L p -boundedness of oscillating spectral multipliers on Riemannian manifolds
Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 1, pp. 133-160.

We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with C -bounded geometry and nonnegative Ricci curvature.

DOI: 10.5802/ambp.171
Classification: 58G03
Keywords: spectral multipliers, wave equation, Riesz means
Michel Marias 1

1 Department of Mathematics Aristotle University of Thessaloniki Thessaloniki, 54.124 Greece
@article{AMBP_2003__10_1_133_0,
     author = {Michel Marias},
     title = {$L^{p}$-boundedness of oscillating spectral multipliers on {Riemannian} manifolds},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {133--160},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {1},
     year = {2003},
     doi = {10.5802/ambp.171},
     mrnumber = {1990014},
     zbl = {02068414},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.171/}
}
TY  - JOUR
AU  - Michel Marias
TI  - $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds
JO  - Annales mathématiques Blaise Pascal
PY  - 2003
DA  - 2003///
SP  - 133
EP  - 160
VL  - 10
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.171/
UR  - https://www.ams.org/mathscinet-getitem?mr=1990014
UR  - https://zbmath.org/?q=an%3A02068414
UR  - https://doi.org/10.5802/ambp.171
DO  - 10.5802/ambp.171
LA  - en
ID  - AMBP_2003__10_1_133_0
ER  - 
%0 Journal Article
%A Michel Marias
%T $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds
%J Annales mathématiques Blaise Pascal
%D 2003
%P 133-160
%V 10
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.171
%R 10.5802/ambp.171
%G en
%F AMBP_2003__10_1_133_0
Michel Marias. $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds. Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 1, pp. 133-160. doi : 10.5802/ambp.171. https://ambp.centre-mersenne.org/articles/10.5802/ambp.171/

[1] G. Alexopoulos Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. (2), Volume 46 (1994) no. 4, pp. 457-468 | DOI | MR | Zbl

[2] G. Alexopoulos; N. Lohoué Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, Bull. Soc. Math. France, Volume 122 (1994) no. 2, pp. 209-223 | Numdam | MR | Zbl

[3] P. Bérard On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl

[4] P. Bérard Riesz means of Riemannian manifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., XXXVI), Amer. Math. Soc., Providence, R.I., 1980, pp. 1-12 | MR | Zbl

[5] R.L. Bishop; R.J. Crittenden Geometry of manifolds, Academic Press, New York, 1964 | MR | Zbl

[6] G. Carron; T. Coulhon; E.-M. Ouhabaz Gaussian estimates and L p -boundedness of Riesz means, J. Evol. Equ., Volume 2 (2002) no. 3, pp. 299-317 | DOI | MR

[7] J. Cheeger; M. Gromov; M. Taylor Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl

[8] R.R. Coifman; G. Weiss Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977) no. 4, pp. 569-645 | DOI | MR | Zbl

[9] L. De-Michele; I.R. Inglis L p estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal., Volume 39 (1980) no. 1, pp. 1-15 | DOI | MR | Zbl

[10] C. Fefferman Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9-36 | DOI | MR | Zbl

[11] C. Fefferman; E.M. Stein H p spaces of several variables, Acta Math., Volume 129 (1972) no. 3-4, pp. 137-193 | DOI | MR | Zbl

[12] S. Giulini; S. Meda Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math., Volume 409 (1990), pp. 93-105 | EuDML | MR | Zbl

[13] I. M. Guelfand; G. E. Chilov Les distributions, Dunod, Paris, 1962 | MR | Zbl

[14] I.I. Hirschman On multiplier transformations, Duke Math. J, Volume 26 (1959), pp. 221-242 | DOI | MR | Zbl

[15] L. Hörmander The analysis of linear partial differential operators, Vol. III, Springer-Verlag, Berlin, 1994 | MR | Zbl

[16] P. Li; S.-T. Yau On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201 | DOI | MR | Zbl

[17] N. Lohoué Estimations des sommes de Riesz d’opérateurs de Schrödinger sur les variétés riemanniennes et les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992) no. 1, pp. 13-18 | MR | Zbl

[18] N. Lohoué Estimées L p des solutions de l’équation des ondes sur les variétés riemanniennes, les groupes de Lie et applications, Harmonic analysis and number theory (Montreal, PQ, 1996) (CMS Conf. Proc.), Volume 21, Amer. Math. Soc., Providence, RI, 1997, pp. 103-126 | MR | Zbl

[19] M. Marias; E. Russ H 1 -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, To appear in Ark. Mat.. | MR | Zbl

[20] G. Mauceri; S. Meda Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 3-4, pp. 141-154 | DOI | EuDML | MR | Zbl

[21] A. Miyachi Some singular integral transformations bounded in the Hardy space H 1 (R n ), J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 25 (1978) no. 1, pp. 93-108 | MR | Zbl

[22] A. Miyachi On some estimates for the wave equation in L p and H p , J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 331-354 | MR | Zbl

[23] A. Miyachi On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981) no. 2, pp. 267-315 | MR | Zbl

[24] S. Rosenberg The Laplacian on a Riemannian manifold, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[25] M.A. Shubin Spectral theory of elliptic operators on noncompact manifolds, Astérisque (1992) no. 207, pp. 35-108 | MR | Zbl

[26] P. Sjölin L p estimates for strongly singular convolution operators in R n , Ark. Mat., Volume 14 (1976) no. 1, pp. 59-64 | DOI | MR | Zbl

[27] S. Sjöstrand On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa (3), Volume 24 (1970), pp. 331-348 | EuDML | Numdam | MR | Zbl

[28] E.M. Stein Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[29] M.E. Taylor L p -estimates on functions of the Laplace operator, Duke Math. J., Volume 58 (1989) no. 3, pp. 773-793 | DOI | MR | Zbl

[30] N. Th. Varopoulos; L. Saloff-Coste; T. Coulhon Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[31] S. Wainger Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc., Volume 59 (1965) | MR | Zbl

Cited by Sources: