Towards a theory of some unbounded linear operators on p-adic Hilbert spaces and applications
Annales mathématiques Blaise Pascal, Volume 12 (2005) no. 1, pp. 205-222.

We are concerned with some unbounded linear operators on the so-called p-adic Hilbert space 𝔼 ω . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on 𝔼 ω , and the solvability of the equation Au=v where A is a linear operator on 𝔼 ω .

DOI: 10.5802/ambp.203
Toka Diagana 1

1 Howard University Department of Mathematics 2441 6th Street N.W. Washington, D.C. 20059 U.S.A.
@article{AMBP_2005__12_1_205_0,
     author = {Toka Diagana},
     title = {Towards a theory of some unbounded linear operators on $p$-adic {Hilbert} spaces and applications},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {205--222},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {1},
     year = {2005},
     doi = {10.5802/ambp.203},
     mrnumber = {2126449},
     zbl = {1087.47061},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/}
}
TY  - JOUR
AU  - Toka Diagana
TI  - Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
DA  - 2005///
SP  - 205
EP  - 222
VL  - 12
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/
UR  - https://www.ams.org/mathscinet-getitem?mr=2126449
UR  - https://zbmath.org/?q=an%3A1087.47061
UR  - https://doi.org/10.5802/ambp.203
DO  - 10.5802/ambp.203
LA  - en
ID  - AMBP_2005__12_1_205_0
ER  - 
%0 Journal Article
%A Toka Diagana
%T Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications
%J Annales mathématiques Blaise Pascal
%D 2005
%P 205-222
%V 12
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.203
%R 10.5802/ambp.203
%G en
%F AMBP_2005__12_1_205_0
Toka Diagana. Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications. Annales mathématiques Blaise Pascal, Volume 12 (2005) no. 1, pp. 205-222. doi : 10.5802/ambp.203. https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/

[1] S. Albeverio; J. M. Bayod; C. Perez-Gargia; R. Cianci; A. Y. Khrennikov Non-Archimedean Analogues of Orthogonal and Symmetric Operators and p-adic Quantization, Acta Appl. Math., Volume 57 (1999) no. 3, pp. 205-237 | DOI | MR | Zbl

[2] S. Basu; T. Diagana; F. Ramaroson A p-adic Version of Hilbert-Schmidt Operators and Applications, J. Anal. Appl., Volume 2 (2004) no. 3, pp. 173-188 | MR | Zbl

[3] B. Diarra; S. Ludkovsky Spectral Integration and Spectral Theory for Non-Archimedean Banach Spaces, Int. J. Math. Math. Sci., Volume 31 (2002) no. 7, pp. 421-442 | DOI | MR | Zbl

[4] B. Diarra An Operator on Some Ultrametric Hilbert spaces, J. Analysis, Volume 6 (1998), pp. 55-74 | MR | Zbl

[5] B. Diarra Geometry of the p-adic Hilbert Spaces, Preprint (1999)

[6] H. A. Keller; H. Ochsenius Algebras of Bounded Operators on nonclassical orthomodular spaces. Proceedings of the International Quantum Structures Association, Part III (Castiglioncello, 1992), Internat. J. Theoret. Phys., Volume 33 (1994) no. 1, pp. 1-11 | DOI | MR | Zbl

[7] A. Y. Khrennikov Mathematical Methods in Non-Archimedean Physics. (Russian)., Uspekhi Math. Nauk., Volume 45 (1990) no. (4)(279), pp. 79-110 79-110, 192; Translation in Russian Math. Surveys 45 (1990), no. 4, 87-125 | MR | Zbl

[8] A. Y. Khrennikov Generalized Functions on a Non-Archimedean Super Space, (Russian) Izv. Akad. Nauk SSSR Ser. Math., Volume 55 (1991) no. 6, pp. 1257-1286 | MR | Zbl

[9] A. Y. Khrennikov p-adic Quantum Mechanics with p-adic Valued Functions, J. Math. Phys., Volume 32 (1991) no. 4, pp. 932-937 | DOI | MR | Zbl

[10] H. Ochsenius; W. H. Schikhof Banach Spaces Over Fields With An Infinite Rank Valuation, p-adic Functional Analysis (Poznań, 1998), Lectures Notes in Pure and Appl. Math., Volume 207 (1999), pp. 233-293 (Dekker, New York) | MR | Zbl

[11] A. C. M. van Rooij Non-Archimedean Functional Analysis, Marcel Dekker, Inc., 1978 | MR | Zbl

Cited by Sources: