Groups whose proper subgroups are locally finite-by-nilpotent
Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 1, pp. 29-35.

If 𝒳 is a class of groups, then a group G is said to be minimal non 𝒳-group if all its proper subgroups are in the class 𝒳, but G itself is not an 𝒳-group. The main result of this note is that if c>0 is an integer and if G is a minimal non (ℒℱ)𝒩 (respectively, (ℒℱ)𝒩 c )-group, then G is a finitely generated perfect group which has no non-trivial finite factor and such that G/Frat(G) is an infinite simple group; where 𝒩 (respectively, 𝒩 c , ℒℱ) denotes the class of nilpotent (respectively, nilpotent of class at most c, locally finite) groups and Frat(G) stands for the Frattini subgroup of G.

Si 𝒳 est une classe de groupes, alors un groupe G est dit minimal non 𝒳-groupe si tous ses sous-groupes propres sont dans la classe 𝒳, alors que G lui-même n’est pas un 𝒳-groupe. Le principal résultat de cette note affirme que si c>0 est un entier et si G est un groupe minimal non (ℒℱ)𝒩 (respectivement, (ℒℱ)𝒩 c )-groupe, alors G est un groupe parfait, de type fini, n’ayant pas de facteur fini non trivial et tel que G/Frat(G) est un groupe simple infini ; où 𝒩 (respectivement, 𝒩 c , ℒℱ) désigne la classe des groupes nilpotents (respectivement, nilpotents de classe égale au plus à c, localement finis) et Frat(G) est le sous-groupe de Frattini de G.

DOI: 10.5802/ambp.225
Classification: 20F99
Keywords: Locally finite-by-nilpotent proper subgroups, Frattini factor group.
Amel Dilmi 1

1 Department of Mathematics Faculty of Sciences Ferhat Abbas University Setif 19000 ALGERIA
     author = {Amel Dilmi},
     title = {Groups whose proper subgroups are locally finite-by-nilpotent},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {29--35},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     number = {1},
     year = {2007},
     doi = {10.5802/ambp.225},
     mrnumber = {2298722},
     zbl = {1131.20023},
     language = {en},
     url = {}
AU  - Amel Dilmi
TI  - Groups whose proper subgroups are locally finite-by-nilpotent
JO  - Annales mathématiques Blaise Pascal
PY  - 2007
DA  - 2007///
SP  - 29
EP  - 35
VL  - 14
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  -
UR  -
UR  -
UR  -
DO  - 10.5802/ambp.225
LA  - en
ID  - AMBP_2007__14_1_29_0
ER  - 
%0 Journal Article
%A Amel Dilmi
%T Groups whose proper subgroups are locally finite-by-nilpotent
%J Annales mathématiques Blaise Pascal
%D 2007
%P 29-35
%V 14
%N 1
%I Annales mathématiques Blaise Pascal
%R 10.5802/ambp.225
%G en
%F AMBP_2007__14_1_29_0
Amel Dilmi. Groups whose proper subgroups are locally finite-by-nilpotent. Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 1, pp. 29-35. doi : 10.5802/ambp.225.

[1] A.O. Asar Nilpotent-by-Chernikov, J. London Math.Soc, Volume 61 (2000) no. 2, pp. 412-422 | DOI | MR | Zbl

[2] V.V. Belyaev Groups of the Miller-Moreno type, Sibirsk. Mat. Z., Volume 19 (1978) no. 3, pp. 509-514 | MR | Zbl

[3] B. Bruno; R. E. Phillips On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova, Volume 69 (1983), pp. 153-168 | Numdam | MR | Zbl

[4] G. Endimioni; G. Traustason On Torsion-by-nilpotent groups, J. Algebra, Volume 241 (2001) no. 2, pp. 669-676 | DOI | MR | Zbl

[5] M. Kuzucuoglu; R. E. Phillips Locally finite minimal non FC-groups, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 417-420 | DOI | MR | Zbl

[6] M. F. Newman; J. Wiegold Groups with many nilpotent subgroups, Arch. Math., Volume 15 (1964), pp. 241-250 | DOI | MR | Zbl

[7] A. Y. Olshanski An infinite simple torsion-free noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979), pp. 1328-1393 | MR | Zbl

[8] J. Otal; J. M. Pena Groups in which every proper subgroup is Cernikov-by-nilpotent or nilpotent-by-Cernikov, Arch.Math., Volume 51 (1988), pp. 193-197 | DOI | MR | Zbl

[9] D. J. S. Robinson Finiteness conditions and generalized soluble groups, Springer-Verlag, 1972

[10] D. J. S. Robinson A Course in the Theory of Groups, Springer-Verlag, 1982 | MR | Zbl

[11] H Smith Groups with few non-nilpotent subgroups, Glasgow Math. J., Volume 39 (1997), pp. 141-151 | DOI | MR | Zbl

[12] M. Xu Groups whose proper subgroups are Baer groups, Acta. Math. Sinica, Volume 40 (1996), pp. 10-17 | MR | Zbl

[13] M. Xu Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Volume 66 (1996), pp. 353-359 | DOI | MR | Zbl

Cited by Sources: