We are concerned with some unbounded linear operators on the so-called -adic Hilbert space . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on , and the solvability of the equation where is a linear operator on .
@article{AMBP_2005__12_1_205_0, author = {Toka Diagana}, title = {Towards a theory of some unbounded linear operators on $p$-adic {Hilbert} spaces and applications}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {205--222}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {1}, year = {2005}, doi = {10.5802/ambp.203}, mrnumber = {2126449}, zbl = {1087.47061}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/} }
TY - JOUR AU - Toka Diagana TI - Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 205 EP - 222 VL - 12 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/ DO - 10.5802/ambp.203 LA - en ID - AMBP_2005__12_1_205_0 ER -
%0 Journal Article %A Toka Diagana %T Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications %J Annales mathématiques Blaise Pascal %D 2005 %P 205-222 %V 12 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/ %R 10.5802/ambp.203 %G en %F AMBP_2005__12_1_205_0
Toka Diagana. Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 205-222. doi : 10.5802/ambp.203. https://ambp.centre-mersenne.org/articles/10.5802/ambp.203/
[1] Non-Archimedean Analogues of Orthogonal and Symmetric Operators and -adic Quantization, Acta Appl. Math., Volume 57 (1999) no. 3, pp. 205-237 | DOI | MR | Zbl
[2] A -adic Version of Hilbert-Schmidt Operators and Applications, J. Anal. Appl., Volume 2 (2004) no. 3, pp. 173-188 | MR | Zbl
[3] Spectral Integration and Spectral Theory for Non-Archimedean Banach Spaces, Int. J. Math. Math. Sci., Volume 31 (2002) no. 7, pp. 421-442 | DOI | MR | Zbl
[4] An Operator on Some Ultrametric Hilbert spaces, J. Analysis, Volume 6 (1998), pp. 55-74 | MR | Zbl
[5] Geometry of the -adic Hilbert Spaces, Preprint (1999)
[6] Algebras of Bounded Operators on nonclassical orthomodular spaces. Proceedings of the International Quantum Structures Association, Part III (Castiglioncello, 1992), Internat. J. Theoret. Phys., Volume 33 (1994) no. 1, pp. 1-11 | DOI | MR | Zbl
[7] Mathematical Methods in Non-Archimedean Physics. (Russian)., Uspekhi Math. Nauk., Volume 45 (1990) no. (4)(279), pp. 79-110 79-110, 192; Translation in Russian Math. Surveys 45 (1990), no. 4, 87-125 | MR | Zbl
[8] Generalized Functions on a Non-Archimedean Super Space, (Russian) Izv. Akad. Nauk SSSR Ser. Math., Volume 55 (1991) no. 6, pp. 1257-1286 | MR | Zbl
[9] -adic Quantum Mechanics with -adic Valued Functions, J. Math. Phys., Volume 32 (1991) no. 4, pp. 932-937 | DOI | MR | Zbl
[10] Banach Spaces Over Fields With An Infinite Rank Valuation, -adic Functional Analysis (Poznań, 1998), Lectures Notes in Pure and Appl. Math., Volume 207 (1999), pp. 233-293 (Dekker, New York) | MR | Zbl
[11] Non-Archimedean Functional Analysis, Marcel Dekker, Inc., 1978 | MR | Zbl
Cité par Sources :