We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.
@article{AMBP_2005__12_2_259_0, author = {Khalil El Mehdi}, title = {Prescribing $Q$-curvature on higher dimensional spheres}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {259--295}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {2}, year = {2005}, doi = {10.5802/ambp.207}, zbl = {05016092}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.207/} }
TY - JOUR AU - Khalil El Mehdi TI - Prescribing $Q$-curvature on higher dimensional spheres JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 259 EP - 295 VL - 12 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.207/ DO - 10.5802/ambp.207 LA - en ID - AMBP_2005__12_2_259_0 ER -
%0 Journal Article %A Khalil El Mehdi %T Prescribing $Q$-curvature on higher dimensional spheres %J Annales mathématiques Blaise Pascal %D 2005 %P 259-295 %V 12 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.207/ %R 10.5802/ambp.207 %G en %F AMBP_2005__12_2_259_0
Khalil El Mehdi. Prescribing $Q$-curvature on higher dimensional spheres. Annales mathématiques Blaise Pascal, Volume 12 (2005) no. 2, pp. 259-295. doi : 10.5802/ambp.207. https://ambp.centre-mersenne.org/articles/10.5802/ambp.207/
[1] Une hypothèse de topologie algebrique pour le problème de la courbure scalaire prescrite, J Math. Pures Appl., Volume 76 (1997), pp. 843-850 | DOI | MR | Zbl
[2] Some nonlinear problems in differential geometry, Springer-Verlag, New York, 1997
[3] On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 255-294 | DOI | MR | Zbl
[4] Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non linéaire, Volume 8 (1991), pp. 561-649 | Numdam | MR | Zbl
[5] Critical point at infinity in some variational problems, Pitman Res. Notes Math Ser 182, Longman Sci. Tech. Harlow, 1989 | MR | Zbl
[6] An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. Journal, Volume 81 (1996), pp. 323-466 | DOI | MR | Zbl
[7] On the prescribed scalar curvature problem on 4- manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677 | DOI | MR | Zbl
[8] The Paneitz curvature problem on lower dimensional spheres, Preprint The Abdus Salam ICTP, Trieste, Italy, Volume 48 (2003) | MR | Zbl
[9] Existence of conformal metrics on spheres with prescribed Paneitz curvature, Manuscripta Math, Volume 114 (2004), pp. 211-228 | MR | Zbl
[10] Critical points at infinity in a fourth order elliptic problem with limiting exponent, Nonlinear Anal. TMA, Volume 59 (2004), pp. 891-916 | MR | Zbl
[11] Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys., Volume 149 (1992), pp. 241-262 | DOI | MR | Zbl
[12] Differential operators canonically associated to a conformal structure, Math. Scand., Volume 57 (1985), pp. 293-345 | EuDML | MR | Zbl
[13] Group representations arising from Lorentz conformal geometry, J. Funct. Anal., Volume 74 (1987), pp. 199-291 | DOI | MR | Zbl
[14] Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., Volume 89 (1985), pp. 21-56 | DOI | MR | Zbl
[15] Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math., Volume 121 (1999), pp. 215-257 | DOI | MR | Zbl
[16] Compactification for a class of conformally flat 4-manifolds, Invent. Math., Volume 142 (2000), pp. 65-93 | DOI | MR | Zbl
[17] On the Chern-Gauss-Bonnet integral for conformal metrics on R4, Duke Math. J., Volume 103 (2000), pp. 523-544 | DOI | MR | Zbl
[18] On a fourth order curvature invariant, Spectral problems in Geometry and Arithmetic, Contemporary Math., Volume 237 (1999), pp. 9-28 | Zbl
[19] On Paneitz operator - fourth order differential operator in conformal geometry, Harmonic Analysis and PDE; Essays in Honor of A. P. Calderon, Editors: M. Christ, C. Kenig and C. Sadorsky; Chicago Lectures in Mathematics, Volume Chapter 8 (1999), pp. 127-150 | Zbl
[20] Prescribing the scalar curvature problem on three and four manifolds, Adv. Nonlinear Stud., Volume 3 (2003), pp. 457-469 | MR | Zbl
[21] Paneitz-type operators and applications, Duke Math. J., Volume 104 (2000), pp. 129-169 | DOI | MR | Zbl
[22] Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, Commun. Contemp. Math., Volume 4 (2002), pp. 357-408 | DOI | MR | Zbl
[23] Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow up analysis and applications, Annali della Scuola Normale Sup. di Pisa, Volume 5 (2002), pp. 387-434 | EuDML | Numdam | MR | Zbl
[24] Mountain pass critical points for Paneitz-Branson operators, Calc. Var. Partial Differential Equations, Volume 15 (2002), pp. 493-517 | DOI | MR | Zbl
[25] Existence of conformal metrics on Sn with prescribed fourth-order invariant, Adv. Differential Equations, Volume 7 (2002), pp. 47-76 | MR | Zbl
[26] The Weyl functional, de Rham cohomology and Khaler-Einstein metrics, Ann. of Math., Volume 148 (1998), pp. 315-337 | DOI | MR | Zbl
[27] A classification of solutions of a conformally invariant fourth order equation in Rn, Commentari Mathematici Helvetici, Volume 73 (1998), pp. 206-231 | DOI | MR | Zbl
[28] The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, Volume 1 (1985), p. I: 165-201; II: 45-121 | EuDML | MR | Zbl
[29] Lectures on h-Cobordism Theorem, Princeton University Press, Princeton, 1965 | MR | Zbl
[30] A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (1983) (Preprint)
[31] A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z., Volume 187 (1984), pp. 511-517 | DOI | EuDML | MR | Zbl
[32] On conformal deformations of metrics on Sn, J. Funct. Anal., Volume 157 (1998), pp. 292-325 | DOI | MR | Zbl
[33] Positivity of Paneitz operators, Discrete Contin. Dyn. Syst., Volume 7 (2001), pp. 329-342 | DOI | MR | Zbl
Cited by Sources: