[Groupes hyper-(Abelien-par-fini) ayant beaucoup de sous-groupes de profondeur finie]
Le principal résultat de cet article est qu’un groupe hyper-(Abélien-par-fini) de type fini est fini-par-nilpotent si, et seulement si, toute partie infinie de contient deux éléments distincts tels que pour un certain entier positif (respectivement, est une extension d’un groupe vérifiant la condition minimale sur les sous-groupes normaux par un groupe d’Engel).
The main result of this note is that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent if and only if every infinite subset contains two distinct elements , such that for some positive integer (respectively, is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).
Keywords: Infinite subsets, finite depth, Engel groups, minimal condition on normal subgroups, finite-by-nilpotent groups, finitely generated hyper-(Abelian-by-finite) groups
Mot clés : Parties infinies, profondeur finie, Les groupes d’Engel, La condition minimale sur les sous-groupes normaux, les groupes fini-par-nilpotents, les groupes hyper-(Abelien-par-fini) de type fini
Fares Gherbi 1 ; Tarek Rouabhi 1
@article{AMBP_2007__14_1_17_0, author = {Fares Gherbi and Tarek Rouabhi}, title = {Hyper{\textendash}(Abelian{\textendash}by{\textendash}finite) groups with many subgroups of finite depth}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {17--28}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {1}, year = {2007}, doi = {10.5802/ambp.224}, zbl = {1131.20024}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/} }
TY - JOUR AU - Fares Gherbi AU - Tarek Rouabhi TI - Hyper–(Abelian–by–finite) groups with many subgroups of finite depth JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 17 EP - 28 VL - 14 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/ DO - 10.5802/ambp.224 LA - en ID - AMBP_2007__14_1_17_0 ER -
%0 Journal Article %A Fares Gherbi %A Tarek Rouabhi %T Hyper–(Abelian–by–finite) groups with many subgroups of finite depth %J Annales mathématiques Blaise Pascal %D 2007 %P 17-28 %V 14 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/ %R 10.5802/ambp.224 %G en %F AMBP_2007__14_1_17_0
Fares Gherbi; Tarek Rouabhi. Hyper–(Abelian–by–finite) groups with many subgroups of finite depth. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 17-28. doi : 10.5802/ambp.224. https://ambp.centre-mersenne.org/articles/10.5802/ambp.224/
[1] Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Volume 103 (2000), pp. 47-49 | Numdam | MR | Zbl
[2] Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc., Volume 62 (2000), pp. 141-148 | DOI | MR | Zbl
[3] A condition on finitely generated soluble groups, Comm. Algebra, Volume 27 (1999), pp. 5633-5638 | DOI | MR | Zbl
[4] Quelques extensions d’un problème de Paul Erdos sur les groupes, Bull. Belg. Math. Soc., Volume 9 (2002), pp. 205-215 | MR | Zbl
[5] Characterisation of finitely generated finite-by-nilpotent groups, Rend. Sem. Mat. Univ. Padova, Volume 111 (2004), pp. 119-126 | Numdam | MR | Zbl
[6] Locally graded groups with a nilpotence condition on infinite subsets, J. Austral. Math. Soc. (series A), Volume 69 (2000), pp. 415-420 | DOI | MR | Zbl
[7] Groups covered by finitely many nilpotent subgroups, Bull. Austral. Math. Soc., Volume 50 (1994), pp. 459-464 | DOI | MR | Zbl
[8] Groups in which certain equations have many solutions, Rend. Sem. Mat. Univ. Padova, Volume 106 (2001), pp. 77-82 | Numdam | MR | Zbl
[9] Some problems of Burnside type, Amer. Math. Soc. Transl. Ser. 2, Volume 84 (1969), pp. 83-88 | MR | Zbl
[10] Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc., Volume 52 (1956), pp. 611-616 | DOI | MR | Zbl
[11] Finitely generated soluble groups in which all subgroups have finite lower central depth, Bull. London Math. Soc., Volume 7 (1975), pp. 273-278 | DOI | MR | Zbl
[12] Lower central depth in finitely generated soluble-by-finite groups, Glasgow Math. J., Volume 19 (1978), pp. 153-154 | DOI | MR | Zbl
[13] Extensions of a problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A, Volume 31 (1981), pp. 459-463 | DOI | MR | Zbl
[14] On locally graded groups with an Engel condition on infinite subsets, Arch. Math., Volume 76 (2001), pp. 88-90 | DOI | MR | Zbl
[15] Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Volume 89 (1993), pp. 97-102 | Numdam | MR | Zbl
[16] A problem of Paul Erdos on groups, J. Austral. Math. Soc. ser. A, Volume 21 (1976), pp. 467-472 | DOI | MR | Zbl
[17] Finiteness conditions and generalized soluble groups, Springer-Verlag, Berlin, Heidelberg, New York, 1972 | Zbl
[18] A course in the theory of groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982 | MR | Zbl
[19] A residual property of finitely generated abelian by nilpotent groups, J. Algebra, Volume 32 (1974), pp. 389-399 | DOI | MR | Zbl
[20] Polycyclic groups, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984 | MR | Zbl
[21] A question of P. Erdos and nilpotent-by-finite groups, Bull. Austral. Math. Soc., Volume 64 (2001), pp. 245-254 | DOI | MR | Zbl
[22] Finitely generated soluble groups with a condition on infinite subsets, Algebra Colloq., Volume 9 (2002), pp. 427-432 | MR | Zbl
[23] Soluble groups with many 2-generator torsion-by-nilpotent subgroups, Publ. Math. Debrecen, Volume 67/1-2 (2005), pp. 93-102 | MR | Zbl
Cité par Sources :