Dans ce papier, nous montrons un analogue d’un théorème de Cartan, disant que les transformations du bord des espaces hyperboliques quaternioniens qui préservent les chaînes sont des transformations projectives. Nous donnons un résultat de comptage et d’équidistribution pour les orbites de chaînes arithmétiques dans le groupe de Heisenberg quaternionien.
In this paper, we prove an analog of Cartan’s theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.
@article{AMBP_2021__28_1_45_0, author = {Jouni Parkkonen and Fr\'ed\'eric Paulin}, title = {Rigidity, counting and equidistribution of quaternionic {Cartan} chains}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {45--69}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {28}, number = {1}, year = {2021}, doi = {10.5802/ambp.399}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/} }
TY - JOUR AU - Jouni Parkkonen AU - Frédéric Paulin TI - Rigidity, counting and equidistribution of quaternionic Cartan chains JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 45 EP - 69 VL - 28 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/ DO - 10.5802/ambp.399 LA - en ID - AMBP_2021__28_1_45_0 ER -
%0 Journal Article %A Jouni Parkkonen %A Frédéric Paulin %T Rigidity, counting and equidistribution of quaternionic Cartan chains %J Annales mathématiques Blaise Pascal %D 2021 %P 45-69 %V 28 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/ %R 10.5802/ambp.399 %G en %F AMBP_2021__28_1_45_0
Jouni Parkkonen; Frédéric Paulin. Rigidity, counting and equidistribution of quaternionic Cartan chains. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 1, pp. 45-69. doi : 10.5802/ambp.399. https://ambp.centre-mersenne.org/articles/10.5802/ambp.399/
[1] Effective equidistribution of -integral points on symmetric varieties, Ann. Inst. Fourier, Volume 62 (2012) no. 5, pp. 1889-1942 | DOI | Numdam | MR | Zbl
[2] Stationary measures and invariant subsets of homogeneous spaces II, J. Am. Math. Soc., Volume 26 (2013) no. 3, pp. 659-734 | DOI | MR | Zbl
[3] Einstein manifolds, Classics in Mathematics, Springer, 2008 | MR
[4] Quaternionic contact structures, Proceedings of the Second Meeting on Quaternionic Structures in Mathematics and Physics (Roma, 1999), World Scientific, 2001, pp. 23-30 | DOI | Zbl
[5] The covolume of quaternion groups on the four-dimensional hyperbolic space, Acta Arith., Volume 77 (1996) no. 1, pp. 9-21 | DOI | MR | Zbl
[6] Equidistribution and counting under equilibrium states in negative curvature and trees. Applications to non-Archimedean Diophantine approximation, Progress in Mathematics, 329, Birkhäuser, 2019
[7] Sur le groupe de la géométrie hypersphérique, Comment. Math. Helv., Volume 4 (1932), pp. 158-171 | DOI | Zbl
[8] Rational points on the sphere, Ramanujan J., Volume 7 (2003) no. 1-3, pp. 235-239 | DOI | MR | Zbl
[9] Linnik’s ergodic method and the distribution of integer points on spheres, Automorphic representations and L-functions (Tata Institute of Fundamental Research Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 119-185 | MR | Zbl
[10] Complex hyperbolic geometry, Oxford Mathematical Monographs, Clarendon Press, 1999
[11] Proximality and equidistribution on the Furstenberg boundary, Geom. Dedicata, Volume 113 (2005), pp. 197-213 | DOI | MR | Zbl
[12] Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry (Progress in Mathematics), Volume 144, Birkhäuser, 1996, pp. 79-323 | DOI | Zbl
[13] Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math., Inst. Hautes Étud. Sci., Volume 76 (1992), pp. 165-246 | DOI | Numdam | Zbl
[14] Quaternionic CR geometry, Hokkaido Math. J., Volume 42 (2013) no. 2, pp. 159-207 | MR | Zbl
[15] Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds, J. Reine Angew. Math., Volume 704 (2015), pp. 85-133 | MR | Zbl
[16] Geometry of quaternionic hyperbolic manifolds, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 291-320 | MR | Zbl
[17] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, Princeton University Press, 1973
[18] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., Volume 129 (1989) no. 1, pp. 1-60 | DOI | Zbl
[19] Spiraling spectra of geodesic lines in negatively curved manifolds, Math. Z., Volume 268 (2011) no. 1-2, pp. 101-142 Erratum in Math. Z., 276(3-4):1215–1216, 2014 | DOI | MR | Zbl
[20] Counting and equidistribution in Heisenberg groups, Math. Ann., Volume 367 (2017) no. 1-2, pp. 81-119 | DOI | MR | Zbl
[21] Counting common perpendicular arcs in negative curvature, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 3, pp. 900-938 | DOI | MR | Zbl
[22] Counting and equidistribution in quaternionic Heisenberg groups, Math. Proc. Camb. Philos. Soc. (2021) (To appear, https://doi.org/10.1017/S0305004121000426) | DOI
[23] Invariants globaux des variétés hyperboliques quaternioniques, Ph. D. Thesis, Université de Bordeaux (France) (2016) (https://tel.archives-ouvertes.fr/tel-01661448)
[24] Chain and -circle on quaternionic Heisenberg group and their properties [Chinese], Appl. Math., Ser. A (Chin. Ed.), Volume 31 (2016) no. 1, pp. 90-100 | MR | Zbl
[25] Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, 1980 | DOI | Zbl
Cité par Sources :