Local invertibility of non-archimedean vector-valued functions
Annales mathématiques Blaise Pascal, Tome 5 (1998) no. 1, pp. 13-23.
@article{AMBP_1998__5_1_13_0,
     author = {Stany De Smedt},
     title = {Local invertibility of non-archimedean vector-valued functions},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {13--23},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {5},
     number = {1},
     year = {1998},
     zbl = {0922.46065},
     mrnumber = {1630173},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_1998__5_1_13_0/}
}
TY  - JOUR
AU  - Stany De Smedt
TI  - Local invertibility of non-archimedean vector-valued functions
JO  - Annales mathématiques Blaise Pascal
PY  - 1998
SP  - 13
EP  - 23
VL  - 5
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_1998__5_1_13_0/
LA  - en
ID  - AMBP_1998__5_1_13_0
ER  - 
%0 Journal Article
%A Stany De Smedt
%T Local invertibility of non-archimedean vector-valued functions
%J Annales mathématiques Blaise Pascal
%D 1998
%P 13-23
%V 5
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U https://ambp.centre-mersenne.org/item/AMBP_1998__5_1_13_0/
%G en
%F AMBP_1998__5_1_13_0
Stany De Smedt. Local invertibility of non-archimedean vector-valued functions. Annales mathématiques Blaise Pascal, Tome 5 (1998) no. 1, pp. 13-23. https://ambp.centre-mersenne.org/item/AMBP_1998__5_1_13_0/

[1] S. De Smedt, The van der Put base for Cn-functions, Bulletin of the Belgian Mathematical Society - Simon Stevin1(1), 1994, p.85-98 | MR | Zbl

[2] S. De Smedt, p-adic continuously differentiable functions of several variables, Collectanea Mathematica 45(2), 1994, p.137-152 | MR | Zbl

[3] W.H. Schikhof, Non-Archimedean calculus (Lecture notes), Report 7812, Katholieke Universiteit Nijmegen, 1978 | MR | Zbl

[4] W.H. Schikhof, Ultrametric Calculus : an introduction to p-adic analysis, Cambridge University Press, 1984 | MR | Zbl