𝜖10
∑︁

[𝑔] ∈𝐺/𝐺𝐷+
diam𝑑Cyg (𝑔𝐶0) ≥𝜖

Δcen(𝑔𝐶0)

weak-star converge to the Haar measure HaarHeis7 . This proves Theorem 4.3. �

Example 4.5. Let 𝐶0 =
{
[𝑤0 : 0 : 1] ∈ P2r (H) : tr𝑤0 = 0

}
be the standard vertical

chain in 𝜕∞H2H, which is the intersection of 𝜕∞H2H with the quaternionic projective line
𝐿𝐶0 =

{
[𝑧0 : 𝑧1 : 𝑧2] ∈ P2r (H) : 𝑧1 = 0

}
.

An element

±
©­­«
𝑎 𝛾∗ 𝑏

𝛼 𝑀 𝛽

𝑐 𝛿∗ 𝑑

ª®®¬
of PU𝑞 preserving the quaternionic geodesic line 𝐿𝐶0 ∩ H2H satisfies 𝛼𝑤0 + 𝛽 = 0 for
all 𝑤0 ∈ H with tr𝑤0 > 0. Thus, 𝛼 = 𝛽 = 0, and Equations (2.5) (or rather the
similar equations obtained by the formula 𝑋𝑋∗ = 𝐼𝑛+1 instead of 𝑋∗𝑋 = 𝐼𝑛+1) imply that
𝛾 = 𝛿 = 0. Using again Equations (2.5), we see that the stabiliser of 𝐿𝐶0 consists of the
elements ©­­«

𝑎 0 𝑏

0 𝑀 0
𝑐 0 𝑑

ª®®¬
such that tr(𝑐𝑎) = tr(𝑑𝑏) = 0, 𝑐𝑏 + 𝑎𝑑 = 1 and 𝑀 ∈ O×. Thus,

CovolPU𝑞 (O) (𝐶0) =
𝜋2

1080

∏
𝑝 |𝐷𝐴

(𝑝 − 1) (𝑝2 + 1)
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by [5, Thm. 2.5].
The pointwise stabiliser of 𝐶0 in PU𝑞 (O) consists of the diagonal elements with

𝑎 = 𝑑 = ±1 and 𝑀 ∈ O×, giving 𝑚𝐶0 ,PU𝑞 (O) = |O× |.
Theorems 4.2 and 4.3 then give

𝜓𝐶0 ,PU𝑞 (O) (𝜖) =
189 220𝐷2

𝐴

𝜋4𝑚𝐴 |O× |3∏𝑝 |𝐷𝐴
(𝑝3 − 1)

𝜖−10
(
1 + O(𝜖 𝜅 )

)
,

and
𝜋4𝑚𝐴 |O× |∏𝑝 |𝐷𝐴

(𝑝3 − 1)
189 221

𝜖10
∑︁

𝐶∈PU𝑞 (O) ·𝐶0: diam𝑑Cyg 𝐶≥𝜖
Δcen(𝐶)

∗
⇀ HaarHeis7 .
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