We consider variational problems of P. D. E. depending on a small parameter when the limit process implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first time). For each one we prove the sensitive character and we give a formal asymptotics for the behavior .
@article{AMBP_2007__14_2_199_0, author = {Nicolas Meunier and Jacqueline Sanchez-Hubert and \'Evariste Sanchez-Palencia}, title = {Various kinds of sensitive singular perturbations}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {199--242}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {2}, year = {2007}, doi = {10.5802/ambp.233}, mrnumber = {2369872}, zbl = {1153.35011}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.233/} }
TY - JOUR AU - Nicolas Meunier AU - Jacqueline Sanchez-Hubert AU - Évariste Sanchez-Palencia TI - Various kinds of sensitive singular perturbations JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 199 EP - 242 VL - 14 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.233/ DO - 10.5802/ambp.233 LA - en ID - AMBP_2007__14_2_199_0 ER -
%0 Journal Article %A Nicolas Meunier %A Jacqueline Sanchez-Hubert %A Évariste Sanchez-Palencia %T Various kinds of sensitive singular perturbations %J Annales mathématiques Blaise Pascal %D 2007 %P 199-242 %V 14 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.233/ %R 10.5802/ambp.233 %G en %F AMBP_2007__14_2_199_0
Nicolas Meunier; Jacqueline Sanchez-Hubert; Évariste Sanchez-Palencia. Various kinds of sensitive singular perturbations. Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 2, pp. 199-242. doi : 10.5802/ambp.233. https://ambp.centre-mersenne.org/articles/10.5802/ambp.233/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92 | DOI | MR | Zbl
[2] On locking and robustness in the finite element method, SIAM J. Num. Anal., Volume 29 (1992), pp. 1261-1293 | DOI | MR | Zbl
[3] Étude générale d’un type de problèmes raides et de perturbation singulière, C. R. Acad. Sci. Paris Sér. I, Math., Volume 323 (1996) no. 7, pp. 835-840 | Zbl
[4] Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1989 (Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication) | MR | Zbl
[5] Analytic representations and Fourier transforms of analytic functionals in carried by the real space, SIAM J. Math. Anal., Volume 9 (1978) no. 6, pp. 996-1019 | DOI | MR | Zbl
[6] Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[7] Asymptotic expansions, Dover Publications Inc., New York, 1956 | MR | Zbl
[8] Sensitivity phenomena for certain thin elastic shells with edges, Math. Methods Appl. Sci., Volume 23 (2000) no. 4, pp. 379-399 | DOI | MR | Zbl
[9] The Cauchy problem, Partial differential equations, 3 (Russian) (Itogi Nauki i Tekhniki), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, p. 5-98, 220 | MR | Zbl
[10] Les distributions, Collection Universitaire de Mathématiques, VIII, Dunod, Paris, 1962
[11] Phénomènes de perturbation singulière dans les problèmes aux limites, Ann. Inst. Fourier. Grenoble, Volume 10 (1960), pp. 61-150 | DOI | Numdam | MR | Zbl
[12] Linear partial differential equations with constant coefficients, Partial differential equations, II (Encyclopaedia Math. Sci.), Volume 31, Springer, Berlin, 1994, pp. 121-255 | MR | Zbl
[13] Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Springer-Verlag, Berlin, 1973 (Lecture Notes in Mathematics, Vol. 323) | MR | Zbl
[14] Problèmes sensitifs et coques élastiques minces, Partial differential equations and functional analysis (Progr. Nonlinear Differential Equations Appl.), Volume 22, Birkhäuser Boston, Boston, MA, 1996, pp. 207-220 | MR | Zbl
[15] Sensitive versus classical perturbation problem via Fourier transform, Math. Models Methods Appl. Sci. (2007 (to appear)) | MR | Zbl
[16] Vibration and coupling of continuous systems, Springer-Verlag, Berlin, 1989 (Asymptotic methods) | MR | Zbl
[17] Coques élastiques minces, Masson, Paris, 1997 (Propriétés asymptotiques) | Zbl
[18] Singular perturbations with non-smooth limit and finite element approximation of layers for model problems of shells, Partiall Diff. Eq. in Micostructures, F. Ali Mehmet, J. Von Bellow and S. Nicaise ed., Marcel Dekker, 2001, pp. 207-226 | MR | Zbl
[19] Asymptotic and spectral properties of a class of singular-stiff problems, J. Math. Pures Appl. (9), Volume 71 (1992) no. 5, pp. 379-406 | MR | Zbl
[20] Complexification phenomena in certain singular perturbations, Fluid Mechanics, F. J. Higuera, J. Jimenez, J. M. Vegan, ed., CIMNE, Barcelona, 2004, pp. 363-379
[21] Complexification phenomenon in an example of sensitive singular perturbation, C. R. Acad. Sci. Paris Sér. II. Méc., Volume 332 (2004) no. 8, pp. 605-612
[22] Complexification in singular perturbations and their approximation, Int. J. Multiscale Comput. Eng., Volume 3 (2006), pp. 481-498
[23] Théorie des distributions. Tome I, Actualités Sci. Ind., no. 1245. Publ. Inst. Math. Univ. Strasbourg, Hermann & Cie., Paris, 1957 | MR | Zbl
[24] A course of higher mathematics. Vol. III. Part one. Linear algebra, Translated by D. E. Brown. Translation edited by I. N. Sneddon, Pergamon Press, Oxford, 1964 | Zbl
Cited by Sources: