Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration
Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 2, pp. 315-326.

The aim of this work is to enumerate the standard subalgebras of a semisimple Lie algebra. The computations are based on the approach developed by Yu. Khakimdjanov in 1974. In this paper, we give a general formula for the number of standard subalgebras not necessarly nilpotent of a semisimple Lie algebra of type A p and the exceptional semisimple Lie algebras. With computer aided, we enumerate this number for the other types of small rank. Therefore, We deduce the number in the nilpotent case and describe a family of complete nilpotent standard subalgebras, these algebras are the nilradical of their normalizer.

@article{AMBP_2003__10_2_315_0,
     author = {B. Es Saadi and Yu. Khakimdjanov and A. Makhlouf},
     title = {Standard {Subalgebras} of {Semisimple} {Lie} {Algebras} and {Computer-Aided} for {Enumeration}},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {315--326},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {2},
     year = {2003},
     doi = {10.5802/ambp.180},
     mrnumber = {2031275},
     zbl = {1107.17005},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.180/}
}
B. Es Saadi; Yu. Khakimdjanov; A. Makhlouf. Standard Subalgebras of Semisimple Lie Algebras and Computer-Aided for Enumeration. Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 2, pp. 315-326. doi : 10.5802/ambp.180. https://ambp.centre-mersenne.org/articles/10.5802/ambp.180/

[1] P. Cellini; P. Papi Ad-nilpotent ideals of a Borel subalgebras, Journal of algebra, Volume 225 (2000) | Article | MR 1743654 | Zbl 0951.17003

[2] G. Favre; L. Santharoubane Nilpotent Lie algebras of classical type, Journal of algebra, Volume 202 (1998) | Article | MR 1617679 | Zbl 0978.17018

[3] G. B. Gurevich Standard Lie algebras, Math Sbornik (1954) | MR 73929

[4] Y. Khakimdjanov Standard subalgebras of reductive Lie algebras, Moscow University Mathematics Bulletin, Volume 29 (1974) | MR 382373 | Zbl 0304.17001

[5] L. Orsina; P. Papi Enumeration of ad-nilpotent ideals of a Borel subalgebras in type A by class nilpotence, C.R.Acad.Sci.Paris Seri I Math, Volume 330 (2000) | MR 1763905 | Zbl 0984.17003