Hyper–(Abelian–by–finite) groups with many subgroups of finite depth
[Groupes hyper-(Abelien-par-fini) ayant beaucoup de sous-groupes de profondeur finie]
Annales Mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 17-28.

Le principal résultat de cet article est qu’un groupe G hyper-(Abélien-par-fini) de type fini est fini-par-nilpotent si, et seulement si, toute partie infinie de G contient deux éléments distincts x,y tels que γ n (x,x y )=γ n+1 (x,x y ) pour un certain entier positif n=n(x,y) (respectivement, x,x y est une extension d’un groupe vérifiant la condition minimale sur les sous-groupes normaux par un groupe d’Engel).

The main result of this note is that a finitely generated hyper-(Abelian-by-finite) group G is finite-by-nilpotent if and only if every infinite subset contains two distinct elements x, y such that γ n (x,x y ) =γ n+1 (x,x y ) for some positive integer n=n(x,y) (respectively, x,x y is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).

DOI : https://doi.org/10.5802/ambp.224
Classification : 20F22,  20F99
Mots clés : Parties infinies, profondeur finie, Les groupes d’Engel, La condition minimale sur les sous-groupes normaux, les groupes fini-par-nilpotents, les groupes hyper-(Abelien-par-fini) de type fini
@article{AMBP_2007__14_1_17_0,
     author = {Fares Gherbi and Tarek Rouabhi},
     title = {Hyper{\textendash}(Abelian{\textendash}by{\textendash}finite) groups with many subgroups of finite depth},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {17--28},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     number = {1},
     year = {2007},
     doi = {10.5802/ambp.224},
     zbl = {1131.20024},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/}
}
Fares Gherbi; Tarek Rouabhi. Hyper–(Abelian–by–finite) groups with many subgroups of finite depth. Annales Mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 17-28. doi : 10.5802/ambp.224. https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/

[1] A. Abdollahi Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Volume 103 (2000), pp. 47-49 | Numdam | MR 1789531 | Zbl 0966.20019

[2] A. Abdollahi Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc., Volume 62 (2000), pp. 141-148 | Article | MR 1775895 | Zbl 0964.20019

[3] A. Abdollahi; B. Taeri A condition on finitely generated soluble groups, Comm. Algebra, Volume 27 (1999), pp. 5633-5638 | Article | MR 1713058 | Zbl 0942.20014

[4] A. Abdollahi; N. Trabelsi Quelques extensions d’un problème de Paul Erdos sur les groupes, Bull. Belg. Math. Soc., Volume 9 (2002), pp. 205-215 | MR 2017077 | Zbl 1041.20022

[5] A. Boukaroura Characterisation of finitely generated finite-by-nilpotent groups, Rend. Sem. Mat. Univ. Padova, Volume 111 (2004), pp. 119-126 | Numdam | MR 2076735 | Zbl 05058721

[6] C. Delizia; A. H. Rhemtulla; H. Smith Locally graded groups with a nilpotence condition on infinite subsets, J. Austral. Math. Soc. (series A), Volume 69 (2000), pp. 415-420 | Article | MR 1793472 | Zbl 0982.20019

[7] G. Endimioni Groups covered by finitely many nilpotent subgroups, Bull. Austral. Math. Soc., Volume 50 (1994), pp. 459-464 | Article | MR 1303902 | Zbl 0824.20034

[8] G. Endimioni Groups in which certain equations have many solutions, Rend. Sem. Mat. Univ. Padova, Volume 106 (2001), pp. 77-82 | Numdam | MR 1876214 | Zbl 1072.20035

[9] E. S. Golod Some problems of Burnside type, Amer. Math. Soc. Transl. Ser. 2, Volume 84 (1969), pp. 83-88 | MR 238880 | Zbl 0206.32402

[10] P. Hall Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc., Volume 52 (1956), pp. 611-616 | Article | MR 80095 | Zbl 0072.25801

[11] J. C. Lennox Finitely generated soluble groups in which all subgroups have finite lower central depth, Bull. London Math. Soc., Volume 7 (1975), pp. 273-278 | Article | MR 382448 | Zbl 0314.20029

[12] J. C. Lennox Lower central depth in finitely generated soluble-by-finite groups, Glasgow Math. J., Volume 19 (1978), p. 153-154 | Article | MR 486159 | Zbl 0394.20027

[13] J. C. Lennox; J. Wiegold Extensions of a problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A, Volume 31 (1981), pp. 459-463 | Article | MR 638274 | Zbl 0492.20019

[14] P. Longobardi On locally graded groups with an Engel condition on infinite subsets, Arch. Math., Volume 76 (2001), pp. 88-90 | Article | MR 1811284 | Zbl 0981.20027

[15] P. Longobardi; M. Maj Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Volume 89 (1993), pp. 97-102 | Numdam | MR 1229046 | Zbl 0797.20031

[16] B. H. Neumann A problem of Paul Erdos on groups, J. Austral. Math. Soc. ser. A, Volume 21 (1976), pp. 467-472 | Article | MR 419283 | Zbl 0333.05110

[17] D. J. S. Robinson Finiteness conditions and generalized soluble groups, Springer-Verlag, Berlin, Heidelberg, New York, 1972 | Zbl 0243.20032

[18] D. J. S. Robinson A course in the theory of groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982 | MR 648604 | Zbl 0483.20001

[19] D. Segal A residual property of finitely generated abelian by nilpotent groups, J. Algebra, Volume 32 (1974), pp. 389-399 | Article | MR 419612 | Zbl 0293.20029

[20] D. Segal Polycyclic groups, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984 | MR 713786 | Zbl 0516.20001

[21] B. Taeri A question of P. Erdos and nilpotent-by-finite groups, Bull. Austral. Math. Soc., Volume 64 (2001), pp. 245-254 | Article | MR 1860061 | Zbl 0995.20020

[22] N. Trabelsi Finitely generated soluble groups with a condition on infinite subsets, Algebra Colloq., Volume 9 (2002), pp. 427-432 | MR 1933851 | Zbl 1035.20030

[23] N. Trabelsi Soluble groups with many 2-generator torsion-by-nilpotent subgroups, Publ. Math. Debrecen, Volume 67/1-2 (2005), pp. 93-102 | MR 2163117 | Zbl 02201546

Cité par document(s). Sources :