[Formes quasimodulaires et polynômes quasimodulaires]
Ce texte a pour origine des cours donnés à l’École d’été sur les formes quasimodulaires qui s’est tenue en juin 2010 à Besse, France. Il contient une présentation de travaux récents sur les formes quasimodulaires.
This paper is based on lectures delivered at the Workshop on quasimodular forms held in June, 2010 in Besse, France, and it provides a survey of some recent work on quasimodular forms.
@article{AMBP_2012__19_2_431_0, author = {Min Ho Lee}, title = {Quasimodular forms and quasimodular polynomials}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {431--453}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {2}, year = {2012}, doi = {10.5802/ambp.318}, mrnumber = {3025140}, zbl = {1283.11071}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.318/} }
TY - JOUR AU - Min Ho Lee TI - Quasimodular forms and quasimodular polynomials JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 431 EP - 453 VL - 19 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.318/ DO - 10.5802/ambp.318 LA - en ID - AMBP_2012__19_2_431_0 ER -
%0 Journal Article %A Min Ho Lee %T Quasimodular forms and quasimodular polynomials %J Annales mathématiques Blaise Pascal %D 2012 %P 431-453 %V 19 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.318/ %R 10.5802/ambp.318 %G en %F AMBP_2012__19_2_431_0
Min Ho Lee. Quasimodular forms and quasimodular polynomials. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 2, pp. 431-453. doi : 10.5802/ambp.318. https://ambp.centre-mersenne.org/articles/10.5802/ambp.318/
[1] Quasimodular forms, Jacobi-like forms, and pseudodifferential operators (preprint)
[2] Automorphic pseudodifferential operators, Algebraic aspects of integrable systems (Progr. Nonlinear Differential Equations Appl.), Volume 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17-47 | MR | Zbl
[3] The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston Inc., Boston, MA, 1985 | MR | Zbl
[4] Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001) no. 1, pp. 59-103 | DOI | MR | Zbl
[5] A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165-172 | MR | Zbl
[6] Quasimodular forms and Poincaré series, Acta Arith., Volume 137 (2009) no. 2, pp. 155-169 | DOI | MR | Zbl
[7] Quasimodular forms and vector bundles, Bull. Aust. Math. Soc., Volume 80 (2009) no. 3, pp. 402-412 | DOI | MR | Zbl
[8] Radial heat operators on Jacobi-like forms, Math. J. Okayama Univ., Volume 51 (2009), pp. 27-46 | MR
[9] Heat operators and quasimodular forms, Bull. Aust. Math. Soc., Volume 81 (2010) no. 3, pp. 514-522 | DOI | MR | Zbl
[10] Modular polynomials and derivatives of quasimodular forms (2012) (To appear in Complex Variables and Elliptic Equations) | DOI
[11] Quasimodular forms and cohomology, Bull. Aust. Math. Soc., Volume 86 (2012), pp. 150-163 | DOI
[12] Orbitwise countings in and quasimodular forms, Int. Math. Res. Not. (2006), pp. Art. ID 42151, 30 | DOI | MR | Zbl
[13] Formes modulaires et périodes, Formes modulaires et transcendance (Sémin. Congr.), Volume 12, Soc. Math. France, Paris, 2005, pp. 1-117 | MR | Zbl
[14] Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006 (Translated from the 1976 Japanese original by Yoshitaka Maeda) | MR | Zbl
[15] On differential modular forms and some analytic relations between Eisenstein series, Ramanujan J., Volume 17 (2008) no. 1, pp. 53-76 | DOI | MR | Zbl
[16] Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), Volume 163 (2006) no. 2, pp. 517-560 | DOI | MR | Zbl
[17] The ring of quasimodular forms for a cocompact group, J. Number Theory, Volume 128 (2008) no. 7, pp. 1966-1988 | DOI | MR | Zbl
[18] Hecke operators in cohomology of groups, J. Math. Soc. Japan, Volume 22 (1970), pp. 431-442 | DOI | MR | Zbl
[19] Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory, Volume 3 (2007) no. 2, pp. 231-261 | DOI | MR | Zbl
[20] Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci., Volume 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | DOI | MR | Zbl
Cité par Sources :