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Measured quantum groupoids associated with
matched pairs of locally compact groupoids

Jean-Michel Vallin

Abstract

Generalizing the notion of matched pair of groups, we define and study matched
pairs of locally compact groupoids endowed with Haar systems, in order to give
new examples of measured quantum groupoids.

Groupoïdes quantiques mesurés associés aux
couples assortis de groupoïdes localement compacts

Résumé
En généralisant la notion de couple assorti de groupes, nous définissons et

étudions les paires assorties de groupoides localement compacts munis de systèmes
de Haar, afin d’obtenir de nouveaux exemples de groupoïdes quantiques mesurés.
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1. Introduction

Dealing with locally compact groupoids, we defined in the articles [24]
and [23] a notion of pseudo multiplicative unitary and Hopf bimodule in
order to generalize, in that framework, classical notions of multiplicative
unitary ([2]) and Hopf von Neumann algebras ([9]) which led to locally
compact quantum groups ([2], [27], [13]......).

In an other article ([10]), starting with any depth 2 inclusion of von
Neumann algebras M0 ⊂M1, with an operator-valued weight T1 verifying
a regularity condition, Michel Enock and the author have given a pseudo-
multiplicative unitary generating two Hopf bimodules in duality; one of
them acts on M1 in such a way that M0 is isomorphic to the fixed point
algebra and the von Neumann algebraM2, given by the basic construction,
is isomorphic to the crossed product.

The axiomatic of locally compact quantum groupoids has been devel-
oped by Franck Lesieur in [14] and [15] and simplified by M. Enock ([6]
Appendice), who has also studied the theory of their actions on von Neu-
mann algebras, generalizing previous results due to S. Vaes ([20]).

The aim of this article is to give a large number of examples of measured
quantum groupoids as defined by M. Enock and F. Lesieur. We generalize
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Locally compact groupoids

at the same time the notion of matched pair of finite groupoids ([25])
and of locally compact group ([2], [22], [3], [4]....), in order to obtain such
examples coming from a suitable pseudo multiplicative unitary.

In the second paragraph are recalled definitions about locally compact
quantum groupoids and their actions on von Neumann algebras.

We precise, in the third chapter, the notion of matched pair of locally
compact groupoids, we prove that, for such a pair, there exists a canonical
action of each groupoid on the other one, and we give families of examples.
Finally we give a canonical pseudo multiplicative unitary which generates
their crossed products.

In the fourth chapter we investigate the Hopf bimodule structures of
the crossed products given by the pseudo multiplicative unitary, and find
suitable Haar operator valued weights for these structures.

We study, in the last chapter, two kinds of examples. The first one is
pretty natural and comes from matched pairs of groups actions: a very
general example of matched pair of groups is the "ax+b" group ([4] Chap
4), and pentagonal transformations lead also to such actions ([4] Prop 5.1).
We prove that, for any locally compact group G, which is a matched pair
G1G2 in the sense of [3], and which acts on a locally compact space X,
then X ×G1, X ×G2 is a matched pair of groupoids in X ×G. Moreover,
G1 (resp. G2) acts, as a group, on the space X×G2 (resp.X×G1) in such
a way that their usual crossed product is the one obtained using chapter
3. We investigate the quantum groupoid structure given to these crossed
products by chapter 4 which is actually different from the one given to any
crossed product as the dual of a transformation group. The second example
is the farthest possible from groups, it comes from principal groupoids
of the form X × X where X = X1 × X2 is the cartesian product of two
locally compact spaces, we prove that the structures given by the previous
chapters mixes the ones given by the pair groupoids X1×X1 and X2×X2.

Several continuations of this article can be considered. One can weaken
the condition G1 ∩ G2 = G0, which even with finite groups or groupoids
gives substantial examples ([26], [1] 2.8). Also a characterization of these
objects in terms of cleft extensions in the spirit of S.Vaes and L.Vainerman
[22] should be obtained .
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2. Measured quantum groupoids and their actions

2.1. Measured quantum groupoids
Let’s recall the definition of a measured quantum groupoid due to Enock
which extends Lesieur’s works. We use [14], [15] and [6] for general refer-
ences, in particular we suppose known spatial theory and relative tensor
products ([5], [18]) .

Definition 2.1. A measured quantum groupoid is a special collection
G = (N,M,α, β,Γ, T, T ′, ν) such that:
i) M,N are two von Neumann algebras, α : N → M and β : No → M

are commuting faithful normal non degenerate representations,

ii) Γ : M →M β?α
N

M is a one to one normal morphism such that:

Γ(β(x)) = 1 β⊗α
N

β(x)

Γ(α(x)) = α(x) β⊗α
N

1

(Γ β?α
N

id)Γ = (id β?α
N

Γ)Γ.

iii) T (resp T ′) is a faithful semi finite normal operator valued weight
from M to α(N) (resp β(N)) such that:

(id β?α
N

T )Γ(x) = T (x) β⊗α
N

1 for any x ∈M+
T

(T ′ β?α
N

i)Γ(x) = 1 β⊗α
N

T ′(x) for any x ∈M+
T ′

iv) ν is a faithful semi finite normal weight on N which is relatively
invariant with respect to T and T ′, i.e. for any t ∈ R : σΦ

t σ
Ψ
t = σΨ

t σ
Φ
t ,

where Φ = ν ◦ α−1 ◦ T and Ψ = ν ◦ β−1 ◦ T ′ .

Remark 2.2. The assertion iii) can be replaced by the weights conditions:
iii)’ (id β?α

N

Φ)Γ(x) = T (x) for any x ∈M+
T

(Ψ β?α
N

i)Γ(x) = T ′(x) for any x ∈M+
T ′

We shall say that the quantum groupoid is commutative (respectively
symmetric) ifM is abelian (resp. ςΓ = Γ, where ς : M β?α

N

M →M α?β
No

M

is the natural flip).
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Locally compact groupoids

Definition 2.3. ([10] 5.6) Let N be a von Neumann algebra and ν a
faithful normal semifinite weight on N , let α (resp. β, β̂) be a faithful non
degenerate representation (resp. anti representations) on a Hilbert space
H commuting two by two, a pseudo multiplicative unitary W over the
basis (N,α, β, β̂) is a unitary from H β⊗α

ν
H to H α⊗β̂

νo

H such that:

• W intertwines α, β, β̂, which means that for any n ∈ N one has:
W (α(n) β⊗α

N

1) = (1 α⊗β̂
No

α(n))W

W (1 β⊗α
N

β(n)) = (1 α⊗β̂
No

β(n))W

W (β̂(n) β⊗α
N

1) = (β̂(n) α⊗β̂
No

1)W

W (1 β⊗α
N

β̂(n)) = (β(n) α⊗β̂
No

1))W

• The operator W satisfies the "pentagonal" equation:

(1H α⊗β̂
No

W )(W β⊗α
N

1H) =

= (W β⊗α
No

1)(σνo α⊗β̂
No

1H)(1H α⊗β̂
No

W )σ2ν(1H β⊗α
N

σνo)(1H β⊗α
N

W )

where σνo is the flip map: H α⊗β̂
νo

H→ H β̂⊗α
ν

H and σ2ν is the flip

map: H α⊗β̂
νo

H α⊗β̂
νo

H→ H β̂⊗α
ν

H α⊗β̂
νo

H

Remark 2.4. In fact, measured quantum groupoids and pseudo multiplica-
tive unitaries are closely linked. According to [10] chap. 6, ifW is a pseudo
multiplicative unitary on L(H), it generates two von Neumann algebras
M (its right leg) and M̂ (its left leg) and two coproducts Γ and Γ̂ on M
and M̂ respectively, i.e. two maps verifying definition 2.1 ii). More pre-
cisely, for any m ∈ M and m̂ ∈ M̂ , one has: Γ(m) = W ∗(1 α⊗β̂

No

m)W

and Γ̂(m̂) = σνoW (m̂ β⊗α
N

1)W ∗σν ; and conversely, for a given measured

quantum groupoid, one can associate a pseudo multiplicative unitary to
it, with a manageability condition (implying weak regularity) which leads
to a duality theory and the following theorem:
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Theorem 2.5. ([14],[15],[6]) Let G = (N,M,α, β,Γ, T, T ′, ν) be a mea-
sured quantum groupoid, for any n in N let’s define β̂(n) = JΦα(n∗)JΦ,
then one can associate to G a pseudo multiplicative unitary W over the
basis (N,α, β, β̂), independent of the choice of T and T ′, the left leg of
which is M and gives Γ. The dual coproduct Γ̂ on the right leg M̂ leads to
a measured quantum groupoid (N, M̂, α, β̂, T̂ , T̂ ′, ν) denoted Ĝ, the dual of
G.

To the quantum groupoid G one associates a ∗-antiautomorphism of
M called the coinverse, which is involutive, and verifies the condition
R ◦ α = β and Γ ◦R = ςNo(R β⊗α

N

R)Γ.

Let j be the application defined for any x ∈M by j(x) = JΦx
∗JΦ, and

set Γc = (j β?α
N

j)Γ ◦ j, T c = j ◦ T ◦ j, Rc = j ◦R ◦ j.

Then one can consider two other quantum groupoids:

• the commutant Gc = (No,M ′, β̂, α̂,Γc, T c, RcT cRc, ν0)

• the commutant of the dual:

(Ĝ)c = (No, (M̂)′, β, α̂, (Γ̂)c, (T̂ )c, (R̂)c(T̂ )c(R̂)c, ν0) this last is an
important tool for the duality of actions.

2.2. Measured quantum groupoids in action

As quantum groups act on von Neumann algebras, measured quantum
groupoids also act on (von Neumann) modules with isomorphic basis.
Generalizing in this context what we have done in the finite dimensional
situation in [25], M. Enock has given in [6] a nice framework for these
actions together with double crossed product theorems. Let’s recall some
of his definitions.

Definition 2.6. Let G = (N,M,α, β,Γ, TL, TR, ν) be a given measured
quantum groupoid, and let A be a von Neumann algebra acting on a Hilbert
space H. A right (resp. left) action of G on A is a pair (b, a) such that:

i) b : N → A is an injective ∗-antihomomorphism (resp.morphism),
ii) a : A→ A b?α

N
M (resp. A b?β

No

M) is an injective ∗-homomorphism,
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iii) for all n ∈ N one has: a(b(n)) = 1 b⊗α
N

β(n)

(resp. a(b(n)) = 1 b⊗β
No

α(n))

and one has: (a b?α
N

id)a = (1 b?α
N

Γ)a (resp. (a b?β
No

id)a = (1 b?β
No

ςΓ)a).

Definition 2.7. Let (b, a) be a right (resp.left) action of a given measured
quantum groupoid G on a given von Neumann algebra A, then:

i) The crossed product of A by the action (b, a) is the sub von Neu-
mann algebra of A b?α

N
L(Hφ) (resp. A b?β

No

L(Hφ)) generated by a(A) and

1 b⊗α
N

M̂ ′ (resp. 1 b⊗β
No

M̂). It will be denoted by Aoa G.

ii) The invariant subalgebra is defined by:

Aa = {x ∈ A ∩ b(N)′/a(x) = xb ⊗α 1}

Theorem 2.8. ([6] 6.13, 9.3, 9.5, 10.11, 10.12) Let (b, a) be a right action
of a given measured quantum groupoid G on a given von Neumann algebra
A, and set Φ = ν ◦ α−1 ◦ T , then:

i) for any x ∈ A+, the extended positive element of A:

Ta(x) = (id b?α
ν

Φ)a(x)

is an extended positive element of Aa and Ta is a normal faithful operator
valued weight from A to Aa

ii) there exists a unique action (1b ⊗α α̂, ã) of Ĝc on A oa G which
verifies for any x ∈ A, y ∈ M̂ ′:

ã(a(x)) = a(x)α̂ ⊗β 1
ã(1b ⊗α y) = 1b ⊗α Γ̂c(y)

iii) for any y ∈ M̂ ′: Tã(1b ⊗α y) = 1b ⊗α T̂ c(y) = a(b(β−1(T̂ c(y)))),
Tã is semi finite, and (Aoα G)ã = a(A).

Corollary 2.9. For any normal semi finite faithful operator valued weight
θ on A, the operator valued weight θ̃ = a◦θ◦a−1 ◦Tã is normal semi finite
faithful on Aoa G and will be called the dual operator valued weight
of θ.
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In fact, the examples we shall deal with in this article come from an
action of a commutative measured quantum groupoid on a commutative
von Neumann algebra, nevertheless, as we shall see, the crossed product
will be a substantial non commutative quantum groupoid. So let us see
more precisely the commutative situation.

2.3. The abelian case

All measured quantum groupoids involved in this article will have a com-
mutative basis, and the Hilbert spaces will be of the form L2(X, dx)
where X is a second countable locally compact space endowed with a
Radon measure, hence this will simplify the relative tensor products. Let
(Y, dy) be a locally compact space endowed with a Radon measure and
let (L2(X, dx), β) (resp. (L2(Z, dz), α)) be a faithful normal representa-
tion of N = L∞(Y, ds), then the relative tensor product L2(X, dx) β⊗α

N

L2(Z, dz) is the completion of the algebraic tensor product K(X)�K(Z)
equipped with the pre-scalar product, defined for any f1, f2 ∈ K(X) and
any g1, g2 ∈ K(Z) by:

(f1 � g1, f2�g2) = (α(dωf1,f2 ◦ β
dy

)g1, g2) = (β(dωg1,g2 ◦ α
dy

)f1, f2)

=
∫
Z
α(dωf1,f2 ◦ β

dy
)g1(z)g2(z)dz

=
∫
X
β(dωg1,g2 ◦ α

dy
)f1(x)f2(x)dx

In our framework, the relative tensor product L2(X, dx) β⊗α
N

L2(Z, dz)

will also be viewed as L2(Xβ×αZ, dxβ×αdz), where Xβ×αZ is a suitable
fibred product of X and Z and dxβ×αdz is a Radon measure; we shall
intensively use this identification throughout this paper.

The commutative measured quantum groupoids (i.eM is commutative)
are, as expected, coming from measured groupoids in the sense of Jean
Renault ([17],[12]). Notwithstanding the fact that a Weyl theorem does not
exist in that context, up to some inessential reduction (see [16] theorem
4.1) we can deal with a Hausdorff locally compact groupoid G, we shall
suppose it is σ- compact and endowed with a Haar system {λu/u ∈ G0}
and a quasi invariant measure ν on G0, we shall denote µ =

∫
G0 λudν(u) the
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integrated measure on G, for any u ∈ G0, λu will be the image of λu by the
application g 7→ g−1, and δ will be the Radon Nikodym derivative of µ−1

w.r.t. µ . This will allow us to use the ∗-algebra of continuous numerical
functions on G with compact support, which will be noted K(G).

If s(g) = g−1g (resp. r(g) = gg−1) is the source (resp. goal) of any
element g of G, then one can define two representations of N = L∞(G0, ν)
on M = L∞(G, µ), (which are also antirepresentations) defined for any
f ∈ L∞(G0, ν) by:

sG(f) = f ◦ s, rG(f) = f ◦ r

One easily verifies that for any f, f ′ ∈ K(G) and for ν-almost any u ∈ G0,
one has:

dωf,f ′ ◦ r
dν

(u) =
∫
G
f(g)f ′(g)dλu

dωf,f ′ ◦ s
dν

(u) =
∫
G
δ(v)f(v−1)f ′(v−1)dλu(v)

Notation 2.10. One can define for any i ∈ {s, r}, G2
i,j = {(g, g′) ∈ G ×

G/i(g) = j(g′)}, for instance G2
s,r = G2 (the set of pairs of composable

elements), let us note µ2
i,j = µiG ×jG µ, so L2(G, µ) iG⊗jG

L∞(G0,ν)
L2(G, µ) and

L2(G2
i,j , µ

2
i,j) are isomorphic and isometric.

In [24] and [23] we proved that we can associate to G a pseudo mul-
tiplicative unitary WG : L2(G2

s,r, µ
2
s,r) → L2(G2

r,r, µ
2
r,r). It is given for any

ξ ∈ L2(G2
s,r, µs,r) and µ2

r,r almost any (x, y) ∈ G2
r,r by:

WGξ(x, y) = ξ(x, x−1y)

The left leg of WG generates the commutative quantum groupoid:

G(G) = (L∞(G0, ν), L∞(G, µ), rG, sG,ΓG, TG, T
−1
G , ν),

with the following formulas, for any f ∈ K(G):

• Coproduct

ΓG(f)(x, y) = f(xy) for any (x, y) ∈ G2
sG,rG
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• Left and right operator valued weights
For µ-almost any element g ∈ G:

TG(f)(g) =
∫
G
f(x)dλr(g)(x)

T−1
G (f)(g) =

∫
G
f(y)dλs(g)(y)

The right leg of WG generates the symmetric quantum groupoid, which
means the coproduct is invariant by a natural flip.

Ĝ(G) = (L∞(G0, ν),L(G), rG, rG, Γ̂G, T̂G, T̂G, ν),
where L(G) is the left regular algebra of G, which is the sub von Neumann
algebra of L(L2(G, µ)) generated by the operators defined for any f, h ∈
K(G) by:

λ(f)h(x) =
∫
G
f(g)h(g−1x)dλrG(x)(g)

For any f ∈ K(G), ξ ∈ L2(G2
rG,rG

, µrG,rG) and almost any (x, y) ∈ G2
rG,rG

,
one has:

• Coproduct:
Γ̂G(λ(f))ξ(x, y) =

∫
G f(g)ξ(g−1x, g−1y)dλrG(x)(g)

• Left (= right ) operator valued weight

T̂G(λ(f)) = rG(f | G0)

Remark 2.11. Of course one can consider the right regular representation
of G which generates in L(L2(G, µ)) the commutant of L(G) and gives a
commutant structure of quantum groupoid:

Ĝ′(G) = (L∞(G0, ν),R(G), sG, sG, Γ̂′G, T̂ ′G, T̂ ′G, ν),

2.3.1. The pair groupoid example

We suppose that G = X × X where X is an Hausdorff locally compact
space together with some Radon measure ν. G is given its natural locally
compact groupoid structure, G0 is the diagonal of X × X which will be
identified withX, its Haar system is (δx⊗ν)x∈X and ν is a (quasi) invariant
measure.
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The von Neuman algebra R(G) is isomorphic to L(L2(X, ν)) as for any
h ∈ K(X2), one has ρ(h) = 1 ⊗ Th, where Th is the integral operator
defined for any ξ ∈ L2(X, ν) by:

Thξ(y) =
∫
X
h(y, b)ξ(b)dν(b)

Here the Hilbert space L2(G2
s,r, µ

2
s,r) (resp.L2(G2

s,s, µ
2
s,s)) can be identi-

fied with L2(X3, ν⊗3) using map: ((x, y), (y, t))→ (x, y, t) from G2
s,r to X3

(resp.((x, y), (t, y)) → (x, y, t) from G2
s,s to X3). With this identification,

for any f ∈ K(G), and any (x, y) ∈ G, one has:

ΓG(f) = f13, Γ̂′G(ρ(f)) = 1⊗ Tf ⊗ 1

TG(f))(x) =
∫
X
f(x, b)dν(b) T−1

G (f)(y) =
∫
X
f(b, y)dν(b)

T̂ ′G(ρ(f))(x, y) = f(y, y)

Let’s recall what is a G-space or an action of G ([12] chap.2),

Notation 2.12. Let X,Y be two Borel spaces. Let us call fibration of X
by Y any Borel map [ : X → Y which is onto. When Y = G0 and for any
i ∈ {s, r}, let X[ ×i G be the fiber product of X and G which is the set
{(x, g) ∈ X × G/[(x) = i(g)} .

Definition 2.13. A (right) G-space is a Borel space X endowed with a
fibration [ : X → G0 and a Borel map (x, g) 7→ x.g from X[ ×r G to X
such that:

i) For all (x, g) ∈ X[ ×r G, [(x.g) = s(g) and x.[(x) = x

ii) For all (x, g1) ∈ X[×r G and all g2 ∈ Gs(g1) then x.(g1g2) = (x.g1).g2

Definition 2.14. A (right) locally compact G-space is a locally compact
space X endowed with a structure of (right) G-space such that [ is open
and continuous and (x, g) 7→ x.g is continuous.

One can also say that G acts on X. Let us now suppose that X is
endowed with a (positive faithful) Radon measure θ such that [?θ is ab-
solutely continuous w.r.t. ν, then one easily sees that b : L∞(G0, ν) →
L∞(X, θ) defined by b(f) = f ◦ [ is a *(anti)isomorphism, also for any i in
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{s, r} the von Neumann algebra L∞(X, θ) b?iG
L∞(G0,ν)

L∞(G, µ) is canonically

isomorphic to L∞(X[ ×i G, θ[ ×i µ) for a suitable Radon measure θ[ ×i µ
on X[ ×i G, one easily proves that:

Proposition 2.15. Let X be a (right) locally compact G-space endowed
with a Radon measure θ such that [?θ is absolutely continuous w.r.t. ν, let
b : L∞(G0, µ)→ L∞(X, θ) be defined by b(f) = f ◦[ for any f in L∞(X, θ),
let a : L∞(X, θ)→ L∞(X[×r G, θ[×r µ) be defined by a(f)(x, g) = f(x.g),
then (b, a) is an action of G(G) on L∞(X, θ).

In the conditions above, if X is second countable, then the crossed
product L∞(X, θ) oa G(G) is also Ĝ′(X[ ×r G), where X[ ×r G is given
its structure of semi direct product. The existence of b, given by Propo-
sition 2.15, leads to integral decompositions θ =

∫
G0 θudν(u), L2(X, θ) =∫

G0 L2(Xu, θu)dν(u) and L∞(X, θ) =
∫
G0 L∞(Xu)dν(u), where Xu = {x ∈

X/[(x) = u} and the support of θu is Xu for any u ∈ G0.
For any Radon measure θ′ on X, we shall say that θ′ is invariant under a

if and only if, for any g ∈ G, and any f ∈ K(Xs(g)) one has:
∫
f(x)dθs(g) =∫

f(y.g)dθr(g).

Lemma 2.16. If θ and θ′ are two Radon measures on X, invariant under
a, then the Radon Nikodym derivative dθ′

dθ is an element of L∞(X, θ)a.

Proof: This is easy and a basic consequence of [7] 7.5 to 7.8. �

Let us now give a description of the crossed product L∞(X, θ)oαG(G)
using a certain ∗-algebra representation. The vector space K(X[×r G) can
be given a ∗-algebra structure denoted by (K(X[ ×r G), ?,#).

For any F, F ′ in K(X[ ×r G) and any (x, g) in X[ ×r G, one has:

F ? F ′(x, g) =
∫
F (x, h)F ′(x.h, h−1g)dλr(g)(h)

F#(x, g) = F (x.g, g−1)δ(g−1)
One can define a representation of K(Xb ×r G) in L2(Xb ×r G, θ[ ×r µ),

let us note it R, it is defined for any ξ in L2(Xb ×r G, θ[ ×r µ), any F in
K(Xb ×r G) and θ[ ×r µ-almost any (x, g) in Xb ×r G by:
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R(F )ξ(x, g) =
∫
F (x.g, h)δ(h)−

1
2 ξ(x, gh)dλs(g)(h)

The crossed product L∞(X, θ)oaG(G) is generated by the image of R.
More precisely, for any f ∈ K(X) and any k ∈ K(G), one has: a(f)(1b ⊗r
ρ(k)) = R(f ⊗ k).

3. A generalization of the matched pair procedure

3.1. Measured matched pair of groupoids

Now let’s explain a triple extension of the commutative examples (in 2.3),
those studied in [23] in finite dimension, and in [22] (or [3]) in the quantum
groups case.

All the groupoids involved will be as mentioned in 2.3 till the end;
mimicking the case of matched pairs of locally compact groups, let’s give
the following definition:

Definition 3.1. Let G, G1, G2 be measured groupoid such that G1,G2 are
closed subgroupoids of G. We shall say that G1,G2 is a matched pair of
measured subgroupoids of G if and only if:

i) G1 ∩ G2 = G0

ii) G1G2 := {g1g2/g1 ∈ G1, g2 ∈ G
s(g1)
2 } is µ-conegligible in G

iii) the measure ν on G0 is quasi invariant for the three Haar systems.

Remark 3.2. Condition iii) is absolutely necessary to obtain, as in the case
of groups ([3] prop. 3.2), the Haar system of G from those of G1 and G2.
for instance if G is a principal groupoid of the form X × X where X is
any locally compact space, let’s choose G1 = G and G2 = G0 = X, then
if ν and ν1 and ν3 are any Radon measures on X, one can construct the
Haar systems (δx × ν)x∈X and (δx ⊗ ν1)x∈X on G and G1 and the quasi
invariant measures ν and ν1 respectively, there is no hope to give any
formula connecting the Haar systems. We shall now prove such a formula,
when the groupoids are given the same quasi invariant measure, using an
argument similar to that of [3] prop. 3.2 and the uniqueness condition of
Enock ([7] Corollary 7.8) recalled in 2.16.
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Lemma 3.3. 1) The von Neumann fiber product L∞(G1, µ1) s1?s2
L∞(G0,ν)

L∞(G2, µ2) is isomorphic to L∞(G1s×sG2, µ1s×sµ2), where the measure
µ1s×sµ2 is given for any f ∈ K(G1s×sG2) by:

(µ1s×sµ2)(f) =

=
∫
G0

∫
G1r×rG2

f(g−1
1 , g−1

2 )δ1(g−1
1 )δ2(g−1

2 )dλu1(g1)dλu2(g2)dν(u)

2) The restriction to L∞(G1s×sG2, µ1s×sµ2) of the natural action by
left multiplication of G(G1×G2) on L∞(G1 × G2, µ1 × µ2) is well defined;
if (a, r1s⊗sr2) is this action, then for any f ∈ L∞(G1s×sG2, µ1s×sµ2),
µ1s×sµ2-any element (g1, g2) ∈ G1s×sG2, µ1-any h1 ∈ G1, µ2-any h2 ∈ G2
,one has:

a(f)(g1, g2, h1, h2) = f(h−1
1 g1, h

−1
2 g2)

and µ1s×sµ2 is invariant under a in the sense of the end of Paragraph
2.3.

Proof: The assertion 1) is a simple calculation (see for instance [23] 3.1)
and the second one, an obvious consequence of 1), as one deals with the
left multiplication of G1 × G2 and its canonical Haar system. �

Lemma 3.4. Let µ̃ be the measure on G1s×sG2 defined for any f ∈
K(G1s×sG2) by:

µ̃(f) =
∫
u∈G0

∫
G1G2

f̃(θ−1(g))dλu(g)dν(u)

where the map θ : G1s×sG2 → G1G2 is given by θ(g1, g2) = g1g
−1
2 and

f̃(g1, g2) = f(g1, g2)δ(g2). Then µ̃ is invariant under the action a.

Proof: This is the same argument as in Lemma 4.10 of [22]. �

Proposition 3.5. Let G1,G2 be a matched pair of measured subgroupoids
of G, and let δi be the modular function of ν (relatively to Gi) for i = 1, 2,
then up to normalization of the Haar systems, for any u ∈ G0 and any
f ∈ K(G), one has:∫

fdλu =
∫∫

G1×G2
f(g1g2)δ(g2))δ2(g−1

2 )dλs(g1)
2 (g2)dλu1(g1)

=
∫∫

G2×G1
f(g2g1)δ(g1)δ1(g−1

1 )dλs(g2)
1 (g1)dλu2(g2)
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Proof: Due to the Lemmas 3.3 and 3.4, one can apply Lemma 2.16 to
µ1s×sµ2 and µ̃, so there exists a function h ∈ L∞(G1s×sG2, µ1s×sµ2)a
such that µ̃ = h(µ1s×sµ2), hence for µ1s×sµ2-any (g1, g2) ∈ G1s×sG2:
h(g1, g2) = h(s(g1), s(g2)). For any F ∈ K(G), let us define the func-
tion f ∈ L∞(G1s×sG2, µ1s×sµ2) by f(g1, g2) = F (g1g

−1
2 )δ(g−1

2 ) for any
(g1, g2) ∈ G1s×sG2 ; then f̃ ◦ θ = F , so one has:

∫
u∈G0

∫
G1G2

F (g))dλu(g)dν(u) =

=
∫
u∈G0

∫
G1G2

f̃(θ−1(g))dλu(g)dν(u) = µ̃(f) = (µ1s×sµ2)(hf) =

=
∫
G0

∫
G1r×rG2

h(g−1
1 , g−1

2 )f(g−1
1 , g−1

2 )δ1(g−1
1 )δ2(g−1

2 )dλu1(g1)×

× dλu2(g2)dν(u)

=
∫
G0

∫
G1r×rG2

h(r(g1), r(g1))F (g−1
1 g2)δ1(g−1

1 )δ(g2)δ2(g−1
2 )dλu2(g2)×

× dλu1(g1)dν(u)

=
∫
G1

( ∫
G2
h(r(g1), r(g1))F (g−1

1 g2)δ1(g−1
1 )δ(g2)δ2(g−1

2 )dλr(g1)
2 (g2)

)
×

× dµ1(g1)

=
∫
G1

( ∫
G2
h(s(g1), s(g1))F (g1g2)δ(g2)δ2(g−1

2 )dλs(g1)
2 (g2)

)
dµ1(g1)

=
∫
G0

∫
G1r×rG2

F (g1g2)δ(g2)δ2(g−1
2 )λs(g1)

2 (g2)h(s(g1), s(g1))dλu1(g1)dν(u)

This gives the first equality of the Proposition, if one replaces the Haar
system λu1 by kλu1 , where k is defined by k(g1) = h(s(g1), s(g1)) which is
still a Haar system (as k(g1) depends only on s(g1)). The second equality
is proven a similar way. �

Remark 3.6. If G1,G2 is a measured matched pair, as G2G1 = (G1G2)−1

and G1G2 ∩ G2G1 is conegligible then G2,G1 is also a measured matched
pair.
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3.2. Families of examples

3.2.1. Simplest examples

• If G is a group then a matched pair of groupoids is a matched pair
of groups as in [3].

• If G is finite then a matched pair is exactly a matched pair as
defined in [25].

• If G is a group bundle (i.e. s = r), as for any u ∈ G0, Gu = Guu
is a group, the matched pairs are exactly group bundles over G0

such that for any u ∈ G0, Gu1 ,Gu2 is a matched pair of groups in Gu.
The Haar systems being continuous families of Haar measures, in
that case, proposition 3.5 is a completely direct consequence of [3]
prop. 3.2.

3.2.2. Action of a matched pair of groups

If G is a locally compact transformation groupoid of the form X×G, where
G is a group matched pair G1G2 in the sense of [3], acting on the right on
X. Let G1 be equal to X ×G1, G2 be equal to X ×G2. One can consider
the canonical Haar systems (δx × ds)x∈X , (δx × ds1)x∈X (δx × ds2)x∈X
associated with the Haar measures of the groups, hence G1, G2 is clearly
a matched pair.

Let ν be a quasi invariant measure on G0 = X w.r.t. the action of G, let
ρ be the Radon Nikodym cocycle for ν and the action, this means that for
any g ∈ G and h ∈ K(X) one has

∫
h(x.g)dν(x) =

∫
ρ(x, g)h(x)dν(x). Let

∆ (resp. ∆1, resp. ∆2) be the modular function of the group G (resp. G1,
resp. G2), hence by [17] 3.21 one has: δ(x, g) = ∆(g)

ρ(x,g) (resp δi(x, g) = ∆i(g)
ρ(x,g)

for i = 1, 2). Therefore due to [3] prop. 3.2, for any f ∈ K(X×G) and any
x ∈ X, one has:
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δx × ds(f) =
∫
f(x, g)ds(g)

=
∫
G1

∫
G2
f(x, g1g2)∆(g2)∆2(g2)−1ds2(g2)ds1(g1)

=
∫
G1

∫
G2
f((x, g1)(xg1, g2)) ∆(g2)

ρ(xg1, g2)( ∆2(g2)
ρ(xg1, g2))−1ds2(g2)ds1(g1)

=
∫
G1

∫
G2
f((x, g1)(xg1, g2))δ(xg1, g2)δ2(xg1, g2)−1ds2(g2)ds1(g1)

=
∫
G1

∫
G2
f((y, g1)(z, g2))δ(z, g2)δ2(z, g2)−1(δs(x,g1) × ds2)(z, g2)×

× (δx × ds1)(y, g1)

which gives Proposition 3.5 in that case.

3.3. The case of principal and transitive groupoids
Let’s describe what are matched pairs in the case where G is principal
proper and transitive.

So we shall suppose that G = X ×X where X is an Hausdorff locally
compact space together with some Radon measure ν, and G is given its
natural locally compact groupoid structure, Haar system and quasi invari-
ant measure ν, as it was explained in remark 3.2.

Let us describe a family of examples and let us show that all matched
pairs of a principal proper and transitive groupoid are of this type when
X is compact.

We shall suppose that X is equal to X1×X2 where X1 and X2 are two
Hausdorff locally compact spaces and ν = ν1 × ν2, where νi is a Radon
measure on Xi for i = 1, 2. Let R1 and R2 be the equivalence relations
associated with the natural projections, so one has:

∀(a, b), (c, d) ∈ X : (a, b)R1(c, d) iff a = c

∀(a, b), (c, d) ∈ X : (a, b)R2(c, d) iff b = d

Let Gi be the sub groupoids of G = X ×X associated with Ri for i = 1, 2.
One has:

G1 = t
x1∈X1

{x1} ×X2 × {x1} ×X2
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G2 = t
x2∈X2

X1 × {x2} ×X1 × {x2}

As X is Hausdorff, clearly G1 and G2 are closed in G. For any (x1, x2) ∈
X(= G0), let λ(x1,x2) be equal to δ(x1,x2) × ν which gives the canonical
Haar system of G and let’s define two other Radon measures on G1 and G2
respectively by the formulas:

λ
(x1,x2)
1 = δ(x1,x2) × δx1 × ν2

λ
(x1,x2)
2 = δ(x1,x2) × ν1 × δx2

Lemma 3.7. The pair (G1, (λu1)u∈X , ν), (G2, (λu2)u∈X , ν) is a matched pair
in the measured groupoid (G, (λu)u∈X , ν).

Proof: For any (a, b, c, d) ∈ G, one has:

(a, b, c, d) = (a, b, a, d).(a, d, c, d)

so G = G1G2, and G1 ∩ G2 = t
(x1,x2)∈X

{x1} × {x2} × {x1} × {x2} = G0 .

For any (x1, x2) ∈ X, the support of λ(x1,x2)
1 is clearly G

(x1,x2)
1 . For any

(x1, x2, x1, z2) in G1 and for any f ∈ K(G1), one has:∫
G1
f((x1, x2, x1, z2)t)dλ(x1,z2)

1 (t) =
∫
X1×X2

f(x1, x2, t1, t2)δx1(t1)dν2(t2)

=
∫
X2
f(x1, x2, x1, t2)dν2(t2)

=
∫
G1
f(t)dλ(x1,x2)

1 (t)

One easily deduces that (λu1)u∈X is a continuous Haar system for G1.
Let µ1 be equal to

∫
X λ

u
1dν(u), for any f in K(G1) one has:∫

G1
f(z−1)dµ1(z) =

=
∫
X

∫
G1
f((y1, y2, z1, z2)−1)δ(x1,x2) × δx1 × dν2(y1, y2, z1, z2)dν(x1, x2)

=
∫
X

∫
X2
f((x1, x2, x1, z2)−1)dν2(z2)dν(x1, x2)

=
∫
X1

∫
X2

∫
X2
f(x1, z2, x1, x2)dν2(z2)dν1(x1)dν2(x2)
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Hence using Fubini’s theorem, one has :
∫
G1
f(z−1)dµ1(z) =

∫
G1
f(z)dµ1(z),

so ν is quasi invariant, even invariant, relatively to Haar system (λu1)u∈X
and (G1, (λu1)u∈X , ν) is a measured groupoid. For similar reasons, groupoid
(G2, (λu2)u∈X , ν) is also a measured groupoid and ν is invariant for the three
measured groupoids, so (G1, (λu1)u∈X , ν), (G2, (λu2)u∈X , ν) is a matched
pair. �

Let us verify proposition 3.5 in that case, for any h ∈ K(G) and any
(x1, x2) ∈ X, one has:

∫
G2

∫
G1
h((a1, a2, b1, b2)(c1, c2, d1, d2))dλs(a1,a2,b1,b2)

2 (c1, c2, d1, d2)×

× dλ(x1,x2)
1 (a1, a2, b1, b2) =

=
∫
X2

∫
G1
h((x1, x2, x1, b2)(c1, c2, d1, d2))dλ(x1,b2)

2 (c1, c2, d1, d2)dν2(b2)

=
∫
X2

∫
X1
h(x1, x2, d1, b2)dν1(d1)dν2(b2)

=
∫
X1

∫
X2
h(x1, x2, d1, b2)dν1(d1)dν2(b2)

=
∫
G
h(z)dλ(x1,x2)(z)

This proves that proposition 3.5 is here a reformulation of Fubini’s
theorem.

Finally, let’s prove that we have described all possible examples when
X is Hausdorff and compact. So we suppose given a matched pair G1, G2
in X ×X, there exist two equivalence relations R1 and R2 associated to
two partitions (X1

α), (X2
β) of X, using classical arguments (see [11] chap

1 par.4), R1 and R2 are closed and Hausdorff, so each element of the
partitions is closed as a subset of X, hence compact in X. As well-known,
due to the fact that ν is quasi invariant for Gi (i = 1, 2), there exist Radon
measures Λi on X/Ri and Borel functions hi : X → R+

? such that if one
denotes αi : X → X/Ri the usual projection, one has µ = hi(Λi ◦ αi).
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Proposition 3.8. The map α1 × α2 : X → X/R1 ×X/R2 defined for
any x ∈ X by: (α1 × α2)(x) = (α1(x), α2(x)), realizes a homeomorphism
of compact spaces, and up to normalization (α1 × α2)(µ) = Λ1 ⊗ Λ2.

Proof: The application α1 × α2 is clearly continuous, let x, y ∈ X be
such that (α1 × α2)(x) = (α1 × α2)(y) then (x, y) ∈ G1 ∩ G2 so x = y,
hence α1 × α2 is injective. As G1G2 is µ conegligible in G and compact its
complementary is a negligible open set so it is empty and G1G2 = G, this
implies that for any x, y ∈ X, there exists t ∈ X such that (x, t) ∈ G1
and (t, y) ∈ G2, hence α1(x) = α1(t) and α2(y) = α2(t) which means that
(α1×α2)(t) = (α1(x), α2(y)), so α1×α2 is onto, the lemma follows easily.

�

3.4. The mutual actions of a matched pair of groupoids
Let’s give a generalization to matched pairs of groupoids of the well-known
fact that matched pairs of groups act one on the other.

Remark 3.9. As in [4] Chap 2, if (G1, (λu1), ν), (G2, (λu2), ν) is a given mea-
sured matched pair, then for i = 1 and 2, there exist Borel functions
pi : G → Gi such that, for any g ∈ G1G2 , g = p1(g)p2(g). Of course,
there also exists two borel almost everywhere defined maps p′i : G → Gi
such that g = p′2(g)p′1(g), for any g ∈ G2G1; so on the µ- conegligible set
G1G2∩G2G1, one has: g = p1(g)p2(g) = p′2(g)p′1(g). In this framework, new
representations appear, the middle ones:

Lemma 3.10. For µ-almost any g in G, one has: s ◦ p1(g) = r ◦ p2(g), r ◦
p′1(g) = s ◦ p′2(g), so there exist two µ-almost everywhere defined maps
such that:

m = s ◦ p1 = r ◦ p2 , m̂ = s ◦ p′2 = r ◦ p′1
let us note mG : f 7→ f ◦m (resp.m̂G : f 7→ f ◦ m̂) the associated represen-
tation of L∞(G0, ν).

Proof: As for any g ∈ G1G2, p1(g) and p2(g) are composable, the lemma is
obvious. �
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Lemma 3.11. For i = 1 or 2, let us note si = sGi
and ri = rGi

.
There exists an isomorphism U : L2(G, µ)→ L2(G2, µ2)s2⊗r1

ν
L2(G1, µ1)(=

L2(G2s2×r1G1, µ2s2×r1µ1)) such that for any ξ ∈ K(G) and µ2s2×r1µ1-
almost any (g2, g1) ∈ G2s2×r1G1, one has:

Uξ(g2, g1) = ( δ
δ1

)
1
2 (g1)ξ(g2g1)

it gives an isomorphism between L∞(G, µ) and L∞(G2, µ2)s2?r1
ν
L∞(G1, µ1);

these two are also isomorphic to L∞(G2s2×r1G1, µ2s2×r1µ1).

Proof: This is an obvious consequence of Proposition 3.5 . �

Proposition 3.12. Let a be the map: L∞(G2, µ2) → L∞(G2, µ2) s2?r1
ν

L∞(G1, µ1) (resp. â : L∞(G1, µ1) → L∞(G1, µ1) r1?s2
ν

L∞(G2, µ2)) be the

map defined for any f ∈ L∞(G2, µ2) (resp.any h ∈ L∞(G1, µ1)) and almost
any (g2, g1) ∈ G2s2×r1G1 (resp. (g1, g2) ∈ G1r1×s2G2) by:

a(f)(g2, g1) = f(p2(g2g1)) (resp. â(h)(g1, g2) = h(p1(g2g1)))

Then the pair (s2, a) (resp. (r1, â)) is a right (resp.left) action of G(G1)
(resp.G(G2)) on L∞(G2, µ2) (resp.L∞(G1, µ1)). Moreover one has: a◦r2 =
â ◦ s1 = m and a ◦ s2 = s.

Proof: For all φ ∈ L∞(G0, ν), and µ2s2×r1µ1-almost any (g2, g1) ∈ G2×G1
one has:

a(s2(φ))(g2, g1) = s2(φ))(p2(g2g1)) = φ(s(p2(g2g1))) = φ(s(g1))
= (1s2⊗r1

s1(φ))(g2, g1)

so a(s2(φ)) = 1s2⊗r1
s1(φ), up to the identification of 3.11, the relation

a ◦ r2 = m is obtained in the same way.
Let f be any element of L∞(G2, µ2) and let (g2, g1, h1) be any element

of G2×G1×G1 such that such that g2g1 and g2g1h1 exist and are in G1G2.
On the one hand, we have:

(a s2?r1
L∞(G0,ν)

i)a(f)(g2, g1, h1) = a(f)(p2(g2g1), h1)) = f(p2(p2(g2g1)h1))
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on the other hand:
(i s2?r1
L∞(G0,ν)

Γ1)a(f)(g2, g1, h1) = a(f)(g2, g1h1)) = f(p2(g2g1h1))

But one has p2(p2(g2g1)h1) = p2(p1(g2g1)p2(g2g1)h1) = p2(g2g1h1),
hence:

(a s2?r1
L∞(G0,ν)

i)a = (i s2?r1
L∞(G0,ν)

Γ1)a

The demonstration for â is quite similar. �

Remark 3.13. The crossed product L∞(G2, µ2) oa G(G1) is, up to an
isomorphism, the image in L(L2(G, µ)), of the map R, defined for any
F ∈ K(G2s2×r1G1) and µ-almost any g ∈ G by:

R(F )ξ(g) =
∫
G1
F (p2(g), g′1)δ(g′1)−

1
2 ξ(gg′1)dλs(g)1 (g′1)

Remark 3.14. Proposition 3.12 generalizes the fact, proven in [22] chap.4,
that if G1, G2 is a matched pair of groups, then there exists a canonical
action of G1 on L∞(G2) (resp. G2 on L∞(G1)) coming from a map β
(resp. α) such that, up to negligible sets, for any gi ∈ Gi (i = 1, 2), one
has g1g

−1
2 = βg1(g2)−1αg2(g1).

3.5. A pseudo multiplicative unitary associated with a
matched pair

Lemma 3.15. For any f, f ′ ∈ K(G), ν-almost any u ∈ G0, one has:
dωf,f ′ ◦mG

dν
(u) =

∫
G1×G2

ff ′(g−1
1 g2)δ1(g−1

1 )δ(g2)δ2(g−1
2 )dλu1(g1)dλu2(g2)

Proof: For all f, f ′ ∈ K(G), h ∈ K(G0), and ν-almost any element u ∈ G0,
one has:
(ωf,f ′ ◦mG)(h) =

=
∫
G0

∫
G
h(m(g))(ff ′)(g)dλu(g)dµ(u) =

=
∫
G0

∫
G1×G2

h(m(g1g2))(ff ′)(g1g2)(δδ−1
2 )(g2)dλs(g1)

2 (g2)dλu1(g1)dµ(u) =

by 3.5
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=
∫
G0

∫
G1×G2

h(s(g1))(ff ′)(g1g2)(δδ−1
2 )(g2)dλs(g1)

2 (g2)dλu1(g1)dµ(u)

=
∫
G1
h(s(g1))

∫
G2

(ff ′)(g1g2)(δδ−1
2 )(g2)dλs(g1)

2 (g2)dν1(g1)

=
∫
G1
h(r(g1))δ1(g−1

1 )
∫
G2

(ff ′)(g−1
1 g2)(δδ−1

2 )(g2)dλr(g1)
2 (g2)dν1(g1)

by making the change of variable : g1 7→ g−1
1

=
∫
G0
h(u)

∫
G1

∫
G2

(ff ′)(g−1
1 g2)δ1(g−1

1 )(δδ−1
2 )(g2)dλr(g1)

2 (g2)dλu1(g1)dν(u)

=
∫
G0
h(u)

∫
G1×G2

(ff ′)(g−1
1 g2)δ1(g−1

1 )(δδ−1
2 )(g2)dλu2(g2)dλu1(g1)dν(u)

the lemma follows. �

Notation 3.16. For any i, j ∈ {s, r,m, m̂}, let us note µ2
i,j = µiG ×jG µ

and Gi,j = {(g, g′) ∈ G/i(g) = j(g′)}, therefore L2(G, µ) iG⊗jG
ν

L2(G, µ) is

isomorphic to L2(G2
i,j , µ

2
i,j).

Lemma 3.17. For any f ∈ K(G× G) one has:

µ2
m,r(f) =

∫
G0

∫
G2

m,r

f(g, g′)dλm(g)(g′)dλu(g)dν(u)

µ2
s,m(f) =

∫
G0

∫
G2

s,m

δ(g−1)f(g−1, g′)dλm(g′)(g)dλu(g′)dν(u),

Proof: This is easy computations. �

Let’s define an important pseudo multiplicative unitary, which general-
izes at the same time, the multiplicative unitary of [4] 3.2 and the multi-
plicative partial isometry IH,K of [25] Definition 4.1.5.

Proposition 3.18. Let WG1,G2 : L2(G2
s,m, µ

2
s,m) → L2(G2

m,r, µ
2
m,r) be the

operator defined for any ξ ∈ L2(G2
s,m, µ

2
s,m) and µ2

m,r-almost any (x, y) in
G2
m,r by:

WG1,G2ξ(x, y) = D(x, y)
1
2 ξ(θ(x, y))
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where θ(x, y) = (xp1(p2(x)−1y), p2(x)−1y), and D(x, y) is the Radon-
Nikodym derivative dµ2

s,m◦θ
dµ2

m,r
. Up to the identification of 3.16, WG1,G2 is a

pseudo multiplicative unitary over the basis (L∞(G0, ν),mG, sG, rG).

Proof: Mimicking [4] 3.2, let us consider two maps, ω1 and ω2, defined
on G2

m,r ∩ G2G1 × G and on G2
s,r ∩ G × G2G1 respectively by: ω1(x, y) =

(x, p2(x)−1y) and ω2(x, y) = (xp1(y), y)). Obviously, one has: Imω1 ⊂ G2
s,r

(resp. Imω2 ⊂ G2
s,m). Due to Lemma 3.17, for any f ∈ K(G× G), one has:

µ2
m,r(f ◦ ω1) = µ2

s,r(f), µ2
s,r(f ◦ ω2) = µ2

s,m(∆f)

where ∆(x, y) = δ(p1(y)). So one can define two unitaries, first W1 :
L2(G2

s,r, µ
2
s,r) → L2(G2

m,r, µ
2
m,r) and W2 : L2(G2

s,m, µ
2
s,m) → L2(G2

s,r, µ
2
s,r)

such that W1ξ = ξ ◦ ω1 and W2η = ∆−1/2η ◦ ω2. Their composition
WG1,G2 = W1W2 is defined for any ξ ∈ L2(G2

s,m, µ
2
s,m) and µ2

m,r-almost
any (x, y) in G2

m,r by:

WG1,G2ξ(x, y) = D(x, y)
1
2 ξ(θ(x, y))

where D is the Radon Nikodym derivative dµ2
s,m◦θ
dµ2

m,r
and θ(x, y) = ω2 ◦

ω1(x, y) = (xp1(p2(x)−1y), p2(x)−1y). WG1,G2 is obviously a unitary and
the fact that this is a pseudo multiplicative unitary is essentially Propo-
sition 4.1.6 in [25]. �

Remark 3.19. Using the identification of 3.11, WG1,G2 is also a unitary:

[L2(G2, µ2) s2⊗r1
ν

L2(G1, µ1)] s1⊗m
ν

[L2(G2, µ2) s2⊗r1
ν

L2(G1, µ1)]

→ [L2(G2, µ2) s2⊗r1
ν

L2(G1, µ1)] m⊗r2
ν

[L2(G2, µ2) s2⊗r1
ν

L2(G1, µ1)]

Notation 3.20. Due to 3.12 and 3.11, one can consider the fibered product

a ? a : L∞(G2, µ2) s2?r2
ν

L∞(G2, µ2)→ L∞(G, µ) s?m
ν
L∞(G, µ)

Lemma 3.21. For µ2
s,m-almost any (g, g′) ∈ G2

s,m, one has:

D(g, g′) = δ−1(p1(p2(g)−1g′))
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Proof: For µ2
s,m-almost any (g, g′) ∈ G2

s,m, and any ξ ∈ L2(G2
s,m, µ

2
s,m) one

has:
Wξ(g, g′) = W1W2(g, g′) = W2ξ(g, p2(g)−1g′)

= ∆−
1
2 (g, p2(g)−1g′)ξ(gp1(p2(g)−1g′), p2(g)−1g′)

= δ−
1
2 (p1(p2(g)−1g′))ξ(gp1(p2(g)−1g′), p2(g)−1g′)

The lemma follows. �

Proposition 3.22. The von Neumann algebra generated by the left (re-
spectively the right) leg of WG1,G2 is isomorphic to the crossed product
L∞(G2, µ2) oa G(G1) (resp.L∞(G1, µ1) oâ G(G2)).

Proof: For any f, h, η, η′ ∈ K(G), in L2(G, µ) one has:
((i ? ωf,h)(WG1,G2)η, η′) =

=
∫
G2

m,r

WG1,G2(η s2⊗r1
ν

f)(g, g′)η′(g)h(g′)dµ2
m,r(g, g′)

=
∫
G2

m,r

D(g, g′)
1
2 η(gp1(p2(g)−1g′))f(p2(g)−1g′)η′(g)h(g′)dµ2

m,r(g, g′)

=
∫
G0

∫
G2

m,r

D(g, g′)
1
2 η(gp1(p2(g)−1g′))f(p2(g)−1g′)η′(g)h(g′)dλm(g)(g′)×

× dλu(g)dν(u)

=
∫
G
(
∫
G
D(g, g′)

1
2 η(gp1(p2(g)−1g′))f(p2(g)−1g′)h(g′)dλm(g)(g′))η′(g)dµ(g)

Let’s change of variable: g′ 7→ p2(g)−1g′:

((i?ωf,h)(WG1,G2)η, η′) =

=
∫
G
(
∫
G
D(g, p2(g)g′)

1
2 η(gp1(g′)f(g′)h(p2(g)g′)dλs(g)(g′))η′(g)dµ(g)

which gives, using Proposition 3.5 and Lemma 3.21, that for µ-almost
any g ∈ G, one has:

(i ? ωf,h)(WG1,G2)η(g) =
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=
∫
G1×G2

D(g, p2(g)g′1g′2)
1
2 η(gg′1)f(g′1g′2)h(p2(g)g′1g′2) δ

δ2
(g′2)dλs(g

′
1)

2 (g′2)

dλ
s(g)
1 (g′1)

=
∫
G1

(
∫
G2
δ(g′1)−

1
2 η(gg′1)f(g′1g′2)h(p2(g)g′1g′2) δ(g

′
2)

δ2(g′2))dλs(g
′
1)

2 (g′2)dλs(g)1 (g′1)

If one denotes Θ(g, g′1, g′2) = f(g′1g′2)h(gg′1g′2) δδ2
(g′2), then:

(i ? ωf,h)(WG1,G2)η(g) =

=
∫
G1

(
∫
G2

Θ(p2(g), g′1, g′2)dλs(g
′
1)

2 (g′2))δ(g′1)−
1
2 η(gg′1)dλs(g)1 (g′1)

= R(Ff,h)η(g)

where Ff,h(g2, g1) =
∫
G2
θ(g2, g1, g

′
2)dλs(g1)

2 (g′2)
Hence left leg of WG1,G2 generates the crossed product L∞(G2, µ2) oa

G(G1), analogue computations give that its right leg generates the von
Neumann algebra L∞(G1, µ1) oâ G(G2). �

Using Proposition 3.22, we shall identify the left (resp.right) leg of
WG1,G2 with crossed products.

Corollary 3.23. Thanks to the existence of WG1,G2, one can define two
Hopf bimodule structures, one is (L∞(G0, ν), L∞(G2, µ2)oaG(G1),m, s,Γ)
for the left leg, and the other (L∞(G0, ν), L∞(G1, µ1)oâG(G2), r,m, Γ̂) for
the right one.

Proof: This is a consequence of Remark 2.4 �

4. The quantum groupoid structures associated with a
matched pair

In this chapter we shall describe in full details the Hopf bimodule struc-
tures found in the previous one. We shall complete them to obtain mea-
sured quantum groupoids structures. In order to simplify notations and
using 3.11, we can suppose L∞(G2, µ2)oaG(G1) is acting on L2(G,µ) and
is generated by products a(f)(1s2⊗r1

ρ(h)), where, for any f ∈ L∞(G2, µ2)
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and µ-almost any g ∈ G one has a(f)(g) = f(p2(g)) and for any ξ ∈
L2(G, µ), h ∈ K(G1) : (1s2⊗r1

ρ(h))ξ(g) =
∫
G1
h(g1)ξ(gg1)dλs(g)1 (g1).

4.1. The coproduct
Lemma 4.1. One has: Γ ◦ a = (as2 ?r2 a)ΓG2, so for any f ∈ L∞(G2, µ2)
and µ2

s,m-almost any (g, g′) ∈ G2
s,m , one gets:

Γ(a(f))(g, g′) = f(p2(g)p2(g′))

Proof:AsWG1,G2 is a unitary, it is easy to see that for any η ∈ L2(G2
m,r, µ

2
m,r)

and µ2
s,m-almost any (g, g′) ∈ G2

s,m, one has:

W ∗G1,G2η(g, g′) = δ(p1(g′))
1
2 η(gp1(g′)−1, p2(gp1(g′)−1)g′)

As D′(g, g′) = δ(p1(g′))
1
2 is a density, then one has:

D′(g, g′)D((gp1(g′)−1, p2(gp1(g′)−1)g′) = 1,
hence for any f ∈ L∞(G2, µ2), any ξ ∈ L2(G2

s,m, µ
2
s,m) and µ2

s,m-almost
any (g, g′) ∈ G2

s,m, one has:
Γ(a(f))ξ(g, g′) = W ∗G1,G2(1m⊗ra(f))WG1,G2ξ(g, g′)

= D′(g, g′)−
1
2 (1m⊗ra(f))WG1,G2ξ(gp1(g′)−1, p2(gp1(g′)−1)g′)

= a(f)(p2(gp1(g′)−1)g′)ξ(g, g′)
= f(p2(p2(gp1(g′)−1)g′))ξ(g, g′)
= f(p2(gp1(g′)−1g′))ξ(g, g′) = f(p2(gp2(g′))ξ(g, g′)
= f(p2(g)p2(g′))ξ(g, g′)

�

A good description of Γ(1s2⊗r1
R(G1)) is given by an integral.

Proposition 4.2. Let h (resp.f) be any element in K(G1) (resp.K(G2)),
then:

i) for all ξ ∈ K(G2
s,m) and µ2

s,m-almost any (g, g′) ∈ G2
s,m, one has:

Γ(a(f)(1s2⊗r1
ρ(h))ξ(g, g′) =

= f(p2(g)p2(g′))
∫
G1
h(g1)ξ(gp1(p2(g′)g1), g′g1)dλs(g

′)
1 (g1)
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ii) with the notations of 3.13, for any φ ∈ K(G):
(ωφ s?m

ν
i)(Γ(a(f)(1s2⊗r1

ρ(h)))) = R(Ψf,h)

where Ψf,h ∈ K(G2s2×r1G1) is defined for any (g2, g1) ∈ G2s2×r1G1 by:
Ψf,h(g2, g1) =

= h(g1)
∫
Gr(g2)

δ(g−1)f(p2(g−1)g2)φ(g−1p1(g2g1))φ(g−1)dλr(g2)(g)

Proof: i) For any h ∈ K(G1), any ξ ∈ K(G2
s,m) and µ2

s,m-almost any (g, g′) ∈
G2
s,m, one has:

Γ(1s2⊗r1
ρ(h))ξ(g, g′) = W ∗G1,G2(1m⊗r(1s2⊗r1

ρ(h)))WG1,G2ξ(g, g′)

= D′(g, g′)−
1
2 (1m⊗r(1s2⊗r1

ρ(h)))WG1,G2ξ(gp1(g′)−1, p2(gp1(g′)−1)g′)

=
∫
G1
h(g1)ξ(gp1(p2(g′)g1), g′g1)dλs(g

′)
1 (g1)

i) follows immediately.
ii) For any f ∈ K(G2), φ, φ′ ∈ K(G) and µ2

s,m-almost any (g, g′) ∈ G2
s,m,

let us note:

Xf
φ,φ′(g, g

′) = f(p2(g)p2(g′))
∫
G1
h(g1)φ(gp1(p2(g′)g1))φ′(g′g1)dλs(g

′)
1 (g1).

Due to i) and 4.1, one has:

(ωφ s⊗m
ν

ωφ′)(Γ(a(f)(1s2⊗r1
ρ(h)))) =

=
∫
G2

s,m

∫
G1
h(g1)f(p2(g)p2(g′))φ(gp1(p2(g′)g1))φ′(g′g1)dλs(g

′)
1 (g1)

φ(g)φ′(g′)dµ2
s,m

=
∫
G2

s,m

Xf
φ,φ′(g, g

′)φ(g)φ′(g′)dµ2
s,m(g, g′)

=
∫
G

( ∫
Gm(g′)

δ(g−1)Xf
φ,φ′(g

−1, g′)φ(g−1)dλm(g′)(g)
)
φ′(g′)dµ(g′) by 3.17
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If Ψf,h ∈ K(G2s2×r1G1) is defined for any (g2, g1) ∈ G2s2×r1G1 by:

Ψf,h(g2, g1) =

= h(g1)
∫
Gr(g2)

δ(g−1)f(p2(g−1)g2)φ(g−1p1(g2g1))φ(g−1)dλr(g2)(g)

we can write:

∫
Gm(g′)

δ(g−1)Xf
φ,φ′(g

−1, g′)φ(g−1)dλm(g′)(g) =

=
∫
G1
h(g1)

∫
Gm(g′)

f(p2(g−1)p2(g′))φ(g−1p1(p2(g′)g1))×

× φ(g−1)dλm(g′)(g)φ′(g′g1)dλs(g
′)

1

=
∫
G1

Ψf,h(p2(g′), g1)φ′(g′g1)dλs(g
′)

1 (g1) as m(g′) = r(p2(g′))

hence one has:

ωφ′
(
(ωφ s?m

ν
i)(Γ(1s2⊗r1

ρ(h)))
)

= (ωφ s?m
ν
ωφ′)(Γ(1s2⊗r1

ρ(h)))

=
∫
G

( ∫
G1

Ψf,h(p2(g′), g1)φ′(g′g1)dλs(g
′)

1 (g1)
)
φ′(g′)dµ(g′)

=
∫
G

(
R(Ψf,h)φ′(g′)

)
φ′(g′)dµ(g′) = ωφ′(R(Ψf,h))

ii) follows �

Remark 4.3. The formulas of Lemma 4.2 generalize the ones obtained by
Stefaan Vaes in [21] 4.20 (and maybe elsewhere).

4.2. The co-involution

In this paragraph, a co-involution for L∞(G2, µ2)oaG(G1) is constructed.
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Lemma 4.4. Using notations of Remark 3.9, let φ : G → G (resp. φ̂ :
G→ G) be the function defined by the formula: φ(g) = p1(g)−1p′2(g) (resp.
φ̂(g) = φ(g)−1), then one has:

i) φ̂(g) = p′2(g)−1p1(g) = p′1(g)p2(g)−1

ii) φ2 = φ̂2 = idG
iii) s ◦ φ = m̂,m ◦ φ = r,m ◦ φ̂ = s, r ◦ φ = m

Proof: For any g ∈ G1G2 ∩ G2G1, one has p1(g)p2(g) = p′2(g)p′1(g) so i)
is true; using obvious notations, let us write: g = g1g2 = g′2g

′
1; one has:

φ(φ(g)) = φ(g−1
1 g′2) = φ(g2g

′
1
−1) = g1g2 = g, this gives ii), the assertion

iii) is obvious. �

Using Lemma 4.4, one can define a map φ̂s×mφ : G2
s,m → G2

m,r (resp.
φ̂m×rφ : G2

m,r → G2
s,m) such that for almost any (g, g′) ∈ G2

s,m (resp. G2
m,r),

one has: (φ̂s×mφ)(g, g′) = (φ̂(g), φ(g′)) (respectively (φ̂m×rφ)(g, g′) =
(φ̂(g), φ(g′)).

Lemma 4.5. Using the notations of 4.4 and 3.18, one has:

θ(φ̂s×mφ) = (φ̂m×rφ)θ−1.

Proof: For almost any (g, g′) ∈ G2
m,r, due to 4.4 i), one has p2(θ̂(g)) =

p2(g)−1, so :

θ(φ̂s×mφ)(g, g′) = θ(φ̂(g), φ(g′))

= (φ̂(g)p1(p2(φ̂(g))−1φ(g′)), p2(φ̂(g))−1φ(g′))

= (p′2(g)−1
p1(g)p1(p2(g)φ(g′)), p2(g)φ(g′))

= (p′2(g)−1
p1(gp1(g′)−1p′2(g′)), p2(g)p1(g′)−1p′2(g′))

= (p′2(g)−1
p1(gp1(g′)−1), p2(g)p1(g′)−1p′2(g′))

Also one has:

(φ̂m×rφ)θ−1(g, g′) = (φ̂m×rφ)(gp1(g′)−1, p2(gp1(g′)−1)g′)

Let us define:

X = gp1(g′)−1, Y = p2(gp1(g′)−1)g′
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this gives that:

(φ̂m×rφ)θ−1(g, g′) = (p′2(X)−1p1(X), p1(Y )−1p′2(Y ))
= (p′2(X)−1p1(X), p2(Y )p′1(Y )−1)

as p′2(X) = p′2(g), one deduces that:

p′2(X)−1p1(X) = p′2(g)−1
p1(gp1(g′)−1)

Also we can write that:
Y [p2(g)p2(g′)]−1 = p2(gp1(g′)−1)p1(g′)p2(g′)[p2(g)p2(g′)]−1

= p2(gp1(g′)−1)p1(g′)p2(g)−1

= p2(p2(g)p1(g′)−1)[p2(g)p1(g′)−1]−1

= [p1(p2(g)p1(g′)−1)]−1

this implies that p2(Y ) = p2(g)p2(g′), and as Y = p2(gp1(g′)−1)g′,
therefore p′1(Y ) = p′1(g′), which gives that:

p2(Y )p′1(Y )−1 = p2(g)p2(g′)p′1(g′)−1 .

Finally:

(φ̂m×rφ)θ−1(g, g′) = (p′2(X)−1p1(X), p2(Y )p′1(Y )−1)

= (p′2(g)−1
p1(gp1(g′)−1), p2(g)p2(g′)p′1(g′)−1)

= θ(φ̂s×mφ)(g, g′)
which gives the lemma. �

Proposition 4.6. i) Let J, Ĵ : L2(G) → L2(G) be defined for any ξ ∈
L2(G, µ) and µ-almost any g ∈ G by :

Jξ(g) = ξ(φ(g))(dµ ◦ φ
dµ

)
1
2 (g), Ĵξ(g) = ξ(φ̂(g))(dµ ◦ φ̂

dµ
)

1
2 (g)

then J and Ĵ are antilinear involutive isometries.
ii) For all f ∈ K(G0), one has: Ĵs(f) = m(f)Ĵ and Jm(f) = r(f)J ,

hence one can define Ĵs⊗mJ : L2(G2
s,m, µ

2
s,m) → L2(G2

m,r, µ
2
m,r), and it’s

inverse Ĵm⊗rJ : L2(G2
m,r, µ

2
m,r)→ L2(G2

s,m, µ
2
s,m), which verify:
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(Ĵm⊗rJ)WG1,G2 = W ∗G1,G2(Ĵs⊗mJ)

Proof: This is a straightforward consequence of Lemma 4.5. �

Proposition 4.7. Let R be the map defined for any x ∈ L∞(G2, µ2) oa

G(G1) by: R(x) = Ĵx∗Ĵ , then R is a co-involution for measured quantum
groupoid (L∞(G0, ν), L∞(G2, µ2)oaG(G1),m, s,Γ), more precisely, for any
f ∈ K(G2), if we define f−1 by f−1(g2) = f(g2

−1) one has: R(a(f)) =
a(f−1).

Proof: Obviously, Ad(Ĵ) is an involutive ∗-antiautomorphism for L(L2(G)).
Due to proposition 4.6, for any h, k ∈ K(G), one has:

R((i ? ωh,k)(WG1,G2)) = Ĵ(i ? ωh,k)(WG1,G2)∗Ĵ = Ĵ(i ? ωk,h)(W ∗G1,G2)Ĵ

= (i ? ωJk,Jh)(Ĵm⊗rJ)W ∗G1,G2(Ĵm⊗rJ))
= (i ? ωJk,Jh)(WG1,G2)

so, by restriction, R is an involutive ∗-antiautomorphism of L∞(G2, µ2)oa

G(G1).
From proposition 4.6, one obtains that R ◦m = s.
For all f ∈ K(G2), all ξ ∈ L2(G, µ) and µ-almost any g ∈ G1G2 ∩ G2G1,

with g = g1g2 = g′1g
′
2, one has:

R(a(f))ξ(g) = Ĵa∗(f)Ĵξ(g) = a(f)(φ̂(g))ξ(g)

= f(p2(g′2
−1
g1))ξ(g) = f(p2(g′1g−1

2 )ξ(g)
= f(g−1

2 )ξ(g) = a(f−1)(g)ξ(g)

So R(a(f)) = a(f−1).
Due to Proposition 3.7 of [8], for any k, k1, f2, h1, h2 ∈ K(G), one has:

(Γ((i ? ωh,k)(WG1,G2))(h1 s⊗m
ν

k1), h2 s⊗m
ν

k2) =

((ωh1,h2 ? i)(WG1,G2)(ωk1,k2 ? i)(WG1,G2)h, k)

Hence, on one hand:
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(ςm,sΓ(R((i ? ωh,k)(WG1,G2)))(h1 m⊗s
ν

k1), h2 m⊗s
ν

k2)

= (Γ((i ? ωJk,Jh)(WG1,G2)))(k1 s⊗m
ν

h1), k2 s⊗m
ν

h2)

= ((ωk1,k2 ? i)(WG1,G2)(ωh1,h2 ? i)(WG1,G2)Jk, Jh)

On the other hand, using proposition 4.6 ii), one has:

((Rm?sR)Γ((i ? ωh,k)(WG1,G2))(h1 m⊗s
ν

k1), h2 m⊗s
ν

k2)

= (Ĵh2 s⊗m
ν

Ĵk2,Γ((i ? ωh,k)(WG1,G2)∗)(Ĵh1 s⊗m
ν

Ĵk1))

= (Γ((i ? ωh,k)(WG1,G2))(Ĵh2 s⊗m
ν

Ĵk2), Ĵh1 s⊗m
ν

Ĵk1)

= ((ωĴh2,Ĵh1
? i)(WG1,G2)(ωĴk2,Ĵk1

? i)(WG1,G2)h, k)
= (J(ωh2,h1 ? i)(WG1,G2

∗)(ωk2,k1 ? i)(WG1,G2
∗)Jh, k)

= (J(ωh1,h2 ? i)(WG1,G2)∗(ωk1,k2 ? i)(WG1,G2)∗Jh, k)
= (Jk, (ωh1,h2 ? i)(WG1,G2)∗(ωk1,k2 ? i)(WG1,G2)∗Jh)
= ((ωk1,k2 ? i)(WG1,G2)(ωh1,h2 ? i)(WG1,G2)Jk, Jh)

which gives that:
(Rm?sR)Γ = ςm,sΓ ◦R

�

4.3. The Haar operator valued weights
In this paragraph, we define two invariant operator valued weights on
L∞(G2, µ2) oa G(G1).

Definition 4.8. Let T2 be the left Haar operator valued weight of G(G2)
and let TL = T̃2 be its dual operator valued weights on L∞(G2, µ2)oaG(G1)
in the sense of 2.9 and let TR be equal to RTLR.

Lemma 4.9. The operator valued weight TL (resp.TR) takes its values in
the range (resp.source) basis of L∞(G2, µ2) oa G(G1).

Proof: Due to Lemma 3.12, TL = a ◦T2 ◦ a−1 ◦Tã = m ◦ r−1
2 ◦T2 ◦ a−1 ◦Tã,

so TL takes its values in m(L∞(G0, ν)), which is the range basis of
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L∞(G2, µ2)oaG(G1). Due to 4.7, one has s = R ◦m, so TR = RTLR takes
its values in s(L∞(G0, ν)) which gives the second part of the lemma. �

Hence TL is an operator valued weight from L∞(G2, µ2)oa G(G1) to its
range basis, and φL = ν ◦m−1 ◦ TL is a dual weight, in the sense of [6]
13.1.

Proposition 4.10. For any f ∈ K(G2), h ∈ K(G1) and µ-almost any
y ∈ G, one has:

i)TL(a(f)(1s2⊗r1ρ(h)))(y) =
∫
G2
f(x)h(s(x))dλm(y)

2 (x)

ii) With the notations of remark 3.13, for any F ∈ K(G2s2×r1G1) and
µ-almost any y ∈ G, one has:

TL(R(F ))(y) =
∫
G2
F (x, s(x))dλm(y)

2 (x)

iii) Let ΦL = ν ◦m−1 ◦ TL be the lifted n.sf.f weight of TL , then one has:

(i m?s
L∞(G0,ν)

ΦL))Γ(a(f)(1s2⊗r1ρ(h))) = TL(a(f)(1s2⊗r1ρ(h))).

Proof: For any h ∈ K(G1) and µ-almost any y ∈ G, one has:

TL(a(f)(1s2⊗r1
ρ(h)))(y) =

= (m ◦ r−1
2 ◦ T2 ◦ a−1 ◦ Tã)(a(f)(1s2⊗r1

ρ(h))(y)

= (r−1
2 ◦ T2(fa−1(1s2⊗r1

T̂ cG1
(ρ(h))(m(y)) by [6], 9.6

= (r−1
2 ◦ T2(fa−1(1s2⊗r1

s1(h|G0))(m(y))

= (r−1
2 ◦ T2(fs2(h|G0))(m(y)) by 3.12

=
∫
G2
fh|G0(s(x))dλm(y)

2 (x) =
∫
G2
f(x)h(s(x))dλm(y)

2 (x)

which gives i). The assertion ii) is an easy consequence of i)
iii) For any φ ∈ K(G), one has:
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ωφ((i m?s
L∞(G0,ν)

ΦL)Γ(a(f)(1s2⊗r1ρ(h)))) =

= ΦL((ωφ m?s
L∞(G0,ν)

i)Γ(a(f)(1s2⊗r1ρ(h)))

= ΦL(R(Ψf,h))) by 4.2

=
∫
G0
∫
G2

Ψf,h(x, s(x))dλu2(x)dν(u) by ii)

=
∫
G0
∫
G2

∫
G h(s(x))f(p2(g−1)x)δ(g−1)φφ(g−1)dλr(x))(g)dλu2(x)×

× dν(u)

=
∫
G0
∫
G2

∫
G h(s(x))f(p2(g−1)x)δ(g−1)|φ|2(g−1)dλu(g)dλu2(x)dν(u)

as r(x) = u

=
∫
G0
∫
G2
h(s(x))f(p2(g−1)x)dλu2(x)

∫
G δ(g−1)|φ|2(g−1)dλu(g)dν(u)

=
∫
G0
∫
G

( ∫
G2
h(s(x))f(p2(g−1)x)dλu2(x)

)
δ(g−1)|φ|2(g−1)dλu(g)×

× dν(u)

=
∫
G

( ∫
G2
h(s(p2(g−1)−1x))f(x)dλm(g−1)

2 (x)
)
δ(g−1)|φ|2(g−1)dµ(g)

by making the change of variable : x 7→ p2(g−1)x

=
∫
G

( ∫
G2
h(s(x))f(x)dλm(g−1)

2 (x)
)
δ(g−1)φ(g−1)φ(g−1)dµ(g)

=
∫
G

( ∫
G2
h(s(x))f(x)dλm(g)

2 (x)
)
φ(g)φ(g)dµ(g)

by making the change of variable : g 7→ g−1

= ωφ(TL(a(f)(1s2⊗r1ρ(h)))) by 4.2 and i)

which ends the proof. �
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Now let’s prove the left invariance of TL, using technics similar to [22]
4.12.

Proposition 4.11. For any positive Borel function Φ on G2s2×r1G1, one
has:∫

G2

∫
G1

Φ(p2(xh), h−1)dλs(x)
1 (h)dµ2(x) =

=
∫
G2

∫
G1

Φ(x, h)kL(x, h)dλs(x)
1 (h)dµ2(x)

where kL(x, h) = δ

δ1
(p1(xh))δ1(h)−1δ2(p2(xh))δ2(x)−1.

Proof:
For any H ∈ K(Gr×r1G1), due to Fubini’s theorem, Proposition 3.5 and

the left invariance for λ1 one has:

∫
G2

∫
G1

∫
G1
H(g2

−1g1, k)δ(g1)δ1(g1)−1δ2(g2)−1dλ
r(g2)
1 (g1)dλs(g2)

1 (k)dµ2(g2)

=
∫
G2

∫
G1

∫
G1
H(g2g1, k)δ(g1)δ1(g1)−1dλ

s(g2)
1 (g1)dλr(g2)

1 (k)dµ2(g2)

=
∫
G0

∫
G2

∫
G1

∫
G1
H(g2g1, k)δ(g1)δ1(g1)−1dλ

s(g2)
1 (g1)dλr(g2)

1 (k)dλu2(g2)×

× dν(u)

=
∫
G0

∫
G2

∫
G1

∫
G1
H(g2g1, k)δ(g1)δ1(g1)−1dλ

s(g2)
1 (g1)dλu1(k)dλu2(g2)dν(u)

=
∫
G0

∫
G1

∫
G2

∫
G1
H(g2g1, k)δ(g1)δ1(g1)−1dλ

s(g2)
1 (g1)dλu2(g2)dλu1(k))dν(u)

=
∫
G1

∫
G2

∫
G1
H(g2g1, k)δ(g1)δ1(g1)−1dλ

s(g2)
1 (g1)dλr(k)

2 (g2)dµ1(k)

=
∫
G1

∫
G
H(g, k)dλr(k)(g)dµ1(k) =

∫
G1

∫
G
H(kg, k)dλs(k)(g)dµ1(k)

=
∫
G1

∫
G
δ1(k)−1H(k−1g, k−1)dλr(k)(g)dµ1(k)

To simplify notations let’s define: h(g1, g2, k) = δ2(g2)−1δ1(k)−1 δ

δ1
(g1),

then due to proposition 3.5, and Fubini’s theorem, this gives:
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∫
G2

∫
G1

∫
G1
H(g2

−1g1, k) δ
δ1

(g1)δ2(g2)−1dλ
r(g2)
1 (g1)dλs(g2)

1 (k)dµ2(g2)

=
∫
G1

∫
G2

∫
G1
δ1(k)−1H(k−1g2g1, k

−1) δ
δ1

(g1)dλs(g2)
1 (g1)dλr(k)

2 (g2)dµ1(k)

=
∫
G1

∫
G2

∫
G1
δ1(k)−1H(k−1g2g1, k

−1) δ
δ1

(g1)dλs(g2)
1 (g1)dλr(k)

2 (g2)dλu1(k)×

× dν(u)

=
∫
G1

∫
G2

∫
G1
δ1(k)−1H(k−1g2g1, k

−1) δ
δ1

(g1)dλs(g2)
1 (g1)dλu2(g2)dλu1(k)×

× dν(u)

=
∫
G2

∫
G1

∫
G1
δ1(k)−1H(k−1g2g1, k

−1) δ
δ1

(g1)dλs(g2)
1 (g1)dλu1(k)dλu2(g2)×

× dν(u)

=
∫
G2

∫
G1×G1

δ1(k)−1H(k−1g2g1, k
−1) δ

δ1
(g1)dλs(g2)

1 (g1)dλr(g2)
1 (k)dµ2(g2)

=
∫
G2

∫
G1×G1

h(g1, g2, k)H(k−1g2
−1g1, k

−1)dλr(g2)
1 (g1)dλs(g2)

1 (k)dµ2(g2)

In the integral relative to g1, let’s use the left invariance, this gives:∫
G1
h(g1, g2, k)H(k−1g2

−1g1, k
−1)dλr(g2)

1 (g1) =

=
∫
G1
h(g1, g2, k)H(p′2(k−1g2

−1)p′1(k−1g2
−1)g1, k

−1)dλr(g2)
1 (g1)

=
∫
G1
h(p′1(k−1g2

−1)−1g1, g2, k)H(p′2(k−1g2
−1)g1, k

−1)dλr(p
′
1(k−1g2−1))

1 (g1)

but p′2(k−1g2
−1) = p2(g2k)−1 and p′1(k−1g2

−1) = p1(g2k)−1, hence:

∫
G1
h(g1, g2, k)H(k−1g2

−1g1, k
−1)dλr(g2)

1 (g1) =

=
∫
G1
h(p1(g2k)g1, g2, k)H(p2(g2k)−1g1, k

−1)dλr(p2(g2k))
1 (g1)

117



J.M. Vallin

Finally:

∫
G2

∫
G1

∫
G1
H(g2

−1g1, k) δ
δ1

(g1)δ2(g2)−1dλ
r(g2)
1 (g1)dλs(g2)

1 (k)dµ2(g2) =∫
G2

∫
G1

∫
G1

Θ(g1, g2, k)dλr(p2(g2k))
1 (g1)dλs(g2)

1 (k)dµ2(g2)

where

Θ(g1, g2, k) = h(p1(g2k)g1, g2, k)H(p2(g2k)−1g1, k
−1)

This equality can be extended to all positive Borel functions H. Let
us take H = (( δ1

δ h1) × (δ2h2))ρ−1 × h3, where ρ is the homeomorphism
(g1, g2) → g−1

2 g1 from G1r1×r2G2 onto its image. Let us choose h1 such
that ϕ1 : u 7→

∫
G1
h1(g1)dλu(g1) never vanishes, so one gets:

∫
G2

∫
G1

(ϕ1 ◦ r)h2(g2)h3(k)dλs(g2)
1 (k)dµ2(g2) =

=
∫
G2

∫
G1

(ϕ1 ◦ r)h2(p2(g2k)) δ
δ1

(p1(g2k))δ2(g2)−1δ2(p2(g2k))δ1(k−1)×

× λs(g2)
1 (k)dµ2(g2)

So for any positive Borel function Φ on G2s2×r1G1, one has:

∫
G2

∫
G1

Φ(g2, k)dλs(g2)
1 (k)dµ2(g2) =

=
∫
G2

∫
G1

Φ(p2(g2k), k−1)kL(g2, k)λs(g2)
1 (k)dµ2(g2)

Let γ : G2s2×r1G1 → G2s2×r1G1 be defined by γ(g2, k) = γ(p2(g2k), k−1,
as g2k = p1(g2k)p2(g2k) hence p2(g2k)k−1 = p1(g2k)−1g2 and so one has:
p2(p2(g2k)k−1 = g2 and γ is a symmetry. Applying the last formula to
Φ ◦ γ leads to the proposition. �

Lemma 4.12. The map: ΛΦL
R(F )→ (δ1kL)

1
2F , for F ∈ K(G2s2×r1G1),

realizes an isomorphism between HΦL
and L2(G2s2×r1G1, µ

2
s2,r1).
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Proof: For F ∈ K(G2s2×r1G1), using 4.11 one has:

(ΛΦL
R(F ),ΛΦL

R(F )) = ΦL(R(F# ? F )) =
∫
G2
F# ? F (x, s(x))dµ2(x)

=
∫
G2

∫
G1
F#(x, h)F (p2(xh), h−1)dλs(x)

1 (h))dµ2(u)

=
∫
G2

∫
G1
δ

1
2
1 Fδ

1
2
1 F (p2(xh), h−1)dλs(x)

1 (h)dµ2(x))

=
∫
G2

∫
G1
δ

1
2
1 Fδ

1
2
1 F (x, h)kL(x, h)dλs(x)

1 (h)dµ2(x)

= µ2
s2,r1((δ1kL)

1
2F (δ1kL)

1
2F )

�
So one can compute the GNS construction of ΦL the Hilbert space of

which is L2(G2s2×r1G1, µ
2
s2,r1),

Lemma 4.13. For µ2
s2,r1-almost any (x, h) in G2s2×r1G1, one has:

kL(p2(xh), h−1) = k−1
L (x, h).

Proof: Using the notations of proposition 4.11, for µ2
s2,r1-almost any (x, h)

in G2s2×r1G1, one has:

kL(p2(xh), h−1) = kL(γ(x, h)) =
dµ2

s2,r1 ◦ γ
dµ2

s2,r1

(γ(x, h)).

But γ is a symmetry, hence:

kL(p2(xh), h−1) =
dµ2

s2,r1

dµ2
s2,r1 ◦ γ

(x, h) = k−1
L (x, h).

�

Lemma 4.14. For any F ∈ K(G2s2×r1G1), one has: ∆ΦL
F = k−1

L F .
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Proof: For any F,G,H ∈ K(G2s2×r1G1), one has

(∆ΦL
ΛΦL

R(F ),ΛΦL
R(G#)) = (SΦL

ΛΦL
R(G#), SΦL

ΛΦL
R(F ))

= (ΛΦL
R(G),ΛΦL

R(F#)) = ΦL(R(F )R(G))

= ΦL(R(F ? G)) =
∫
G0

∫
G2
F ? G(x, s(x))dλu2(x)dν(u)

=
∫
G0

∫
G2

∫
G1
F (x, h)G(p2(xh), h−1)dλs(x)

1 (h)dλu2(x)dν(u)

=
∫
G2

∫
G1
F (x, h)G(p2(xh), h−1)dλs(x)

1 (h)dµ2(x)

Due proposition 4.11 and lemma 4.13, one has

(∆ΦL
ΛΦL

R(F ),ΛΦL
R(G#)) =

=
∫
G2

∫
G1
F (p2(xh), h−1)kL(x, h)G(x, h)dλs(x)

1 (h)dµ2(x)

=
∫
G2

∫
G1
F (p2(xh), h−1)k−1

L (p2(xh), h−1)G(x, h)dλs(x)
1 (h)dµ2(x)

=
∫
G0

∫
G2

∫
G1
G(x, h)(k−1

L F )(p2(xh), h−1)dλs(x)
1 (h)dλu2(x)dν(u)

=
∫
G0

∫
G2
G ? (k−1

L F )(x, s(x))dλu2(x)dν(u) = ΦL(R(G ? dLF ))

= ΦL(R(G)R(k−1
L F ))) = ΦL(R(G#)#R(k−1

L F )))
= (ΛΦL

R(k−1
L F ),ΛΦL

R(G#))

and the lemma follows. �

Remark 4.15. As TR = RTLR there also exists another density dR such
that ∆ΦR

F = dRF .

Proposition 4.16. For any F ∈ K(G2s2×r1G1), one has

σφL
t (R(F )) = R(τ itF )

where τ(x, h) = δ
δ1

(p1(xh))δ2(p2(xh)x−1)δ1(h)−1, µ2
s,r-almost everywhere.

Proof:
For any F,G ∈ K(G2s2×r1G1) and µ2

s,r-almost any (g2, g1) ∈ G2s2×r1G1,
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one has:

σφL
t (R(F ))G(g2, g1) = ∆it

ΦL
R(F )∆−itΦL

G(g2, g1) =
= kL

−it(g2, g1)R(F )∆−itΦL
G(g2, g1)

= kL
−it(g2, g1)

∫
G1
F (p2(g2g1), h)δ1(h)−

1
2kL

it(g2, g1h)G(g2, g1h)dλs(g1)(h)

=
∫
G1

(kL(g2, g1h)
kL(g2, g1) )itF (p2(g2g1), h)δ1(h)−

1
2G(g2, g1h)dλs(g1)(h)

But

kL(g2, g1h)
kL(g2, g1) =

δ

δ1
(p1(g2g1h))δ1(g1h)−1δ2(p2(g2g1h))δ2(g2)−1

δ

δ1
(p1(g1g2))δ1(g1)−1δ2(p2(g2g1))δ2(g−1

2 )

= δ

δ1
(p1(g1g2)−1(p1(g2g1h))δ2(p2(g2g1h)p2(g2g1)−1)δ1(h)−1

Moreover, almost everywhere

p1(g1g2)−1p1(g2g1h) = p1(g1g2)−1p1(p1(g2g1)p2(g2g1)h) = p1(p2(g2g1)h)

and

p2(g2g1h)p2(g2g1)−1 = p2(p1(g2g1)p2(g2g1)h)p2(g2g1)−1

= p2(p2(g2g1)h)p2(g2g1)−1

So
kL(g2, g1h)
kL(g2, g1) = τ(p2(g2g1), h)

where

τ(x, h) = δ

δ1
(p1(xh))δ2(p2(xh)x−1)δ1(h)−1

The lemma follows. �

Proposition 4.17. TL is a left invariant operator valued weight on von
Neumann algebra L∞(G2, µ2) oa G(G1) in the sense of definition 2.1 iii).
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Proof: For any F ∈ K(G2s2×r1G1) and µ-almost any y ∈ G, using the fact
that τ(x, s(x)) = 1 gives:

(i m?s
L∞(G0,ν)

ΦL))Γ(σΦL
t (R(F ))(y) = (i m?s

L∞(G0,ν)
ΦL))Γ(R(τ itF ))(y)

= TL(R(τ itF ))(y)

=
∫
G2

(τ itF )(x, s(x))dλm(y)
2 (x)

=
∫
G2
F (x, s(x))dλm(y)

2 (x)

= TL(R(F ))(y)
= (i m?s

L∞(G0,µ)
ΦL))Γ(R(F ))(y)

Hence (i m?s
L∞(G0,ν)

ΦL))ΓσTL
t = (i m?s

L∞(G0,ν)
ΦL))Γ, so using [19] Theorem

6.2 and proposition 4.10 iii), TL is left invariant. �

Theorem 4.18. (L∞(G0, ν), L∞(G2, µ2) oa G(G1),m, s,Γ, TL, TR, ν) is a
measured quantum groupoid.

Proof: Since TL is left invariant, then TR = RTLR is automatically right
invariant and if ΦR = ν ◦ s−1 ◦TR is the lifted weight, then using 4.14 and
4.15, σΦR and σΦL commute as these are multiplication by functions, the
theorem follows. �

Remark 4.19. Theorem 4.18 is a generalisation of the bicrossed product
construction ([3], [22]....)

5. Two families of examples

In this chapter we describe two families of examples coming from case
3.2.2 and case 3.3.

5.1. A matched pair of groups action on a space

Let us use the notations of example 3.2.2, so G = X × G where G is a
group matched pair acting on a locally compact space X.
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Let pG1 and pG2 be the almost everywhere defined functions associated
with the matched pair G1, G2 ([3] 3.2), then for ν×dg almost any (x, g) ∈
X ×G, one has:

p1(x, g) = (x, pG1 (g)) p2(x, g) = (x.pG1 (g), pG2 (g)) m(x, g) = xpG1 (g)

Let a1 be the action of the quantum group L∞(G1) on the von Neumann
algebra L∞(G2) coming from the usual bicrossed product construction,
and Γ1 usual coproduct for the crossed product L∞( G2)oa1 L

∞(G1). So,
due to Proposition 4.2 i), for any h ∈ K(G1), any ξ ∈ K(G × G) and
dg × dg-almost any (g, g′) ∈ G×G:

Γ1(1⊗ ρ(h))ξ(g, g′) =
∫
G1
h(g1)ξ(gp1(p2(g′)g1), g′g1)dg1

Thanks to 2.3, one easily sees that L2(X ×G2) s2⊗r1
L∞(X,ν)

L2(X ×G1) is

isomorphic to L2(X ×G2×G1, ν × dg2× dg1) (and then to L2(X ×G2)⊗
L2(G1)) by the application θ such that for any f ∈ K(X ×G2 ×X ×G1)
and ν × dg2 × dg1-almost any (x, g2, g1) in X ×G2 ×G1:

θ(f)(x, g2, g1) = f(x, g2, x.g2, g1)

This leads to a spatial isomorphism between von Neumann algebra
L∞(X × G2) s2?r1

L∞(X,ν)
L∞(X × G1) and L∞(X × G2 × G1, ν × dg2 × dg1)

with the same formula as for θ.
So the action

a : L∞(X ×G2)→ L∞(X ×G2) s2?r1
L∞(X,ν)

L∞(X ×G1)

can be identified with a one to one homomorphism

L∞(X ×G2)→ L∞(X ×G2)⊗ L∞(G1)

Remark 5.1. By similar arguments, in that case L2(G2
s,m, µ

2
s,m) can be

identified with the space L2(X ×G ×G) using the map Σ such that, for
anyf ∈ K(G2

s,m), one has: Σ(f)(x, g, g′) = f(x, g, x.gpG1 (g′)−1, g′) (obser-
vation: we have s(x, g) = m(x.gpG1 (g′)−1, g′)).
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Proposition 5.2. i) The action a given by 3.12, can be identified with a
usual action of G1 on L∞(X ×G2); if one denotes ã this action, for any
(x, g1, g2) ∈ X×G1×G2 such that g2g1 ∈ G1G2 and any f ∈ L∞(X×G2):

ã(f)(x, g2, g1) = f(x.pG1 (g2g1), pG2 (g2g1))
ii) The crossed product L∞(G2) oa G(G1) is isomorphic to the usual

crossed product L∞(X ×G2) oã L
∞(G1)

iii) Using the identification of remark 5.1, for almost any (x, g, g′) ∈
X ×G×G and any f ∈ L∞(X ×G2), one has

Γ(a(f))(x, g, g′) = f(x.pG1 (g), pG2 (g)pG2 (g′)) ;
moreover, for any h ∈ L∞(X), k ∈ L∞(G1), one has:

Γ(1s2 ⊗r1 ρ(h⊗ k)) = M(h)(1⊗ Γ1(1⊗ ρ1(k)))
where M(h) is (the multiplication by) map M(h)(x, g, g′) = h(x.gpG2 (g′))

iv) For any f ∈ K(X × G2), any h ∈ K(X × G1) and almost any
(x, g) ∈ X ×G, one has:

TL(a(f)(1s2 ⊗r1 ρ(h))(x, g) =
∫
G2
f(xpG1 (g), g2)h(xpG1 (g)g2, e)dg2

TR(a(f)(1s2 ⊗r1 ρ(h))(x, g) =
∫
G2
f(xgg2, g

−1
2 )h(xg, e)dg2

Proof: i) One easily sees that ã is an action. For any h ∈ L∞(X×G2), any
function f ∈ K(X×G2×X×G1) and ν×dg2×dg1 almost any (x, g2, g1)
in X ×G2 ×G1, one has:

θ(a(h)f)(x, g2, g1) = a(h)f)(x, g2, x.g2, g1)
= h(p2((x, g2)(x.g2, g1))f(x, g2, x.g2, g1)
= h(p2(x, g2g1)θ(f)(x, g2, g1)
= h(x.pG1 (g2g1), pG2 (g2g1))θ(f)(x, g2, g1)
= ã(h)θ(f)(x, g2, g1)

One deduces that Ad(θ) ◦ a = ã, which gives i).
ii) The crossed product L∞(G2)oa G(G1) is generated, in the von Neu-

mann algebra L(L2(X×G2) s2⊗r1
L∞(X,ν)

L2(X×G1)), by a(L∞(X×G2)) and

1 s2⊗r1
L∞(X,ν)

G(G1)′.
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G(G1)′ is generated in L(L2(G1) by the image of the right regular repre-
sentation of G1, as G1 = X×G1, it is the usual crossed product of L∞(X)
by the right action of G1. So, if one denotes by a1 this action and by ρ1 the
right regular representation of the group G1, the von Neumann algebra
G(G1)′ is generated in L(L2(X ×G1)) by the products a1(φ)(1⊗ ρ1(φ1)),
for φ ∈ L∞(X) and φ1 ∈ L∞(G1). But for ν × dg2 × dg1 almost any
(x, g2, g1) in X ×G2 ×G1 and any f ∈ K(X ×G2 ×X ×G1) one has:

θ
(
(1s2 ⊗r1 [a1(φ)(1s2 ⊗r1 ρ1(φ1))])f

)
(x, g2, g1) =

= (1s2 ⊗r1 [a1(φ)(1s2 ⊗r1 ρ1(φ1))])f(x, g2, x.g2, g1)

=
∫
G1

(φ⊗ φ1)((x.g2).g1, g
′
1)f(x, g2, xg2, g1g

′
1)dg′1

= φ(x.(g2g1))
∫
G1
φ1(g′1)θ(f)(x, g2, g1g

′
1)dg′1

Let k ∈ L∞(X ×G2) be defined for any (y, g2) ∈ X ×G2 by:

k(y, g2) = φ(y.g2)

then one has:

θ
(
(1s2 ⊗r1 [a1(φ)(1s2 ⊗r1 ρ1(φ1))])f

)
(x, g2, g1) =

= k(xp1(g2g1), p2(g2g1))
∫
G1
φ1(g′1)θ(f)(x, g2, g1g

′
1)dg′1

= ã(k)(x, g2, g1)
∫
G1
φ1(g′1)θ(f)(x, g2, g1g

′
1)dg′1

Hence Ad(θ)◦(1s2⊗r1 [a1(φ)(1s2⊗r1ρ1(φ1))]) = ã(k)(1⊗ρ1(φ1)), as Ad(θ)◦
a = ã, this proves that Ad(θ)(L∞(G2) oa G(G1)) is included in L∞(X ×
G2) oã L

∞(G1) and contains ã(L∞(X × G2)) and also 1 ⊗ ρ1(L∞(G1))
(using φ = 1), so Ad(θ) realizes a spatial isomorphism between L∞(G2)oa

G(G1) and L∞(X ×G2) oã L
∞(G1).
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iii) Due to Proposition 4.2, for almost any (x, g, g′) ∈ X × G × G and
any f ∈ L∞(X ×G2), one has:

Γ(a(f))((x, g),(xgpG1 (g′)−1, g′)) = f(p2(x, g)p2(xgpG1 (g′)−1, g′)))
= f((x.pG1 (g), pG2 (g))((x.gpG1 (g′)−1).pG1 (g′), pG2 (g′)))
= f((x.pG1 (g), pG2 (g))(x.g, pG2 (g′)))
= f(x.pG1 (g), pG2 (g)pG2 (g′))

Moreover, for any h ∈ L∞(X), k ∈ L∞(G1), for almost any (x, g, g′) ∈ X×
G×G, as s(xgGp1(g′)−1, g′) = x.gpG2 (g′) any ξ ∈ L∞(X), ξ′ ∈ L∞(G×G),
as one has:

ΣΓ(1s2 ⊗r1 ρ(h⊗ k))Σ∗ξ(x, g, g′) =
Γ(1s2 ⊗r1 ρ(h⊗ k))Σ∗ξ((x, g), (xgpG1 (g′)−1, g′)) =

=
∫
G1
h(z)k(g1)×

× Σ∗ξ((x, g)p1(p2(xgpG1 (g′)−1, g′)(z, g1)), (xgpG1 (g′)−1, g′)(z, g1))dg1

in which z = x.gpG2 (g′). Hence one has:
ΣΓ(1s2 ⊗r1 ρ(h⊗ k))Σ∗ξ(x, g, g′) =

=
∫
G1
h(z)k(g1)×

× Σ∗ξ((x, g)p1((xg, pG2 (g′))(z, g1)), (xgpG1 (g′)−1, g′)(z, g1))dg1

=
∫
G1
h(z)k(g1)Σ∗ξ((x, g)p1(xg, pG2 (g′)g1), (xgpG1 (g′)−1, g′g1))dg1

=
∫
G1
h(z)k(g1)Σ∗ξ((x, g)(xg, pG1 (pG2 (g′)g1)), (xgpG1 (g′)−1, g′g1))dg1

=
∫
G1
h(z)k(g1)Σ∗ξ((x, pG1 (pG2 (g′)g1)), (xgpG1 (g′)−1, g′g1))dg1

=
∫
G1
h(z)k(g1)ξ(x, pG1 (pG2 (g′)g1), g′g1))dg1

= h(x.gpG2 (g′))
∫
G1
k(g1)ξ(x, pG1 (pG2 (g′)g1), g′g1))dg1

= h(x.gpG2 (g′))(1⊗ Γ1(1⊗ ρ1(k)))ξ(x, g, g′)
= M(h)(1⊗ Γ1(1⊗ ρ1(k)))ξ(x, g, g′)
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where M(h) is multiplication operation by the function M(h)(x, g, g′) =
h(x.gpG2 (g′)).

iv) Using proposition 4.10 for almost any (x, g) ∈ X × G, any f ∈
K(X ×G1) and any h ∈ K(X ×G2), one has:

TL(a(f)(1s2 ⊗r1 ρ(h))(x, g) =
∫
X×G2

f(y, g2)h(s(x, g2))dλm(x,g)
2 (y, g2)

=
∫
G2
f(xpG1 (g), g2)h(s(xpG1 (g), g2))dg2

=
∫
G2
f(xpG1 (g), g2)h(xpG1 (g)g2, e)dg2

Similar computations give the second equality. �

Remark 5.3. As any usual crossed product, L∞(X × G2) oã L
∞(G1) is

isomorphic to Ĝ((X × G2) × G1), but the measured quantum groupoid
structure we obtain for this crossed product in 5.2 is not isomorphic to
the natural one of G((X ×G2)×G1), recalled in 2.3, because for one the
basis is L∞(X) and for the other the basis is L∞(X ×G2).

5.2. The case of a principal and transitive groupoid
Let’s use notations similar to 3.3, so we suppose that G is a transitive and
principal groupoid, hence of the form X1 ×X2 ×X1 ×X2 where the Xi’s
are Hausdorff locally compact, G1 = t

x2∈X2
X1 × {x2} ×X1 × {x2}, and

G2 = t
x1∈X1

{x1}×X2×{x1}×X2. For any (x1, x2, y1, y2) in G, one easily
sees that:
p1(x1, x2, y1, y2) = (x1, x2, y1, x2) , p2(x1, x2, y1, y2) = (y1, x2, y1, y2)

m(x1, x2, y1, y2) = (y1, x2)

One can identify G1 (resp. G2) with X1 × X1 × X2 (resp. X2 × X2 ×
X1), using the map (x1, x2, y1, x2) 7→ (x1, y1, x2) (resp. (x1, x2, x1, y2) 7→
(x2, y2, x1)); due to lemma 3.7, the Haar system of G1 is (δx1 ⊗ ν1 ⊗
δx2)(x1,x2).

So L2(G1, µ1) (resp. L2(G2, µ2)) can be identified with L2(X1 × X1 ×
X2, ν1 × ν1 × ν2) (resp. L2(X2 ×X2 ×X1, ν2 × ν2 × ν1)).

This gives a spatial isomorphism between L∞(G1, µ1) (resp. L∞(G2, µ2))
and L∞(X1×X1×X2, ν1×ν1×ν2) (resp. L∞(X2×X2×X1, ν2×ν2×ν1)).
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Lemma 3.10 gives an obvious isomorphism between the two von Neu-
mann algebras L∞(G2, µ2) s2⊗r2

L∞(X1×X2,ν1×ν2)
L∞(G1, µ1) and L∞(G, ν1×ν2×

ν1×ν2), coming from the map:
(
(x2, y2, x1), (x1, y1, y2)

)
7→ (x1, x2, y1, y2).

Using this identification one has:

a : L∞(X2
2 ×X1, ν2 × ν2 × ν1)→

L∞(X2
2 ×X1, ν2 × ν2 × ν1) s2⊗r1

L∞(X1×X2,ν1×ν2)
L∞(X2

1 ⊗X2, , ν1 × ν1 × ν2))

and for any f ∈ K(G2), any (x1, x2, y1, y2) ∈ G one has:

a(f)
(
(x2, y2, x1), (x1, y1, y2)

)
= f(p2(x1, x2, y1, y2)) = f(x2, y2, y1)

This formula can be interpreted just using the natural shift action of
the groupoid X1×X1 on the fibered set (X1, idX1) given for any elements
x1, y1 in X1 by x1 .

s1
(x1, y1) = y1. To prove this let’s give some definitions:

Definition 5.4. i) Let .
S1

be the action of X1 × X1 on the fibered set
(X2 × X2 × X1, pr3), where pr3 is the projection on X1, defined for any
(x2, y2, x1) ∈ X2 ×X2 ×X1 and any y1 ∈ X1, by

(x2, y2, x1) .
S1

(x1, y1) = (x2, y2, y1)

Let (ã, pr3) be the corresponding action of G(X1×X1) on L∞(X2×X2×
X1, ν2 × ν2 × ν1)
ii) Let Σ : L2(X2×X2×X1, ν2×ν2×ν1) s2⊗r1

L∞(X1×X2,ν1×ν2)
L2(X1×X1×X2, ν1×ν1×ν2)

→ L2(X2 ×X2 ×X1, ν2 × ν2 × ν1) pr3⊗r
L∞(X1,ν1)

L2(X1 ×X1, ν1 × ν1) be the

isometric isomorphism given for any φ ∈ K((X2×X2×X1)×(X1×X1×X2)
and almost any (x1, x2, y1, y2) ∈ G by:

Σ(φ)
(
(x2, y2, x1), (x1, y1)

)
= φ

(
(x2, y2, x1)), (x1, y1, y2)

)
iii) Let Σ′ : L2(X2×X2×X1, ν2×ν2×ν1) pr3⊗r

L∞(X1,ν1)
L2(X1×X1, ν1×ν1)→

L2(X2×X2×X1×X1, ν2×ν2×ν1×ν1) be the isometric isomorphism given
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for any φ ∈ K((X2×X2×X1)×(X1×X1)) and almost any (x1, x2, y1, y2) ∈
G by:

Σ′(φ)(x2, y2, x1, y1) = φ
(
(x2, y2, x1), (x1, y1)

)
Theorem 5.5. Using the previous notations one has:

i) ã = AdΣ ◦ a,

ii) θ = AdΣ′Σ realizes a spatial isomorphism between L∞(G2)oaG(G1)
and L∞(X2

2, ν⊗2
2 ) ⊗ C1L(L2(X1,ν1)) ⊗ L(L2(X1, ν1)): L∞(G2) oa G(G1) is

isomorphic to L∞(X2×X2, ν2×ν2)⊗L(L2(X1, ν1)) and to G(X2×X2)⊗
Ĝ′(X1 ×X1) ,

iii) If τ : L2(X3
2×X3

1 , ν
3
2×ν3

1)→ L2(X2
2×X1×X2×X2

1 , ν
2
2×ν1⊗ν2×ν2

1)
is the map which flips the third and fourth factor, one has:

(θs ?m θ)Γθ∗ = Adτ(ΓX2
2
⊗ Γ̂′X2

1
)

iv) θTLθ
∗ = (TX2

2
⊗ T̂X2

1

′) θTRθ
∗ = (T−1

X2
2
⊗ T̂X2

1

′).

Proof:
i) The first assertion is obvious.
ii) For any f1, h1, k1 ∈ K(X1), any f2, g2 ∈ K(X2), any ξ ∈ K(X2 ×

X2 ×X1 ×X1), and almost any (x2, y2, x1, y1) ∈ X2 ×X2 ×X1 ×X1, due
to i) one has:

θ[a(f2 ⊗ g2 ⊗ f1)]ξ(x2, y2, x1, y1) =
= (f2 ⊗ g2 ⊗ 1⊗ f1)(x2, y2, x1, y1)ξ(x2, y2, x1, y1)

so

θ[a(f2 ⊗ g2 ⊗ f1)] = f2 ⊗ g2 ⊗ 1⊗ f1

Let’s denote Tψ1 , for any ψ1 ∈ K(X1×X1), the integral (compact) operator
defined for any ξ1 ∈ K(X1) and almost any x1 in X1 by

(Tψ1ξ1)(x1) =
∫
X1
ψ1(x1, z1)ξ1(z1)dν1(z1)
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A straightforward calculation gives that

θ[a(f2 ⊗ g2 ⊗ f1)(1 s2⊗r1
ν

ρ(h1 ⊗ k1 ⊗ h2)] = f2 ⊗ g2h2 ⊗ 1⊗ Tf1h1⊗k1

(5.1)

The assertion ii) follows.
iii) One easily sees that the coproduct ΓG2 : L∞(G2) → L∞(G2)s ?r

L∞(G2) is given for any f2, g2 ∈ X2 and any f1 ∈ K(X1) by:

ΓG2(f2 ⊗ g2 ⊗ f1) = (f2 ⊗ 1⊗ f1)s ⊗r (1⊗ g2 ⊗ 1)

Moreover, using 3.12, one has

(θ ◦m)(f1 ⊗ f2) = (θ ◦ a ◦ r2)(f1 ⊗ f2))) = Êθ(a(f2 ⊗ 1⊗ f1)
= f2 ⊗ 1⊗ 1⊗ f1

(θ ◦ s)(f1 ⊗ f2) = (θ ◦ a ◦ s2)(f1 ⊗ f2) = θ(a(1⊗ f2 ⊗ f1)
= 1⊗ f2 ⊗ 1⊗ f1

This gives an isometric isomorphism between the Hilbert space L2(X2
2×

X2
1 , ν
⊗2
2 ⊗ ν⊗2

1 ) θ◦s⊗θ◦m
L∞(X1×X2,ν1⊗ν2)

L2(X2
2 ×X2

1 , ν
⊗2
2 ⊗ ν⊗2

1 ) onto the Hilbert

space L2(X2
2 ×X1 ×X2 ×X2

1 , ν
⊗2
2 ⊗ ν1 ⊗ ν2 ⊗ ν⊗2

1 ), if Ψ is this map, for
any ξ1, ξ2 ∈ K(X2

2 ×X2
1 ) one has:

Ψ(ξ1
θ◦s⊗θ◦mξ2)(x2, y2, x1, z2, y1, z1) = ξ1(x2, y2, x1, y1)ξ2(y2, z2, z1, y1)

Hence, using 4.1:

(θs ?m θ)Γθ∗(f2 ⊗ g2 ⊗ 1⊗ 1) = (f2 ⊗ 1⊗ 1⊗ 1)θ◦s ⊗θ◦m (1⊗ g2 ⊗ 1⊗ 1)

due to (2) and 2.3.1, this gives:

(θs ?m θ)Γθ∗(f2 ⊗ g2 ⊗ 1⊗ 1) = Adτ(ΓX2
2
⊗ Γ̂′X2

1
)(f2 ⊗ g2 ⊗ 1⊗ 1)

Quite simple computations also imply that for any h1, k1 ∈ K(X1),

(θs ?m θ)Γ(1 s2⊗r1
ν

ρ(h1⊗k1 ⊗ 1)) =

= Adτ(ΓX2
2
⊗ Γ̂′X2

1
)θ∗(1 s2⊗r1

ν
ρ(h1 ⊗ k1 ⊗ 1))

which gives iii).
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iv) Due to (1), 4.10 and 2.3.1, for any f1, g1 ∈ K(X1) any f2, g2 ∈
K(X2), one has

θTLθ
∗(f2 ⊗ g2 ⊗ 1⊗ Th1⊗k1) = (TX2

2
⊗ T̂ ′X2

1
)(f2 ⊗ g2 ⊗ 1⊗ Th1⊗k1),

which gives θTLθ∗ = TX2
2
⊗ T̂ ′

X2
1
.

And for similar reasons: θTRθ∗ = T−1
X2

2
⊗ T̂ ′

X2
1
. �
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