Weyl-Heisenberg frame in p-adic analysis
Annales mathématiques Blaise Pascal, Volume 12 (2005) no. 1, pp. 195-203.

In this paper, we establish an one-to-one mapping between complex-valued functions defined on R + {0} and complex-valued functions defined on p-adic number field Q p , and introduce the definition and method of Weyl-Heisenberg frame on hormonic analysis to p-adic anylysis.

DOI: 10.5802/ambp.202
Minggen Cui 1; Xueqin Lv 2

1 Harbin Institute of Technology Department of Mathematics WEN HUA XI ROAD WEIHAI Shan Dong, 264209 P.R.China
2 Harbin Normal University Department of Information Science HE XING ROAD Harbin HeiLongJiang, 150001 P.R.China
@article{AMBP_2005__12_1_195_0,
     author = {Minggen Cui and Xueqin Lv},
     title = {Weyl-Heisenberg frame in $p$-adic analysis},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {195--203},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {1},
     year = {2005},
     doi = {10.5802/ambp.202},
     mrnumber = {2126448},
     zbl = {02215257},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.202/}
}
TY  - JOUR
AU  - Minggen Cui
AU  - Xueqin Lv
TI  - Weyl-Heisenberg frame in $p$-adic analysis
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
DA  - 2005///
SP  - 195
EP  - 203
VL  - 12
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.202/
UR  - https://www.ams.org/mathscinet-getitem?mr=2126448
UR  - https://zbmath.org/?q=an%3A02215257
UR  - https://doi.org/10.5802/ambp.202
DO  - 10.5802/ambp.202
LA  - en
ID  - AMBP_2005__12_1_195_0
ER  - 
%0 Journal Article
%A Minggen Cui
%A Xueqin Lv
%T Weyl-Heisenberg frame in $p$-adic analysis
%J Annales mathématiques Blaise Pascal
%D 2005
%P 195-203
%V 12
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.202
%R 10.5802/ambp.202
%G en
%F AMBP_2005__12_1_195_0
Minggen Cui; Xueqin Lv. Weyl-Heisenberg frame in $p$-adic analysis. Annales mathématiques Blaise Pascal, Volume 12 (2005) no. 1, pp. 195-203. doi : 10.5802/ambp.202. https://ambp.centre-mersenne.org/articles/10.5802/ambp.202/

[1] MingGen Cui; GuangHong Gao On the wavelet transform in the field p of p-adic Numbers, Applied and Computational Hormonic Analysis, Volume 13 (2002), pp. 162-168 | DOI | MR | Zbl

[2] MingGen Cui; YanYing Zhang The Heisenberg Uncertainty Relation In Harmonic Analysis On p-adic Numbers Field (Dans ce fascicule des Annales Mathématiques Blaise Pascal) | Numdam | Zbl

[3] HuanMin Yao MingGen Cui; HuanPing Liu The Affine Frame In p-adic Analysis, Annales Mathématiques Blaise Pascal, Volume 10 (2003), pp. 297-303 (math.66) | DOI | Numdam | MR | Zbl

[4] S.V Kozyrev Wavelet theory as p-adic spectral analysis, Izv.Russ.Akad.Nauk,Ser, Volume 2 (2002), pp. 149-158 | MR | Zbl

[5] V. S. Vladimirov; I. V. Volovich; E. I. Zelenov p-adic Analysis and Mathematical Physics, World Scientific, 1994 | MR | Zbl

Cited by Sources: