Let be a differential manifold. Let be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on and its cohomology ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on -structures, explanation of the Etingof-Kazhdan quantization-dequantization theorem, of Tamarkin’s cohomological obstruction and of globalization process needed to get the formality theorem. Finally, we prove here that Tamarkin’s formality maps can be globalized.
@article{AMBP_2006__13_2_313_0, author = {Gilles Halbout}, title = {Formality theorems: from associators to a global formulation}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {313--348}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {13}, number = {2}, year = {2006}, doi = {10.5802/ambp.220}, mrnumber = {2275450}, zbl = {1112.53067}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.220/} }
TY - JOUR AU - Gilles Halbout TI - Formality theorems: from associators to a global formulation JO - Annales mathématiques Blaise Pascal PY - 2006 SP - 313 EP - 348 VL - 13 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.220/ DO - 10.5802/ambp.220 LA - en ID - AMBP_2006__13_2_313_0 ER -
%0 Journal Article %A Gilles Halbout %T Formality theorems: from associators to a global formulation %J Annales mathématiques Blaise Pascal %D 2006 %P 313-348 %V 13 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.220/ %R 10.5802/ambp.220 %G en %F AMBP_2006__13_2_313_0
Gilles Halbout. Formality theorems: from associators to a global formulation. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 313-348. doi : 10.5802/ambp.220. https://ambp.centre-mersenne.org/articles/10.5802/ambp.220/
[1] The double bar and cobar constructions, Compos. Math, Volume 43 (1981), pp. 331-341 | Numdam | MR | Zbl
[2] Covariant and equivariant formality theorems, Adv. Math., Volume 191 (2005), pp. 147-177 | DOI | MR | Zbl
[3] Quasi-Hopf algebras, Leningrad Math. J., Volume 1 (1990), pp. 1419-1457 | MR
[4] Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1993, pp. 798-820 | MR
[5] A cohomological construction of quantization functors of Lie bialgebras, Adv. Math., Volume 197 (2005), pp. 430-479 | DOI | MR | Zbl
[6] Quantization of Lie bialgebras. I, Selecta Math. (N.S.), Volume 2 (1996), pp. 1-41 | DOI | MR | Zbl
[7] Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.), Volume 4 (1998), p. 213-231, 233-269 | DOI | MR | Zbl
[8] A simple geometrical construction of deformation quantization, J. Diff. Geom., Volume 40 (1994), pp. 213-238 | MR | Zbl
[9] Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices, Volume 3 (1995), pp. 141-153 | DOI | MR | Zbl
[10] Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal, Volume 11 (2004), pp. 95-127 | DOI | Numdam | MR | Zbl
[11] A formality theorem for Poisson manifold, Lett. Math. Phys., Volume 66 (2003), pp. 37-64 | DOI | MR | Zbl
[12] Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 | DOI | MR | Zbl
[13] Formule d’homotopie entre les complexes de Hochschild et de de Rham, Compositio Math., Volume 126 (2001), pp. 123-145 | DOI | MR | Zbl
[14] Tamarkin’s proof of Kontsevich’s formality theorem, Forum Math., Volume 15 (2003), pp. 591-614 | DOI | MR | Zbl
[15] Differential forms on regular affine algebras, Transactions AMS, Volume 102 (1962), pp. 383-408 | DOI | MR | Zbl
[16] Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math., Volume 408 (1990), pp. 159-180 | DOI | MR | Zbl
[17] Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys., Volume 202 (1999), pp. 309-323 | DOI | MR | Zbl
[18] Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud., Volume 20 (1996), pp. 139-156 | MR | Zbl
[19] Deformation quantization of Poisson manifolds, I, Lett. Math. Phys., Volume 66 (2003), pp. 157-216 | DOI | MR | Zbl
[20] Deformations of algebras over operads and the Deligne conjecture (2000), pp. 255-307 | MR | Zbl
[21] A homotopy formula for the Hochschild cohomology, Compositio Math., Volume 96 (1995), pp. 99-109 | Numdam | MR | Zbl
[22] Another proof of M. Kontsevich’s formality theorem (1998) (math.QA/9803025)
[23] Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., 22, 2000, pp. 307-331 | MR | Zbl
Cité par Sources :