Cale Bases in Algebraic Orders
Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 117-131.

Let R be a non-maximal order in a finite algebraic number field with integral closure R ¯. Although R is not a unique factorization domain, we obtain a positive integer N and a family 𝒬 (called a Cale basis) of primary irreducible elements of R such that x N has a unique factorization into elements of 𝒬 for each xR coprime with the conductor of R. Moreover, this property holds for each nonzero xR when the natural map Spec(R ¯)Spec(R) is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.

@article{AMBP_2003__10_1_117_0,
     author = {Martine Picavet-L{\textquoteright}Hermitte},
     title = {Cale {Bases} in {Algebraic} {Orders}},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {117--131},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {1},
     year = {2003},
     doi = {10.5802/ambp.170},
     mrnumber = {1990013},
     zbl = {02068413},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.170/}
}
Martine Picavet-L’Hermitte. Cale Bases in Algebraic Orders. Annales Mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 117-131. doi : 10.5802/ambp.170. https://ambp.centre-mersenne.org/articles/10.5802/ambp.170/

[1] D. D. Anderson; K. R. Knopp; R. L. Lewin Almost Bézout domains II, J. Algebra, Volume 167 (1994), pp. 547-556 | Article | MR 1287059 | Zbl 0821.13006

[2] D. D. Anderson; L. A. Mahaney On primary factorizations, J. Pure Appl. Algebra, Volume 54 (1988), pp. 141-154 | Article | MR 963540 | Zbl 0665.13004

[3] D. D. Anderson; M. Zafrullah Almost Bézout domains, J. Algebra, Volume 142 (1991), pp. 285-309 | Article | MR 1127065 | Zbl 0749.13013

[4] S.T. Chapman; F. Halter-Koch; U. Krause Inside factorial monoids and integral domains, J. Algebra, Volume 252 (2002), pp. 350-375 | Article | MR 1925142 | Zbl 01836712

[5] T. Dumitrescu; Y. Lequain; J. L. Mott; M. Zafrullah Almost GCD domains of finite t-character, J. Algebra, Volume 245 (2001), pp. 161-181 | Article | MR 1868187 | Zbl 01721741

[6] H. M. Edwards Fermat’s last Theorem, Springer GTM, Berlin, 1977 | MR 616635 | Zbl 0355.12001

[7] A. Faisant Interprétation factorielle du nombre de classes dans les ordres des corps quadratiques, Ann. Math. Blaise Pascal, Volume 7 (2) (2000), pp. 13-18 | Article | EuDML 79220 | Numdam | MR 1815164 | Zbl 1013.11071

[8] A. Geroldinger; F. Halter-Koch; J. Kaczorowski Non-unique factorizations in orders of global fields, J. Reine Angew. Math., Volume 459 (1995), pp. 89-118 | EuDML 153689 | MR 1319518 | Zbl 0812.11061

[9] M. Picavet-L’Hermitte Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch; R. Tichy, eds.), de Gruyter, Berlin-NewYork, 2000, pp. 365-390 | MR 1770474 | Zbl 0971.13016

[10] M. Picavet-L’Hermitte Weakly factorial quadratic orders, Arab. J. Sci. and Engineering, Volume 26 (2001), pp. 171-186 | MR 1843467

[11] M. Zafrullah A general theory of almost factoriality, Manuscripta Math., Volume 51 (1985), pp. 29-62 | Article | MR 788672 | Zbl 0587.13010

[12] P. Zanardo; U. Zannier The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., Volume 115 (1994), pp. 379-391 | Article | MR 1269926 | Zbl 0828.11068