Measured quantum groupoids associated with matched pairs of locally compact groupoids
Annales Mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 81-133.

Generalizing the notion of matched pair of groups, we define and study matched pairs of locally compact groupoids endowed with Haar systems, in order to give new examples of measured quantum groupoids.

En généralisant la notion de couple assorti de groupes, nous définissons et étudions les paires assorties de groupoides localement compacts munis de systèmes de Haar, afin d’obtenir de nouveaux exemples de groupoïdes quantiques mesurés.

DOI: 10.5802/ambp.344
Classification: 17B37,  22D25,  22A22
Keywords: Von Neumann algebras, measured quantum groupoids, matched pairs of groupoids
@article{AMBP_2014__21_2_81_0,
     author = {Jean-Michel Vallin},
     title = {Measured quantum groupoids associated with matched pairs of locally compact groupoids},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {81--133},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {21},
     number = {2},
     year = {2014},
     doi = {10.5802/ambp.344},
     mrnumber = {3327862},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.344/}
}
TY  - JOUR
TI  - Measured quantum groupoids associated with matched pairs of locally compact groupoids
JO  - Annales Mathématiques Blaise Pascal
PY  - 2014
DA  - 2014///
SP  - 81
EP  - 133
VL  - 21
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.344/
UR  - https://www.ams.org/mathscinet-getitem?mr=3327862
UR  - https://doi.org/10.5802/ambp.344
DO  - 10.5802/ambp.344
LA  - en
ID  - AMBP_2014__21_2_81_0
ER  - 
%0 Journal Article
%T Measured quantum groupoids associated with matched pairs of locally compact groupoids
%J Annales Mathématiques Blaise Pascal
%D 2014
%P 81-133
%V 21
%N 2
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.344
%R 10.5802/ambp.344
%G en
%F AMBP_2014__21_2_81_0
Jean-Michel Vallin. Measured quantum groupoids associated with matched pairs of locally compact groupoids. Annales Mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 81-133. doi : 10.5802/ambp.344. https://ambp.centre-mersenne.org/articles/10.5802/ambp.344/

[1] Nicolás Andruskiewitsch; Sonia Natale Tensor categories attached to double groupoids, Adv. Math., Volume 200 (2006) no. 2, pp. 539-583 | Article | MR: 2200856 | Zbl: 1099.16016

[2] Saad Baaj; Georges Skandalis Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR: 1235438 | Zbl: 0804.46078

[3] Saad Baaj; Georges Skandalis; Stefaan Vaes Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | Article | MR: 1969723 | Zbl: 1029.46113

[4] Saad Baaj; Georges Skandalis; Stefaan Vaes Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc., Volume 357 (2005) no. 4, p. 1497-1524 (electronic) | Article | MR: 2115374 | Zbl: 1062.22009

[5] A. Connes On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | Article | MR: 561983 | Zbl: 0443.46042

[6] Michel Enock Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, ii+150 pp. (2009) pages | Numdam | MR: 2541012 | Zbl: 1189.58002

[7] Michel Enock The unitary implementation of a measured quantum groupoid action, Ann. Math. Blaise Pascal, Volume 17 (2010) no. 2, pp. 233-302 http://ambp.cedram.org/item?id=AMBP_2010__17_2_233_0 | Article | Numdam | MR: 2778919 | Zbl: 1235.46066

[8] Michel Enock Measured quantum groupoids with a central basis, J. Operator Theory, Volume 66 (2011) no. 1, pp. 3-58 | MR: 2806546 | Zbl: 1265.46106

[9] Michel Enock; Jean-Marie Schwartz Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992, x+257 pages | MR: 1215933 | Zbl: 0805.22003

[10] Michel Enock; Jean-Michel Vallin Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | Article | MR: 1753177 | Zbl: 0974.46055

[11] Claude Godbillon Éléments de topologie algébrique, Hermann, Paris, 1971, 249 pages | MR: 301725 | Zbl: 0907.55001

[12] C. Anantharaman-Delaroche et J. Renault. Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], Volume 36, L’Enseignement Mathématique, Geneva, 2000, 196 pages | MR: 1799683 | Zbl: 0960.43003

[13] Johan Kustermans; Stefaan Vaes Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | Article | MR: 1832993 | Zbl: 1034.46508

[14] F. Lesieur tel.ccsd.cnrs.fr/documents/archives0/00/00/55/05 (thèse, Université d’Orléans)

[15] Franck Lesieur Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, iv+158 pp. (2008) pages | Numdam | MR: 2474165 | Zbl: 1221.46003

[16] A Ramsey Topologies on measured groupoids, Journal of Functional Analysis (1982) no. 47, pp. 314-343 | Article | MR: 665021 | Zbl: 0519.22003

[17] Jean Renault A groupoid approach to C * -algebras, Lecture Notes in Mathematics, Volume 793, Springer, Berlin, 1980, ii+160 pages | MR: 584266 | Zbl: 0433.46049

[18] Jean-Luc Sauvageot Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR: 703809 | Zbl: 0517.46050

[19] Şerban Strătilă Modular theory in operator algebras, Editura Academiei-Abacus Press Wells England, 1981 | MR: 696172 | Zbl: 0504.46043

[20] Stefaan Vaes The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | Article | MR: 1814995 | Zbl: 1011.46058

[21] Stefaan Vaes Groupes quantiques localement compacts, actions et extensions (2004) (Habilitation à Diriger des Recherches, Université Paris 7 Denis Diderot)

[22] Stefaan Vaes; Leonid Vainerman Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | Article | MR: 1970242 | Zbl: 1034.46068

[23] Jean-Michel Vallin Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR: 1389642 | Zbl: 0849.22002

[24] Jean-Michel Vallin Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR: 1794823 | Zbl: 0986.22002

[25] Jean-Michel Vallin Actions and coactions of finite quantum groupoids on von Neumann algebras, extensions of the matched pair procedure, J. Algebra, Volume 314 (2007) no. 2, pp. 789-816 | Article | MR: 2344585 | Zbl: 1128.46026

[26] Jean-Michel Vallin Relative matched pairs of finite groups from depth two inclusions of von Neumann algebras to quantum groupoids, J. Funct. Anal., Volume 254 (2008) no. 8, pp. 2040-2068 | Article | MR: 2402083 | Zbl: 1146.46040

[27] S. L. Woronowicz From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | Article | MR: 1369908 | Zbl: 0876.46044

Cited by Sources: