Si est une classe de groupes, alors un groupe est dit minimal non -groupe si tous ses sous-groupes propres sont dans la classe , alors que lui-même n’est pas un -groupe. Le principal résultat de cette note affirme que si est un entier et si est un groupe minimal non (respectivement, )-groupe, alors est un groupe parfait, de type fini, n’ayant pas de facteur fini non trivial et tel que est un groupe simple infini ; où (respectivement, , ) désigne la classe des groupes nilpotents (respectivement, nilpotents de classe égale au plus à , localement finis) et est le sous-groupe de Frattini de .
If is a class of groups, then a group is said to be minimal non -group if all its proper subgroups are in the class , but itself is not an -group. The main result of this note is that if is an integer and if is a minimal non (respectively, )-group, then is a finitely generated perfect group which has no non-trivial finite factor and such that is an infinite simple group; where (respectively, , ) denotes the class of nilpotent (respectively, nilpotent of class at most , locally finite) groups and stands for the Frattini subgroup of .
Mots clés : Locally finite-by-nilpotent proper subgroups, Frattini factor group.
Amel Dilmi 1
@article{AMBP_2007__14_1_29_0, author = {Amel Dilmi}, title = {Groups whose proper subgroups are locally finite-by-nilpotent}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {29--35}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {1}, year = {2007}, doi = {10.5802/ambp.225}, mrnumber = {2298722}, zbl = {1131.20023}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.225/} }
TY - JOUR AU - Amel Dilmi TI - Groups whose proper subgroups are locally finite-by-nilpotent JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 29 EP - 35 VL - 14 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.225/ DO - 10.5802/ambp.225 LA - en ID - AMBP_2007__14_1_29_0 ER -
%0 Journal Article %A Amel Dilmi %T Groups whose proper subgroups are locally finite-by-nilpotent %J Annales mathématiques Blaise Pascal %D 2007 %P 29-35 %V 14 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.225/ %R 10.5802/ambp.225 %G en %F AMBP_2007__14_1_29_0
Amel Dilmi. Groups whose proper subgroups are locally finite-by-nilpotent. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 29-35. doi : 10.5802/ambp.225. https://ambp.centre-mersenne.org/articles/10.5802/ambp.225/
[1] Nilpotent-by-Chernikov, J. London Math.Soc, Volume 61 (2000) no. 2, pp. 412-422 | DOI | MR | Zbl
[2] Groups of the Miller-Moreno type, Sibirsk. Mat. Z., Volume 19 (1978) no. 3, pp. 509-514 | MR | Zbl
[3] On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova, Volume 69 (1983), pp. 153-168 | Numdam | MR | Zbl
[4] On Torsion-by-nilpotent groups, J. Algebra, Volume 241 (2001) no. 2, pp. 669-676 | DOI | MR | Zbl
[5] Locally finite minimal non FC-groups, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 417-420 | DOI | MR | Zbl
[6] Groups with many nilpotent subgroups, Arch. Math., Volume 15 (1964), pp. 241-250 | DOI | MR | Zbl
[7] An infinite simple torsion-free noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979), pp. 1328-1393 | MR | Zbl
[8] Groups in which every proper subgroup is Cernikov-by-nilpotent or nilpotent-by-Cernikov, Arch.Math., Volume 51 (1988), pp. 193-197 | DOI | MR | Zbl
[9] Finiteness conditions and generalized soluble groups, Springer-Verlag, 1972
[10] A Course in the Theory of Groups, Springer-Verlag, 1982 | MR | Zbl
[11] Groups with few non-nilpotent subgroups, Glasgow Math. J., Volume 39 (1997), pp. 141-151 | DOI | MR | Zbl
[12] Groups whose proper subgroups are Baer groups, Acta. Math. Sinica, Volume 40 (1996), pp. 10-17 | MR | Zbl
[13] Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Volume 66 (1996), pp. 353-359 | DOI | MR | Zbl
Cité par Sources :