P-adic Spaces of Continuous Functions II
Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 2, pp. 169-188.

Necessary and sufficient conditions are given so that the space C(X,E) of all continuous functions from a zero-dimensional topological space X to a non-Archimedean locally convex space E, equipped with the topology of uniform convergence on the compact subsets of X, to be polarly absolutely quasi-barrelled, polarly o -barrelled, polarly -barrelled or polarly c o -barrelled. Also, tensor products of spaces of continuous functions as well as tensor products of certain E -valued measures are investigated.

DOI : 10.5802/ambp.246
Classification : 46S10, 46G10
Mots clés : Non-Archimedean fields, zero-dimensional spaces, locally convex spaces

Athanasios Katsaras 1

1 Department of Mathematics University of Ioannina Ioannina, 45110 Greece
@article{AMBP_2008__15_2_169_0,
     author = {Athanasios Katsaras},
     title = {P-adic {Spaces} of {Continuous} {Functions} {II}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {169--188},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {15},
     number = {2},
     year = {2008},
     doi = {10.5802/ambp.246},
     mrnumber = {2468042},
     zbl = {1166.46042},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.246/}
}
TY  - JOUR
AU  - Athanasios Katsaras
TI  - P-adic Spaces of Continuous Functions II
JO  - Annales mathématiques Blaise Pascal
PY  - 2008
SP  - 169
EP  - 188
VL  - 15
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.246/
DO  - 10.5802/ambp.246
LA  - en
ID  - AMBP_2008__15_2_169_0
ER  - 
%0 Journal Article
%A Athanasios Katsaras
%T P-adic Spaces of Continuous Functions II
%J Annales mathématiques Blaise Pascal
%D 2008
%P 169-188
%V 15
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.246/
%R 10.5802/ambp.246
%G en
%F AMBP_2008__15_2_169_0
Athanasios Katsaras. P-adic Spaces of Continuous Functions II. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 2, pp. 169-188. doi : 10.5802/ambp.246. https://ambp.centre-mersenne.org/articles/10.5802/ambp.246/

[1] J. Aguayo; A. K. Katsaras; S. Navarro On the dual space for the strict topology β 1 and the space M(X) in function space, Ultrametric functional analysis (Contemp. Math.), Volume 384, Amer. Math. Soc., Providence, RI, 2005, pp. 15-37 | MR | Zbl

[2] A. K. Katsaras On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III, Volume 35(55) (2000) no. 2, pp. 283-305 | MR | Zbl

[3] A. K. Katsaras P-adic Spaces of continuous functions I, Ann. Math. Blaise Pascal, Volume 15 (2008) no. 1, pp. 109-133 | DOI | Numdam | MR

[4] A. K. Katsaras; A. Beloyiannis Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., Volume 6 (1999) no. 1, pp. 33-44 | DOI | MR | Zbl

[5] A. C. M. van Rooij Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker Inc., New York, 1978 | MR | Zbl

Cité par Sources :