The Affine Frame in p-adic Analysis
Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 2, pp. 297-303.

In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of p-adic number, hence provide new mathematic tools for application of p-adic analysis.

@article{AMBP_2003__10_2_297_0,
     author = {Ming Gen Cui and Huan Min Yao and Huan Ping Liu},
     title = {The {Affine} {Frame} in $p$-adic Analysis},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {297--303},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {2},
     year = {2003},
     doi = {10.5802/ambp.178},
     mrnumber = {2031273},
     zbl = {1066.42501},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.178/}
}
Ming Gen Cui; Huan Min Yao; Huan Ping Liu. The Affine Frame in $p$-adic Analysis. Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 2, pp. 297-303. doi : 10.5802/ambp.178. https://ambp.centre-mersenne.org/articles/10.5802/ambp.178/

[1] M.G. Cui Note on the wavelet transform in the field Q p of p-adic numbers, Appl. and Computational hormonic Analgsis, Volume 13 (2002), pp. 162-168 | Article | MR 1942750 | Zbl 1022.42025

[2] I. Daubechies; A. Grossman; Y. Meyer Painless nonorthogonal expansion, J. Math. Phys., Volume 27 (1986), pp. 1271-1283 | Article | MR 836025 | Zbl 0608.46014

[3] E. Ch. Heil; F. Walnut Continuous and discrete Wavelet transforms, SIAM Review, Volume 31 (1989), pp. 628-666 | Article | MR 1025485 | Zbl 0683.42031

[4] B. Lian; K. Liu; S.-T. Yau Mirror Principle I, Asian J. Math., Volume 4 (1997), pp. 729-763 | MR 1621573 | Zbl 0953.14026

[5] S.V Kozyrev Wavelet theory as p-adic spectral analysis, Izv. Russ. Akad. Nauk, Ser. Math., Volume 66 (2002), pp. 149-158 | MR 1918846 | Zbl 1016.42025

[6] V.S Vladimirov; I.V Volovich; E.I Zelenov p-adic analysis and Mathematical Physics, World Scientific, 38 -112, 1994 | MR 1288093 | Zbl 0812.46076