Let be a real form of a complex semisimple Lie group . Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of . We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open -orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.
@article{AMBP_2008__15_2_153_0, author = {Mladen Bo\v{z}i\v{c}evi\'c}, title = {Constant term in {Harish-Chandra{\textquoteright}s} limit formula}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {153--168}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {2}, year = {2008}, doi = {10.5802/ambp.245}, mrnumber = {2468041}, zbl = {1162.22013}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/} }
TY - JOUR TI - Constant term in Harish-Chandra’s limit formula JO - Annales Mathématiques Blaise Pascal PY - 2008 DA - 2008/// SP - 153 EP - 168 VL - 15 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/ UR - https://www.ams.org/mathscinet-getitem?mr=2468041 UR - https://zbmath.org/?q=an%3A1162.22013 UR - https://doi.org/10.5802/ambp.245 DO - 10.5802/ambp.245 LA - en ID - AMBP_2008__15_2_153_0 ER -
Mladen Božičević. Constant term in Harish-Chandra’s limit formula. Annales Mathématiques Blaise Pascal, Volume 15 (2008) no. 2, pp. 153-168. doi : 10.5802/ambp.245. https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/
[1] Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40 (P. Trombi, ed.), Birkhäuser, Boston, 1982, pp. 21-32 | MR: 733804 | Zbl: 0537.22013
[2] Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer-Verlag, Berlin, 1994 | MR: 1299527 | Zbl: 0808.14038
[3] Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier, Volume 58 (2008), pp. 1213-1232 | Article | EuDML: 10347 | Numdam | MR: 2427959 | Zbl: pre05303674
[4] Fourier transform on a semisimple Lie algebra II, Amer. J. Math., Volume 79 (1957), pp. 733-760 | Article | MR: 96138 | Zbl: 0080.10201
[5] Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag, Berlin, 1990 | MR: 1074006 | Zbl: 0709.18001
[6] A localization argument for characters of reductive Lie groups, J. Funct. Anal., Volume 203 (2003), pp. 197-236 | Article | MR: 1996871 | Zbl: 1025.22012
[7] The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, Volume 31 (1979), pp. 331-357 | Article | MR: 527548 | Zbl: 0396.53025
[8] Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92 (A. Connes; M. Duflo; A. Joseph; R. Rentschler, eds.), Birkhäuser, Boston, 1990, pp. 263-287 | MR: 1103593 | Zbl: 0744.22012
[9] Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math., Volume 121 (1995), pp. 531-578 | Article | EuDML: 144310 | MR: 1353308 | Zbl: 0861.22008
[10] Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101 (W. Barker; P. Sally, eds.), Birkhäuser, Boston, 1991, pp. 235-275 | MR: 1168487 | Zbl: 0751.22003
[11] Characteristic cycles of constructible sheaves, Invent. Math., Volume 124 (1996), pp. 451-502 | Article | MR: 1369425 | Zbl: 0851.32011
[12] Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc., Volume 11 (1998), pp. 799-867 | Article | MR: 1612634 | Zbl: 0976.22010
[13] Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, Springer-Verlag, New York, 1984 | MR: 746308 | Zbl: 0955.22500
[14] Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4), Volume 23 (1990), pp. 543-562 | Numdam | MR: 1072817 | Zbl: 0718.22009
Cited by Sources: