Let be a real form of a complex semisimple Lie group . Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of . We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open -orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.
Mots clés : Flag variety, equivariant sheaf, characteristic cycle, coadjoint orbit, Liouville measure
Mladen Božičević 1
@article{AMBP_2008__15_2_153_0, author = {Mladen Bo\v{z}i\v{c}evi\'c}, title = {Constant term in {Harish-Chandra{\textquoteright}s} limit formula}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {153--168}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {2}, year = {2008}, doi = {10.5802/ambp.245}, mrnumber = {2468041}, zbl = {1162.22013}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/} }
TY - JOUR AU - Mladen Božičević TI - Constant term in Harish-Chandra’s limit formula JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 153 EP - 168 VL - 15 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/ DO - 10.5802/ambp.245 LA - en ID - AMBP_2008__15_2_153_0 ER -
%0 Journal Article %A Mladen Božičević %T Constant term in Harish-Chandra’s limit formula %J Annales mathématiques Blaise Pascal %D 2008 %P 153-168 %V 15 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/ %R 10.5802/ambp.245 %G en %F AMBP_2008__15_2_153_0
Mladen Božičević. Constant term in Harish-Chandra’s limit formula. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 2, pp. 153-168. doi : 10.5802/ambp.245. https://ambp.centre-mersenne.org/articles/10.5802/ambp.245/
[1] Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40, Birkhäuser, Boston, 1982, pp. 21-32 | MR | Zbl
[2] Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer-Verlag, Berlin, 1994 | MR | Zbl
[3] Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier, Volume 58 (2008), pp. 1213-1232 | DOI | EuDML | Numdam | MR | Zbl
[4] Fourier transform on a semisimple Lie algebra II, Amer. J. Math., Volume 79 (1957), pp. 733-760 | DOI | MR | Zbl
[5] Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag, Berlin, 1990 | MR | Zbl
[6] A localization argument for characters of reductive Lie groups, J. Funct. Anal., Volume 203 (2003), pp. 197-236 | DOI | MR | Zbl
[7] The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, Volume 31 (1979), pp. 331-357 | DOI | MR | Zbl
[8] Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92, Birkhäuser, Boston, 1990, pp. 263-287 | MR | Zbl
[9] Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math., Volume 121 (1995), pp. 531-578 | DOI | EuDML | MR | Zbl
[10] Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101, Birkhäuser, Boston, 1991, pp. 235-275 | MR | Zbl
[11] Characteristic cycles of constructible sheaves, Invent. Math., Volume 124 (1996), pp. 451-502 | DOI | MR | Zbl
[12] Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc., Volume 11 (1998), pp. 799-867 | DOI | MR | Zbl
[13] Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, Springer-Verlag, New York, 1984 | MR | Zbl
[14] Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4), Volume 23 (1990), pp. 543-562 | Numdam | MR | Zbl
Cité par Sources :