Categorification of the virtual braid groups
[Catégorification des groupes de tresses virtuelles]
Annales Mathématiques Blaise Pascal, Tome 18 (2011) no. 2, pp. 231-243.

Nous généralisons la catégorification des groupes de tresses par complexes de bimodules de Soergel due à Rouquier aux groupes de tresses virtuelles.

We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.

DOI : https://doi.org/10.5802/ambp.297
Classification : 20F36,  05E10,  05E18,  13D99,  18G35
Mots clés : groupe de tresses, tresse virtuelle, catégorification
@article{AMBP_2011__18_2_231_0,
     author = {Anne-Laure Thiel},
     title = {Categorification of the virtual braid groups},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {231--243},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {18},
     number = {2},
     year = {2011},
     doi = {10.5802/ambp.297},
     mrnumber = {2896487},
     zbl = {1260.20059},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.297/}
}
Anne-Laure Thiel. Categorification of the virtual braid groups. Annales Mathématiques Blaise Pascal, Tome 18 (2011) no. 2, pp. 231-243. doi : 10.5802/ambp.297. https://ambp.centre-mersenne.org/articles/10.5802/ambp.297/

[1] R. Fenn; R. Rimányi; C. Rourke The braid-permutation group, Topology, Volume 36 (1997) no. 1, pp. 123-135 | Article | MR 1410467 | Zbl 0861.57010

[2] N. Kamada; S. Kamada Abstract link diagrams and virtual knots, J. Knot Theory Ramifications, Volume 9 (2000) no. 1, pp. 93-106 | Article | MR 1749502 | Zbl 0997.57018

[3] S. Kamada Braid presentation of virtual knots and welded knots, Osaka J. Math., Volume 44 (2007) no. 2, pp. 441-458 http://projecteuclid.org/getRecord?id=euclid.ojm/1183667989 | MR 2351010 | Zbl 1147.57008

[4] C. Kassel; V. Turaev Braid groups, Graduate Texts in Mathematics, Volume 247, Springer, New York, 2008 | MR 2435235 | Zbl 1208.20041

[5] L. H. Kauffman Virtual knot theory, European J. Combin., Volume 20 (1999) no. 7, pp. 663-690 | Article | MR 1721925 | Zbl 0938.57006

[6] M. Khovanov Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math., Volume 18 (2007) no. 8, pp. 869-885 | Article | MR 2339573 | Zbl 1124.57003

[7] G. Kuperberg What is a virtual link?, Algebr. Geom. Topol., Volume 3 (2003), p. 587-591 (electronic) | Article | MR 1997331 | Zbl 1031.57010

[8] V. O. Manturov Knot theory, Chapman & Hall/CRC, Boca Raton, FL, 2004 | MR 2068425 | Zbl 1052.57001

[9] V. Mazorchuk; C. Stroppel On functors associated to a simple root, J. Algebra, Volume 314 (2007) no. 1, pp. 97-128 | Article | MR 2331754 | Zbl 1152.17002

[10] R. Rouquier Categorification of 𝔰𝔩 2 and braid groups, Trends in representation theory of algebras and related topics (Contemp. Math.) Volume 406, Amer. Math. Soc., Providence, RI, 2006, pp. 137-167 | MR 2258045 | Zbl 1162.20301

[11] W. Soergel The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math., Volume 429 (1992), pp. 49-74 | Article | MR 1173115 | Zbl 0745.22014

[12] W. Soergel Gradings on representation categories, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 800-806 | MR 1403980 | Zbl 0854.17006

[13] V. V. Vershinin On homology of virtual braids and Burau representation, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 795-812 (Knots in Hellas ’98, Vol. 3 (Delphi)) | Article | MR 1839703 | Zbl 0997.57020