In [6], there is a graphic description of any irreducible, finite dimensional module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional -modules.
In the present work, we generalize this construction to . We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of . The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux. To compute the matrix coefficients of the representation in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker relations defining the reduced shape algebra.
Didier Arnal 1 ; Nadia Bel Baraka 1 ; Norman J. Wildberger 2
@article{AMBP_2006__13_2_381_0,
author = {Didier Arnal and Nadia Bel Baraka and Norman J. Wildberger},
title = {Diamond representations of $\mathfrak{sl}(n)$},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {381--429},
year = {2006},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {13},
number = {2},
doi = {10.5802/ambp.222},
mrnumber = {2275452},
zbl = {1120.17005},
language = {en},
url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.222/}
}
TY - JOUR
AU - Didier Arnal
AU - Nadia Bel Baraka
AU - Norman J. Wildberger
TI - Diamond representations of $\mathfrak{sl}(n)$
JO - Annales mathématiques Blaise Pascal
PY - 2006
SP - 381
EP - 429
VL - 13
IS - 2
PB - Annales mathématiques Blaise Pascal
UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.222/
DO - 10.5802/ambp.222
LA - en
ID - AMBP_2006__13_2_381_0
ER -
%0 Journal Article
%A Didier Arnal
%A Nadia Bel Baraka
%A Norman J. Wildberger
%T Diamond representations of $\mathfrak{sl}(n)$
%J Annales mathématiques Blaise Pascal
%D 2006
%P 381-429
%V 13
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.222/
%R 10.5802/ambp.222
%G en
%F AMBP_2006__13_2_381_0
Didier Arnal; Nadia Bel Baraka; Norman J. Wildberger. Diamond representations of $\mathfrak{sl}(n)$. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 381-429. doi: 10.5802/ambp.222
[1] Ideals, varieties, and algorithms, Springer-Verlag, New York, 1996 | Zbl
[2] Representation theory, Springer-Verlag, New York, 1991 | Zbl | MR
[3] Bases cristallines des groupes quantiques, Soc. Math. France, Paris, 2002 | Zbl | MR
[4] Representation-functors and flag-algebras for the classical groups, J. Algebra, Volume 59 (1979) | DOI | Zbl | MR
[5] Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Berlin, 1984 | Zbl | MR
[6] Quarks, diamonds and representation of (2005) (Submitted)
Cité par Sources :
