@article{AMBP_1997__4_2_41_0,
author = {P.N. Natarajan and V. Srinivasan},
title = {Convolution of {N\"orlund} methods in non-archimedean fields},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {41--47},
publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
volume = {4},
number = {2},
year = {1997},
zbl = {0919.46056},
mrnumber = {1600056},
language = {en},
url = {https://ambp.centre-mersenne.org/item/AMBP_1997__4_2_41_0/}
}
TY - JOUR AU - P.N. Natarajan AU - V. Srinivasan TI - Convolution of Nörlund methods in non-archimedean fields JO - Annales mathématiques Blaise Pascal PY - 1997 SP - 41 EP - 47 VL - 4 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1997__4_2_41_0/ LA - en ID - AMBP_1997__4_2_41_0 ER -
%0 Journal Article %A P.N. Natarajan %A V. Srinivasan %T Convolution of Nörlund methods in non-archimedean fields %J Annales mathématiques Blaise Pascal %D 1997 %P 41-47 %V 4 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1997__4_2_41_0/ %G en %F AMBP_1997__4_2_41_0
P.N. Natarajan; V. Srinivasan. Convolution of Nörlund methods in non-archimedean fields. Annales mathématiques Blaise Pascal, Tome 4 (1997) no. 2, pp. 41-47. https://ambp.centre-mersenne.org/item/AMBP_1997__4_2_41_0/
[1] , Introduction to p-adic numbers and valuation theory, Academic Press, 1964. | Zbl | MR
[2] , Sur le théorème de Banach-Steinhaus, Indag. Math. 25 (1963), 121-131. | Zbl | MR
[3] , Multiplication of series with terms in a non-archimedean field, Simon Stevin 52 (1978), 157-160. | Zbl | MR
[4] , Criterion for regular matrices in non-archimedean fields, J. Ramanujan Math. Soc. 6 (1991), 185-195. | Zbl | MR
[5] , On Nörlund method of summability in non-archimedean fields, J. Analysis 2 (1994), 97-102. | Zbl | MR
[6] , Convolution of Nörlund summability methods, Proc. London Math. Soc. 9 (1959), 1-20. | Zbl | MR
