A degenerate parabolic system for three-phase flows in porous media
Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 2, pp. 243-254.

A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.

DOI: 10.5802/ambp.234
Vladimir Shelukhin 1

1 Lavrentyev Institute of Hydrodynamics Av. Lavrentyev 15 Novosibirsk Russia
@article{AMBP_2007__14_2_243_0,
     author = {Vladimir Shelukhin},
     title = {A degenerate parabolic system for three-phase flows in porous media},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {243--254},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     number = {2},
     year = {2007},
     doi = {10.5802/ambp.234},
     mrnumber = {2369873},
     zbl = {1156.35393},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.234/}
}
TY  - JOUR
AU  - Vladimir Shelukhin
TI  - A degenerate parabolic system for three-phase flows in porous media
JO  - Annales mathématiques Blaise Pascal
PY  - 2007
DA  - 2007///
SP  - 243
EP  - 254
VL  - 14
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.234/
UR  - https://www.ams.org/mathscinet-getitem?mr=2369873
UR  - https://zbmath.org/?q=an%3A1156.35393
UR  - https://doi.org/10.5802/ambp.234
DO  - 10.5802/ambp.234
LA  - en
ID  - AMBP_2007__14_2_243_0
ER  - 
%0 Journal Article
%A Vladimir Shelukhin
%T A degenerate parabolic system for three-phase flows in porous media
%J Annales mathématiques Blaise Pascal
%D 2007
%P 243-254
%V 14
%N 2
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.234
%R 10.5802/ambp.234
%G en
%F AMBP_2007__14_2_243_0
Vladimir Shelukhin. A degenerate parabolic system for three-phase flows in porous media. Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 2, pp. 243-254. doi : 10.5802/ambp.234. https://ambp.centre-mersenne.org/articles/10.5802/ambp.234/

[1] M. B. Allen; J. B. Behie Multiphase flows in porous media: Mechanics, mathematics and numerics, Springer-Verlag, New York, 1988 (Lecture Notes in Engineering no. 34) | MR | Zbl

[2] H. Amann Dynamic theory of quasi-linear parabolic systems III. Global existence, Math. Z., Volume 202 (1989), pp. 219-250 | DOI | MR | Zbl

[3] Z. Chen; R. E. Ewing Comparison of various formulations of three-phase flow in porous media, Journal of Computational Physics, Volume 132 (1997), pp. 362-373 | DOI | MR | Zbl

[4] H. Frid; V. Shelukhin A quasilinear parabolic system for three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 35 no. 4 (2003), pp. 1029-1041 | DOI | MR | Zbl

[5] H. Frid; V. Shelukhin Initial boundary value problems for a quasilinear parabolic system in three-phase capillary flow in porous media, SIAM J. Math. Anal., Volume 36 no. 5 (2005), pp. 1407-1425 | DOI | MR | Zbl

[6] S. M. Hassanizadeh; W. G. Gray Theormodynamic basis of capillary pressure in porous media, Water Resources Research, Volume 29 (1993), pp. 3389-3405 (no. 10) | DOI

[7] O. A. Ladyženskaja; V. A. Solonnikov; N. N. Ural’ceva Linear and quasi-linear equations of parabolic type, AMS, Rhode Island: Providence, 1968 | Zbl

[8] L. V. Ovsiannikov Group Analysis of Differential Equations, Academic Press, New York, London, 1982 | MR | Zbl

[9] D. W. Peaceman Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific Publishing Company, Amsterdam Oxford New York, 1977

[10] H. L. Stone Probability model for estimating three-phase relative permeability, J. of Petroleum Technology, Volume 22 (1970), pp. 214-218

[11] A. N. Varchenko; A. F. Zazovskii; R. V. Gamkrelidze Three-phase filtration of immiscible fluids, Itogi Nauki i Tekhniki, Seriya Kompleksnie i spetsial’nie Razdely Mekhaniki no. 4 (in Russian), VINITI, 1991, pp. 98-154

Cited by Sources: