In this paper, two important geometric concepts–grapical center and width, are introduced in -adic numbers field. Based on the concept of width, we give the Heisenberg uncertainty relation on harmonic analysis in -adic numbers field, that is the relationship between the width of a complex-valued function and the width of its Fourier transform on -adic numbers field.
@article{AMBP_2005__12_1_181_0, author = {Cui Minggen and Zhang Yanying}, title = {The {Heisenberg} uncertainty relation in harmonic analysis on $p$-adic numbers field}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {181--193}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {1}, year = {2005}, doi = {10.5802/ambp.201}, mrnumber = {2126447}, zbl = {02215256}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.201/} }
TY - JOUR AU - Cui Minggen AU - Zhang Yanying TI - The Heisenberg uncertainty relation in harmonic analysis on $p$-adic numbers field JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 181 EP - 193 VL - 12 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.201/ DO - 10.5802/ambp.201 LA - en ID - AMBP_2005__12_1_181_0 ER -
%0 Journal Article %A Cui Minggen %A Zhang Yanying %T The Heisenberg uncertainty relation in harmonic analysis on $p$-adic numbers field %J Annales mathématiques Blaise Pascal %D 2005 %P 181-193 %V 12 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.201/ %R 10.5802/ambp.201 %G en %F AMBP_2005__12_1_181_0
Cui Minggen; Zhang Yanying. The Heisenberg uncertainty relation in harmonic analysis on $p$-adic numbers field. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 181-193. doi : 10.5802/ambp.201. https://ambp.centre-mersenne.org/articles/10.5802/ambp.201/
[1] The Affine Frame In -adic Analysis, Annales Mathematiques Blaise Pascal, Volume 10 (2003), pp. 297-303 | DOI | EuDML | Numdam | MR | Zbl
[2] On the Wavelet Transform in the field of p-adic numbers, Appl. Comput. Harmonic Analysis, Volume 13 (2002), pp. 162-168 | DOI | MR | Zbl
[3] Calculus on the field of -adic numbers, J. of Natural Science of Heilongjiang University, Volume 3 (2003), pp. 15-16 | Zbl
[4] Measure Theory, Beijing Scientific Publishing House(Chinese Translation), Beijing, 1965
[5] Wavelet theory as -adic apectral analysis, Izv. Russ, Akad. Nauk, Ser. Math., Volume 66 (2002), p. 149-158(Russian) | MR | Zbl
[6] p-adic Analysis and Mathematical Physics, Internat. Math. Res. Notices, Volume 13 (2996), p. 6613-663 | Zbl
Cité par Sources :