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Constant term in Harish-Chandra’s
limit formula

Mladen Božičević

Abstract

Let GR be a real form of a complex semisimple Lie group G. Recall that
Rossmann defined a Weyl group action on Lagrangian cycles supported on the
conormal bundle of the flag variety of G. We compute the signed average of the
Weyl group action on the characteristic cycle of the standard sheaf associated to
an open GR-orbit on the flag variety. This result is applied to find the value of the
constant term in Harish-Chandra’s limit formula for the delta function at zero.

1. Introduction

Let GR be a semisimple Lie group, gR the Lie algebra of GR, g the
complexification of gR, hR a Cartan subalgebra, h the complexification of
hR, and X the flag variety of g. A classical formula of Harish-Chandra [4]
for the delta function at zero states that

lim
λ→0

∏
α>0

∂(α)mλ = cm{0}.

Here λ ∈ ih∗R is regular, mλ resp. m{0} is the canonical measure on the
coadjoint orbit GR · λ resp. {0}, and ∂(α) is the differential operator on
h∗ defined by a positive root α. Furthermore, the constant c 6= 0 if and
only if hR is a fundamental Cartan subalgebra.

In [8] Rossmann suggested a geometric approach to Harish-Chandra’s
formula, which was based on his results relating invariant eigendistribu-
tions on gR and homology classes of the conormal variety of GR-action on
X, and on the properties of the coherent continuation representation of
the Weyl group. Rossmann’s argument does not give the exact value of the
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constant c in case hR is fundamental. One of the main motivations for the
present paper was to compute the non-zero c. It turns out that consider-
ably more theory is needed to obtain this information. In fact, our results
rely heavily on the work of Schmid and Vilonen [11], [12]. In more details,
the integral formula for the character associated to a GR-equivariant sheaf
on X [12], Theorem 3.8, and a local expression of the character [12], The-
orem 5.27 are two of the main ingredients in our analysis. The argument
we use to prove Harish-Chandra’s formula is quite standard: instead of
measures on the coadjoint orbits one studies the asymptotic behaviour
of their Fourier transforms. By the general philosophy that goes back to
the work of Harish-Chandra, these Fourier transforms represent the char-
acters of representations. In explicit terms, the Fourier transform of the
canonical measure mλ, under the appropriate positivity assumption on
the parameter λ, represents the character of an induced representation. It
is interesting to point out that Harish-Chandra’s formula does not follow
from the information about the leading term in the asymptotic expan-
sion of the character of this induced representation. Rather, one has to
consider the signed average of the character of the induced representation
over the Weyl group. It turns out that this virtual character is up to a
constant term, which we compute explicitly, equal to the character of a
finite dimensional representation. These facts are actually established as
an identity between homology cycles supported in the conormal variety
of GR-action on X in Thorem 3.2, and the translation to the language of
invariant eigendistributions is explained in Proposition 3.3 below. Harish-
Chandra’s formula is then deduced from the identity of homology cycles
in Theorem 3.2, using the results in [12] and [8]. When GR has a com-
pact Cartan subgroup the character identity from Proposition 3.3 appears
already without proof in [1]. For this reason Proposition 3.3 can be consid-
ered as a generalization of a known result. Further applications of Schmid
and Vilonen theory to the characters of Vogan-Zuckerman modules, and
related limit formulas will be taken up in future publications.

2. Preliminaries

Suppose GR is a real, connected, linear, semisimple Lie group. We
embed GR into a complexification G and denote by

τ : G −→ G
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Limit formula

the involution on G having GR as the identity component of the set of
fixed points. Next we choose a Cartan involution

θ : GR −→ GR,

and extend it to G. Denote by KR resp. K the set of fixed points of θ on
GR resp. G. Observe that θτ is a Cartan involution on G. We denote by
UR the set of fixed points. Write g, k, gR, kR, uR for the Lie algebras of G,
K, GR, KR, UR respectively. Denote the involutions on g induced by θ, τ
by the same letters. In addition, let

gR = kR + pR , g = k + p

be the eigenspace decompositions defined by θ. Let ( , ) be the Killing
form on g. We will use it whenever convenient to identify g and the dual
space g∗.

Next we introduce the notation related to the geometry of the flag
variety. Write X for the flag variety of Borel subalgebras of g. Let n =
dimC X. Given x ∈ X we denote by bx the Borel subalgebra which fixes
x , and by Bx ⊂ G the Borel subgroup which stabilizes x via the adjoint
action. Consider G-homogenous bundles B and [B,B] over X with fiber
bx resp. [bx, bx] at x ∈ X. Observe that Bx acts trivially on bx/[bx, bx],
hence the G-bundle B/[B,B] is trivial. We denote by h its fiber, and call it
the universal Cartan subalgebra. Note that h ' bx/[bx, bx] canonically, for
any x ∈ X. Let c ⊂ g be a Cartan subalgebra. Denote by ∆(g, c) the root
system. Then c has |W | fixed points on X (| | stands for the cardinality),
and we choose one of them: x ∈ X. Then c ⊂ bx, and we have a canonical
isomorphism τx : c → h. We denote by τ∗x : h∗ → c∗ the dual isomorphism.
Then

∆ = τ∗−1
x (∆(g, c))

is independent on the choice of the pair (c, x), and is called the universal
root system. Set ∆+

x = ∆(g/bx, c). A positive root system in ∆ is defined
by the condition

∆+ = τ∗−1
x (∆+

x ).

Given λ ∈ ∆, and a pair (c, x) as above, we write λx = τ∗x(λ). The uni-
versal Weyl group W is defined as the Weyl group of the root system ∆.
Denote by ρ ∈ h∗ half the sum of the positive roots, and by h′∗ the set of
regular elements. Note that h resp. h∗ comes equipped with W -invariant
symmetric bilinear form (·, ·) whose specialization at x ∈ X coincides with
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the Killing form. In particular, if λ ∈ h∗ we write hλ for the element in h
such that λ(h) = (h, hλ), h ∈ h.

Let us recall the definition of the moment map and of the twisted mo-
ment map. Denote by T ∗X the cotangent bundle of the variety X. Given
x ∈ X, denote by b⊥x ⊂ g∗ the space of linear forms vanishing on bx. We
use the identification

T ∗X ∼=
{
(x, ξ) : x ∈ X, ξ ∈ b⊥x

}
,

to consider T ∗X as a submanifold of X × g∗ The moment map is defined
by

µ : T ∗X −→ g∗, µ(x, ξ) = ξ.

Denote by N ∗ the cone of nilpotent elements in g∗. Note that µ(T ∗X) =
N ∗. The definition of the twisted moment map is due to Rossmann [9],
§2. Note that any x ∈ X is fixed by a unique maximal torus CR ⊂ UR.
We can use the decomposition g = c+[c, g] to view c∗ as a subspace of g∗.
Now we define the twisted moment map by

µλ : T ∗X −→ g∗, µλ(x, ξ) = λx + µ(x, ξ), ξ ∈ b⊥x .

If λ is regular, one can show that µλ is a UR-equivariant, real algebraic
isomorphism of T ∗X with complex coadjoint orbit Ad∗(G)λx. Note that
Ad∗(G)λx is independent on x ∈ X. We shall write G · λ = Ad∗(G)λx.

By the result of Matsuki [7] GR acts on X with finitely many orbits.
Moreover, GR-action on X is real algebraic, hence the orbits define a semi-
algebraic Whitney stratification of X. We shall denote by T ∗

GR
X union

of the conormal bundles of the GR-orbits on X. Via the characteristic
cycle map the K-group of GR-equivariant sheaves on X can be related
to the top-dimensional homology group of the conormal variety of GR-
action. In order to explain this, we need some additional notation. If Y
is a locally compact space, we denote by Hi(Y, C), i ∈ Z, the Borel-
Moore homology groups with complex coefficients. Suppose that Y is a
real algebraic manifold. The characteristic cycle CC(F) of a constructible
sheaf F was defined by Kashiwara [5], Ch.IX, and [11]. Recall that CC(F)
is defined as a Lagrangian cycle in the real cotangent bundle T ∗Y . In fact,
let S be a semi-algebraic Whitney stratification on Y, and F a sheaf
constructible for S. Denote by T ∗

SY union of the conormal bundles to the
strata. Then

CC(F) ∈ Hm(T ∗
SY, C), m = dimR Y.
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We remark that CC(F) is actually an integral homology cycle. However,
in view of the applications we have in mind, it will be more convenient to
consider complex coefficients.

Returning to the setting of the flag variety, we denote by ShGR(X)
the category of GR-equivariant constructible sheaves on X [2], Ch.0. Note
that objects from ShGR(X) are constructible for the orbit stratification on
X. Let K(ShGR(X)) be the Grothendieck group of the abelian category
ShGR(X). Since CC is additive on short exact sequences we obtain a
homomorphism

CC : K(ShGR(X)) −→ H2n(T ∗
GRX, C). (2.1)

Let V be a coadjoint G-orbit in g∗ or a coadjoint GR-orbit in ig∗R. To
treat both cases simultaneously write V = G or V = GR, and denote by
v the Lie algebra of V . The space

v · ξ = {ad∗(x)(ξ) : x ∈ v}
identifies with tangent space TξV of V at ξ, and we define a V -equivariant
2-form σV on V by the formula

σV,ξ(x · ξ, y · ξ) = ξ[x, y] , x, y ∈ v.

In case V = GR, the form −iσV is real valued, and we use the form
(−iσV)k , 2k = dimR V to orient V. Then we define the measure mV by
the formula

mV =
1

(2πi)kk!
σk
V , (2.2)

and call it the Liouville measure. When V = G · λ, λ ∈ h∗, we shall write
σV = σλ. Let λ ∈ h∗. Then a UR-equivariant 2-form τλ on X is defined at
x by

τλ(ax, bx) = λx([a, b]).
Here ax and bx denote the tangent vectors which a, b ∈ uR induce by
differentiation of the UR-action.

Denote by πX : T ∗X −→ X the natural projection, and by σ the
canonical symplectic form on T ∗X. For λ ∈ h′∗ the following formula
holds [12], Proposition 3.3:

µ∗λ(σλ) = −σ + π∗X(τλ). (2.3)

Next we recall, following [12], § 3, the definition of invariant distributions
on the Lie algebra as integrals of certain differential forms over the semi-
algebraic cycles in T ∗X. The Fourier transform of a test function φ ∈
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C∞
c (gR) will be defined by

φ̂(ξ) =
∫

gR
eξ(x)φ(x)dx , ξ ∈ g∗,

without the usual i in the exponential. Here dx denotes a suitably nor-
malized Lebesgue measure on gR. Let Γ be a semi-algebraic chain in T ∗X.
We say that Γ is R-bounded if

Re µ(supp(Γ)) ⊂ g∗

is bounded. Here Re is defined with respect to g∗R. If Γ is a semi-algebraic,
R-bounded, 2n-chain in T ∗X one can prove that for a test function φ ∈
C∞

c (gR) and λ ∈ h∗ the integral

Θ(Γ, λ)(φ) =
1

(2πi)nn!

∫
Γ

µ∗λ(φ̂)(−σ + π∗Xτλ)n (2.4)

converges and depends holomorphically on λ. In particular, this is true
for a cycle Γ ∈ H2n(T ∗

GR
X, C). In this case Θ(Γ, λ) is a GR-invariant

distribution on gR.
Denote by g′R the set of regular semisimple elements in gR, and given

a Cartan subalgebra cR ⊂ gR let c′R = cR ∩ g′R. By the work of Harish-
Chandra Θ(CC(F), λ)|g′R is a real analytic function. It is computed in
[12] using the fixed point formalism of Goresky and MacPherson. Denote
by XCR the set of fixed points of CR on X. Let ζ ∈ c′R and x ∈ XCR . We
select a subset ∆′

x ⊂ ∆+
x closed under addition and having the property:

Re(αx(ζ)) 6= 0 =⇒ (αx ∈ ∆′
x ⇔ Re(αx(ζ)) < 0).

We set further

n+
x =

∑
α∈∆+

gαx , n′x(ζ) =
∑

αx∈∆′
x

gαx ,

N+
x = exp(n+

x )x, N ′
x(ζ) = exp(n′x(ζ))x.

Let F be a GR-equivariant sheaf on X. Write DF for the Verdier dual of
F [5], Ch.III, and DF(x) for the restriction of DF to the open set N+

x

of X. Let E be the connected component of c′R containing ζ. Finally we
define the integers

dE,x = dζ,x = χ(RΓN ′
x(ζ)(DF(x))x), (2.5)

where RΓN ′
x(ζ)(·) stands for the local cohomology, and χ((·)x) for the Euler

characteristic of the stalk. Let F be an object from ShGR(X). Then the
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restriction of Θ(CC(F), λ) to c′R can be computed as follows [12], Theorem
5.27:

Θ(CC(F), λ)(ζ) =
∑

x∈XCR

dE,xeλx(ζ)∏
α∈∆+ αx(ζ)

, ζ ∈ E ⊂ c′R.

We should point out that [12], Theorem 5.27 is deduced under the as-
sumption that F is a (−λ − ρ)-monodromic sheaf. To prove (2.5) for a
GR-equivariant sheaf, and arbitrary λ ∈ h∗, one would have to argue sim-
ilarly as in [12], §8-10. Alternatively, (2.5) follows from the main result in
[6].

Now we fix a θ-stable fundamental Cartan subalgebra cR ⊂ gR. Let

cR = tR + aR, tR = cR ∩ kR, aR = cR ∩ pR (2.6)

be the Cartan decomposition, and c the complexification of cR. Next we
recall the definition of the real Weyl group. Write ZGR(A) (resp. NGR(A))
for the centralizer (resp. normalizer) of A ⊂ g. Let CR = ZGR(cR) be the
Cartan subgroup defined by cR. Set

W (GR, CR) = NGR(cR)/CR.

On the other hand, we denote by W (g, c) the Weyl group of the root system
∆(g, c). Recall that W (g, c) is generated by the reflections sα, α ∈ ∆(g, c).
We consider W (g, c) also as a group of linear endomorphisms of c and c∗.
It is then not difficult to deduce

W (GR, CR) ⊂ W (g, c).

Note that the involution θ acts naturally on ∆(g, c). Denote by

∆I(g, c) ⊂ ∆(g, c)

the subset of roots vanishing on a. We choose positive root systems ∆+
0 ⊂

∆(g, c), and ∆+
1 ⊂ ∆(g, c) such that

θ∆+
0 = ∆+

0 resp. − θ(∆+
1 \∆I(g, c)) = ∆+

1 \∆I(g, c).

Denote by x0 ∈ X, and x1 ∈ X the points defined by the pairs (c,−∆+
0 )

and (c,−∆+
1 ) respectively. Define the orbits S0 = GR · x0, S1 = GR · x1,

and denote by
j0 : S0 ↪→ X, j1 : S1 ↪→ X

the inclusion maps. The definition of bx0 implies bx0 ∩ τbx0 = c, hence

dimR(gR/bx0 ∩ gR) = dimR(g/bx0).
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We conclude that the orbit S0 is open in X. To the orbits S0 and S1 we
associate standard sheaves

F0 = j0∗CS0 , F1 = j1∗CS1 . (2.7)

Here, CSi denotes the trivial local system on Si, i = 0, 1. This notation
for standard sheaves will be used in the rest of the paper.

Proposition 2.1. Let cR be a fundamental Cartan subalgebra, and ζ ∈ c′R.
Then

Θ(CC(F0), λ)(ζ) =
1∏

α∈∆+ αx0(ζ)

∑
w∈W (GR,CR)

(−1)l(w)ewλx0 (ζ).

Proof. Let x ∈ XCR . Since there are no real roots in the root system
∆(g, c) we can apply the same argument as in the proof of [12], Equation
7.37 to compute dζ,x. We obtain

dζ,x = 0 if x /∈ S0, dζ,x = 1 if x ∈ S0.

Write x = g · x0, where g ∈ GR. Then

Ad(g−1)c ⊂ bx0 ∩ τbx0 = c.

We conclude Ad(g)c = c, hence gCR ∈ W (GR, CR), as desired. �

3. Weyl group modules

We begin the section be recalling some facts about Weyl group represen-
tations. When U ⊂ g∗ satisfies certain natural assumptions [9], Section
4.4 Rossmann defines a W -module structure on homology groups

H∗(µ−1(U), C).

In particular, these assumptions are fulfilled in the following cases:

U = iN ∗
R, U = O, U = O, U = {ν} .

Here we set iN ∗
R = ig∗R ∩ N ∗, O ⊂ iN ∗

R is a GR-orbit, and ν ∈ N ∗. Note
that in the first case we have

µ−1(iN ∗
R) = T ∗

GRX .

Rossmann shows [9], Section 4.4, that inclusions of the orbit closures are
compatible with W -module structure on homology groups. Moreover, if
we set

N ∗
k,R = {GR · ξ : dimR GR · ξ ≤ k, ξ ∈ iN ∗

R} ,
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Limit formula

then we obtain an exhaustive filtration

· · · ⊂ H2n(µ−1(N ∗
k,R), C) ⊂ H2n(µ−1(N ∗

k+1,R), C) ⊂ · · · ⊂ H2n(T ∗
GRX, C)

by W -submodules. Rossmann computes the corresponding graded module
and shows that:

H2n(T ∗
GRX, C) ∼=

∑
O∈iN ∗

R /GR

H2n(µ−1(O), C). (3.1)

In the case U = {ν} denote by CG(ν) the group of connected com-
ponents of the centralizer of ν in G. Let d = dimC µ−1(ν). Then CG(ν)
acts on H2d(µ−1(ν), C) by permuting the irreducible components, and this
action commutes with W -action. Hence

H2d(µ−1(ν), C)CG(ν) ⊂ H2d(µ−1(ν), C)

is a W -submodule. In fact, W -module H2d(µ−1(ν), C)CG(ν) is irreducible
[9], Theorem 4.5. This is the Springer representation associated to the
orbit G · ν, and we denote the corresponding character by χν . If V is a
W -module and χ an irreducible character of W we denote by [V : χ] the
multiplicity of χ in V . If O ⊂ iN ∗

R is a GR-orbit Rossmann shows that [9],
Section 4.4,

[H2n(µ−1(O), C) : χν ] = 1
if O ⊂ G · ν, and

[H2n(µ−1(O), C) : χν ] = 0
otherwise. The preceding discussion implies

[H2n(T ∗
GRX, C)) : χ0] = 1. (3.2)

Next we review briefly the definition of intertwining operators. Given a
real algebraic manifold Y we denote by D(Y ) the bounded derived cate-
gory of sheaves (of complex vector spaces) on Y constructible for semial-
gebraic stratifications. For w ∈ W denote by Yw ⊂ X ×X the variety of
pairs of Borel subalgebras in the relative position w, and by

p1, p2 : Yw −→ X

projections onto the first and second factor in X ×X. Then we define the
intertwining functor attached to w by the formula:

Iw = Rp1∗p
∗
2[l(w)] : D(X) −→ D(X),

One can show that Iw is an equivalence of categories. Moreover, the equiva-
lences Iw induce an action of the Weyl group W on the K-group K(D(X)).
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Since the maps p1 and p2 are GR-equivariant, the subspace K(ShGR(X))
is invariant for this W -action. It follows then from [11], Theorem 9.1 that
the characteristic cycle map (2.1) is a homomorphism of W -modules.

Let V be a W -module, and π an irreducible representation of W . We
shall denote by Pπ the projection to the isotypical component of type π.
Explicitly:

Pπ : V −→ V, Pπ(v) =
deg π

|W |
∑

w∈W

χπ(w−1)wv .

Next we explain the notation appearing in the following lemma. Denote
by T ∗

XX ⊂ T ∗X the zero section. We use the isomorphism T ∗
XX ' X and

the complex structure on X to put the orientation on T ∗
XX. Note that this

is compatible with the orientation of the real conormal bundle on T ∗
XX

[11],§2. We denote by

[T ∗
XX] ∈ H2n(T ∗

GRX, C))

the corresponding fundamental cycle. Write sgn for the one-dimensional
representation w 7→ (−1)l(w), where l(w) denotes the length of w ∈ W .

Lemma 3.1. We have Psgn(H2n(T ∗
GR

X, C)) = C · [T ∗
XX].

Proof. Observe that µ−1(0) = T ∗
XX, hence

H2n(T ∗
XX, C) ' C · [T ∗

XX]

is a W -submodule of H2n(T ∗
GR

X, C). In view of (3.2) it will suffice to
show χ0 = χsgn. One can check by a straightforward computation that
Iw(CX) = CX [l(w)]. Since CC(CX) = [T ∗

XX], we obtain

w · [T ∗
XX] = CC(CX [l(w)]) = (−1)l(w)[T ∗

XX].

This implies the claim. �

Before stating the next result we recall one additional property of Ross-
mann’s Weyl group action on H2n(T ∗

GR
X, C). If Γ ∈ H2n(T ∗

GR
X, C), λ ∈ h∗,

and w ∈ W , then we have [8], Lemma 3.1

Θ(wΓ, λ) = Θ(Γ, w−1λ) (3.3)

Theorem 3.2. Let F0 and F1 be standard sheaves defined in (2.7). The
following identities hold in H2n(T ∗

GR
X, C):∑

w∈W

(−1)l(w)w ·CC(F0) =
∑

w∈W

(−1)l(w)w ·CC(F1) = |W (GR, CR)|[T ∗
XX].
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Limit formula

Proof. It follows from [12], §9 that we can find w0 ∈ W such that

Iw0F1 = F0[l(w0)].

Now we use the fact that CC is a homomorphism of W -modules to obtain
the first identity. To prove the second identity we fix ζ ∈ c′R, and set
D =

∏
α∈∆+ αx0(ζ). We use the same argument as in Proposition 2.1 to

show

Θ([T ∗
XX], λ)(ζ) = Θ(CC(CX), λ)(ζ) =

1
D

∑
w∈W

(−1)l(w)ewλx0 (ζ).

By Lemma 3.1 there exists k ∈ C such that∑
w∈W

(−1)l(w)w · CC(F0) = k[T ∗
XX].

This implies ∑
w∈W

(−1)l(w)Θ(w · CC(F0), λ) = kΘ([T ∗
XX], λ).

We apply (3.3) and Proposition 2.1 to conclude∑
w∈W

(−1) l(w)Θ(w · CC(F0), λ)(ζ)

=
∑

w∈W

(−1)l(w)Θ(CC(F0), w−1λ)(ζ)

=
1
D

∑
w∈W

(−1)l(w)
∑

v∈W (GR,CR)

(−1)l(v)evw−1λx0 (ζ)

=
|W (GR, CR)|

D

∑
w∈W

(−1)l(w)ewλx0 (ζ).

It follows that k = |W (GR, CR)|, and the proof is complete. �

Now we can explain how Theorem 3.2 can be used to obtain a formula
for the coherent continuation of an induced representation. We shall re-
strict our consideration to the case of the trivial infinitesimal character. To
simplify notation we write ρ1 = ρx1 . Recall that x1 defines a real parabolic
subgroup PR ⊂ GR [12], Equations 9.7(a)-(b), with Levi decomposition

PR = MR ·AR ·NR,

where MR · AR is the centralizer of aR in GR, and NR ⊂ GR certain
unipotent group. Note that in the present case the component group of
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PR, denoted by F in loc.cit., is trivial. Denote by m the complexified Lie
algebra of MR. Write ρ1,t and ρ1,a for the restriction of ρ1 to t and a
respectively. Our choice of x1 implies ρ1,t = ρ(∆+(m)), where ∆+(m) =
∆+

x1
∩∆(m). Let πρ1,t be the discrete series representation of MR defined

by the Harish-Chandra parameter ρ1,t. Denote by IGR
PR

the normalized
parabolic induction [12], Equation 9.13. In particular, we have an induced
representation IGR

PR
(πρ1,t⊗eρ1,a), and we denote the lift of the corresponding

character to gR via the exponential map by ΘgR(IGR
PR

(πρ1,t ⊗ eρ1,a)). Then
by [12], Proposition 9.17 we have

ΘgR(IGR
PR

(πρ1,t ⊗ eρ1,a)) = (−1)qΘ(CC(F1), ρ1), q =
1
2

dimC m/m ∩ k.

Recall that the coherent continuation representation of the Weyl group
is defined on the space of invariant eigendistributions on gR with fixed
infinitesimal character [8], §3. In the present situation, for w ∈ W , we
have

w ·ΘgR(IGR
PR

(πρ1,t ⊗ eρ1,a)) = (−1)qΘ(CC(F1), w−1ρ1).

Denote by πtriv the trivial representation of GR, and by ΘgR(πtriv) the cor-
responding character on gR. The local expression for Θ([T ∗

XX], ρ1) (com-
pare the proof of Proposition 2.1) implies that

ΘgR(πtriv) = Θ([T ∗
XX], ρ1).

The next proposition, un unpublished result of Hecht and Schmid, sum-
marizes the preceding discussion.

Proposition 3.3. The induced module IGR
PR

(πρ1,t ⊗ eρ1,a) associated to a
fundamental Cartan subgroup CR, and the trivial character of CR satisfies
the following identity∑

w∈W

(−1)l(w)w ·ΘgR(IGR
PR

(πρ1,t ⊗ eρ1,a)) = (−1)q|W (GR, CR)|ΘgR(πtriv).

4. Limit formula

Recall from the previous section, the choice was made of a fundamental
Cartan subalgebra c = t+a, x0 ∈ X, x1 ∈ X, and m+a is the centralizer of
a in g. Note that the root system ∆(m, t) naturally identifies with ∆I(g, c).
The following theorem is proved in [12], §7-9. We point out that we work
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with dominant parameter, which results in a different sign in front of the
orbital integral than in loc.cit.

Theorem 4.1. Let λ ∈ h′∗ be such that λx1 ∈ ic∗R and

(λx1 , αx1) > 0 if αx1 ∈ ∆(m, t) ∩∆+
x1

.

Let φ ∈ C∞
c (gR). Then the following formula holds

1
(2πi)nn!

∫
CC(F1)

µ∗λ(φ̂σn
λ) = (−1)q

∫
GR·λx1

φ̂σn
λ .

Our goal is to study the asymptotic behaviour of the distribution
Θ(CC(F1), λ) when λ ∈ h′∗ approaches zero. Some additional results are
needed for this analysis. Denote by ΘO the Fourier transform of the Liou-
ville measure mO. In more details

ΘO(φ) =
1

(2πi)kk!

∫
O

φ̂σk
O , 2k = dimRO, φ ∈ C∞

c (gR).

Our computation will be based on the following simple formula:

Θ([T ∗
XX], λ) = (

∫
X

τn
λ )Θ{0} + o(λn). (4.1)

This formula is a special case of [8], Theorem 4.1. We remark that it can
be also established by a straightforward calculation. The term o(λn) can
be described as follows. For any φ ∈ C∞

c (gR), o(λn)(φ) is a holomorphic
function of λ and

lim
t→0

o((tλ)n)(φ)
tn

= 0.

Denote by C[h] resp. C[h∗] the algebra of polynomial functions on h resp.
h∗. Write S(h) resp. S(h∗) for the symmetric algebra of h resp. h∗. Recall
that we have canonical isomorphisms

C[h] ∼= S(h∗) and C[h∗] ∼= S(h).

On the other hand the map

v 7→ ∂(v), ∂(v)f(λ) = lim
t→0

(f(λ + tv)− f(λ))/t, λ, v ∈ h∗, f ∈ C∞(h∗)

extends to an isomorphism of S(h∗) and the algebra D(h∗) of differential
operators on h∗ with constant coefficients. Thus we obtain an isomorphism
of algebras

C[h] ∼= D(h∗), p 7→ ∂(p), p ∈ C[h].
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Set Θ(Γ, λx1) = Θ(Γ, λ), and observe that the specialization τ∗x1
defines

an isomorphism S(h∗) ' S(c∗), to be denoted p 7→ px1 . With this notation
we have

∂(px1)Θ(Γ, λx1) = ∂(p)Θ(Γ, λ).

The following lemma is stated in [8], Lemma 5.2. A more detailed dis-
cussion of this result can be found in [3].

Lemma 4.2. Let Γ ∈ H2n(T ∗
RX, C), λ ∈ h∗, p ∈ C[h] and w ∈ W .

(1) limλ→0 ∂(p)Θ(Γ, λ) exists as a distribution on gR.

(2) limλ→0 ∂(w−1p)Θ(Γ, λ) = limλ→0 ∂(p)Θ(wΓ, λ).

Define polynomials π+ ∈ C[h] and ω+ ∈ C[h∗] by the formulas:

π+ =
∏

α∈∆+

α, ω+ =
∏

α∈∆+

hα.

The following lemma can be deduced from the Weyl character formula
[13], Section 4.14.

Lemma 4.3. ∂(π+)ω+ = |W |
∏

α∈∆+(ρ, α).

Important role in our computation will play the formula for the integral
of τn

λ over X. We refer to [14], §4 for a proof of the next lemma.

Lemma 4.4. Let λ ∈ h∗. Then

1
(2πi)nn!

∫
X

τn
λ =

∏
α∈∆+

(λ, α)
(ρ, α)

.

Now we can state and prove the main result of the paper.

Theorem 4.5. Suppose GR is a connected, linear, semisimple Lie group.
Let cR ⊂ gR be a fundamental Cartan subalgebra, and λ1 ∈ ic′∗R . Let mλ1

be the Liouville measure on GR · λ1 defined in (2.2). The following limit
formula for the orbital measures holds

lim
λ1→0(ic′∗R )

∂(π+)mλ = (−1)q|W (GR, CR)|m{0}.

Proof. We choose a positive system ∆′+ ⊂ ∆(g, c) such that

Re (λ1, β) ≥ 0 if β ∈ ∆′+.
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By [10], Equation 6.16, we can find ∆+
1 ⊂ ∆(g, c) satisfying the following

conditions:

−θ(∆+
1 \∆(m, t)) = ∆+

1 \∆(m, t), and ∆+
1 ∩∆(m, t) = ∆′+ ∩∆(m, t).

Let x1 ∈ X be the point determined by the pair (c,−∆+
1 ). Recall that F1

is the standard sheaf associated to the orbit S1 = GR ·x1. Set λ = τ∗−1
x1

λ1,
and define

C =
{
ξ ∈ ic′∗R : (ξ, αx1) > 0, αx1 ∈ ∆+

1 ∩∆(m, t)
}

.

Now we apply limλ→0 ∂(π+)Θ(·, λ) to the identity from Theorem 3.2, and
use Lemma 4.2, (3.3), and (4.1) to obtain

|W | lim
λ→0

∂(π+)Θ(CC(F1), λ) = |W (GR, CR)|∂(π+)(
∫

X
τn
λ )Θ{0}.

Next we specialize λx1 ∈ C, and use Theorem 4.1, Lemma 4.3, Lemma
4.4. to conclude

lim
λ1→0(C)

1
(2πi)nn!

∂(π+
x1

)
∫

GR·λ1

φ̂σn
λ = (−1)q|W (GR, CR)|Θ{0}(φ),

where φ ∈ C∞(gR). The formula from the theorem follows now by taking
the inverse Fourier transform. �
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