[Crochets de Rankin-Cohen et représentations des groupes de Lie conformes]
Ce texte est une version étendue d’un cours donné par l’auteur lors de l’école d’été Formes quasimodulaires et applications qui s’est tenue à Besse en juin 2010.
L’objectif principal de ce travail est de présenter les crochets de Rankin-Cohen dans le cadre de la théorie des représentations unitaires des groupes de Lie conformes et d’expliquer des résultats récents sur leurs analogues pour des groupes de Lie de rang supérieur. Diverses identités que vérifient de tels opérateurs bi-différentiels covariants seront expliquées en terme de l’associativité d’un produit non commutatif induit sur l’ensemble des formes modulaires holomorphes par la quantification covariante de l’espace symétrique para-hermitien associé.
This is an extended version of a lecture given by the author at the summer school “Quasimodular forms and applications” held in Besse in June 2010.
The main purpose of this work is to present Rankin-Cohen brackets through the theory of unitary representations of conformal Lie groups and explain recent results on their analogues for Lie groups of higher rank. Various identities verified by such covariant bi-differential operators will be explained by the associativity of a non-commutative product induced on the set of holomorphic modular forms by a covariant quantization of the associate para-Hermitian symmetric space.
Keywords: Rankin-Cohen brackets, Unitary representations, Conformal groups, Covariant quantization
Mot clés : Crochets de Rankin-Cohen, représentations unitaires, groupes conformes, quantisation covariante
Michael Pevzner 1
@article{AMBP_2012__19_2_455_0, author = {Michael Pevzner}, title = {Rankin{\textendash}Cohen brackets and representations of conformal {Lie} groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {455--484}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {2}, year = {2012}, doi = {10.5802/ambp.319}, mrnumber = {3025141}, zbl = {1283.11072}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.319/} }
TY - JOUR AU - Michael Pevzner TI - Rankin–Cohen brackets and representations of conformal Lie groups JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 455 EP - 484 VL - 19 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.319/ DO - 10.5802/ambp.319 LA - en ID - AMBP_2012__19_2_455_0 ER -
%0 Journal Article %A Michael Pevzner %T Rankin–Cohen brackets and representations of conformal Lie groups %J Annales mathématiques Blaise Pascal %D 2012 %P 455-484 %V 19 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.319/ %R 10.5802/ambp.319 %G en %F AMBP_2012__19_2_455_0
Michael Pevzner. Rankin–Cohen brackets and representations of conformal Lie groups. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 455-484. doi : 10.5802/ambp.319. https://ambp.centre-mersenne.org/articles/10.5802/ambp.319/
[1] On Rankin-Cohen-Ibukiyama operators for automorphic forms of several variables, Comment. Math. Univ. St. Pauli, Volume 55 (2006) no. 2, pp. 149-171 | MR | Zbl
[2] Rankin-Cohen brackets and invariant theory, J. Algebraic Combin., Volume 13 (2001) no. 1, pp. 5-13 | DOI | MR | Zbl
[3] Sums involving the values at negative integers of -functions of quadratic characters, Math. Ann., Volume 217 (1975) no. 3, pp. 271-285 | DOI | MR | Zbl
[4] Automorphic pseudodifferential operators, Algebraic aspects of integrable systems (Progr. Nonlinear Differential Equations Appl.), Volume 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17-47 | MR | Zbl
[5] Modular Hecke algebras and their Hopf symmetry, Mosc. Math. J., Volume 4 (2004) no. 1, p. 67-109, 310 | MR | Zbl
[6] Rankin-Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., Volume 4 (2004) no. 1, p. 111-130, 311 | MR | Zbl
[7] Ring structures for holomorphic discrete series and Rankin-Cohen brackets, J. Lie Theory, Volume 17 (2007) no. 2, pp. 283-305 | MR | Zbl
[8] Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math., Volume 9 (1998) no. 4, pp. 443-463 | DOI | MR | Zbl
[9] The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators, Adv. Math., Volume 207 (2006) no. 2, pp. 484-531 | DOI | MR | Zbl
[10] Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1994 (Oxford Science Publications) | MR | Zbl
[11] Discrete series for semisimple symmetric spaces, Ann. of Math. (2), Volume 111 (1980) no. 2, pp. 253-311 | DOI | MR | Zbl
[12] Vorlesungen über Invariantentheorie. Herausgegeben von G. Kerschensteiner. Zweiter Band: Binäre Formen. 360 S., Leipzig. Teubner, 1887 | MR
[13] Zur Theorie der binären Formen., J. Reine Angew. Math (1887), pp. 413-424
[14] Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978 | MR | Zbl
[15] Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992 Applications of | DOI | MR | Zbl
[16] Paracomplex structures and affine symmetric spaces, Tokyo J. Math., Volume 8 (1985) no. 1, pp. 81-98 | DOI | MR | Zbl
[17] Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., Volume 152 (1998) no. 1, pp. 100-135 | DOI | MR | Zbl
[18] On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 627-642 | DOI | MR | Zbl
[19] The holomorphic discrete series for affine symmetric spaces. I, J. Funct. Anal., Volume 81 (1988) no. 1, pp. 126-159 | DOI | MR | Zbl
[20] Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[21] Transvectants, modular forms, and the Heisenberg algebra, Adv. in Appl. Math., Volume 25 (2000) no. 3, pp. 252-283 | DOI | MR | Zbl
[22] A description of discrete series for semisimple symmetric spaces, Group representations and systems of differential equations (Tokyo, 1982) (Adv. Stud. Pure Math.), Volume 4, North-Holland, Amsterdam, 1984, pp. 331-390 | MR | Zbl
[23] Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., Volume 210 (2004) no. 1, pp. 171-192 | DOI | MR | Zbl
[24] Analyse conforme sur les algèbres de Jordan, J. Aust. Math. Soc., Volume 73 (2002) no. 2, pp. 279-299 | DOI | MR | Zbl
[25] Rankin-Cohen brackets and associativity, Lett. Math. Phys., Volume 85 (2008) no. 2-3, pp. 195-202 | DOI | MR | Zbl
[26] Tensor products of holomorphic discrete series representations, Canad. J. Math., Volume 31 (1979) no. 4, pp. 836-844 | DOI | MR | Zbl
[27] Algebraic structures of symmetric domains, Kanô Memorial Lectures, 4, Iwanami Shoten, Tokyo, 1980 | MR | Zbl
[28] Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math., Volume 9 (1969/1970), pp. 61-80 | DOI | MR | Zbl
[29] Harmonic analysis on hyperboloids, J. Functional Analysis, Volume 12 (1973), pp. 341-383 | DOI | MR | Zbl
[30] Algebras of symbols and modular forms, J. Anal. Math., Volume 68 (1996), pp. 121-143 | DOI | MR | Zbl
[31] Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci., Volume 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | DOI | MR | Zbl
[32] Rankin-Cohen brackets, transvectants and covariant differential operators, Math. Z., Volume 264 (2010) no. 3, pp. 513-519 | DOI | MR | Zbl
Cité par Sources :