Separating maps and the nonarchimedean Hewitt theorem
Annales Mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 19-27.
@article{AMBP_1995__2_1_19_0,
     author = {Araujo, Jes\'us and Beckenstein, Edward and Narici, Lawrence},
     title = {Separating maps and the nonarchimedean Hewitt theorem},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {19--27},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {2},
     number = {1},
     year = {1995},
     doi = {10.5802/ambp.16},
     zbl = {0844.46053},
     mrnumber = {1342801},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.16/}
}
J. Araujo; E. Beckenstein; L. Narici. Separating maps and the nonarchimedean Hewitt theorem. Annales Mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 19-27. doi : 10.5802/ambp.16. https://ambp.centre-mersenne.org/articles/10.5802/ambp.16/

[1] J. Araujo, Distance from an isometry to the Banach-Stone maps. In p-adic Functional Analysis, edited by J. M. Bayod, N. de Grande-de Kimpe, J. Martinez-Maurica, Lect. Notes in Pure and Appl. Math. 137, Dekker, New York, 1992, 1-12. | MR 1152564 | Zbl 0780.46041

[2] J. Araujo and J. Martínez-Maurica, The nonarchimedean Banach-Stone theorem. In p-adic Analysis, edited by F. Baldassarri, S. Bosch and B. Dwork, Lect. Notes in Math. 1454, Springer-Verlag, Berlin, -Heidelberg-New York1990, 64-79. | MR 1094847 | Zbl 0731.46043

[3] J. Araujo and J. Martínez-Maurica, Isometries between non-Archimedean spaces of continuous functions. In Papers on General Topology and Applications, edited by S. Andima, R. Kopperman, P. Ram Misra, A. R. Todd, Annals of the New York Academy of Sciences, 659, 1992, 12-17. | MR 1485265

[4] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field. Trans. A. M. S. 204 (1975), 91-112. | MR 402687 | Zbl 0299.54016

[5] E. Beckenstein and L. Narici, A nonarchimedean Banach-Stone theorem. Proc. A.M.S. 100 (1987), 242-246. | MR 884460 | Zbl 0645.46065

[6] E. Beckenstein and L. Narici, Automatic continuity of certain linear isomorphisms. Acad. Royale Belg. Bull. Cl. Sci. 73(5) (1987), 191-200. | MR 949991 | Zbl 0664.46079

[7] E. Beckenstein, L. Narici and C. Suffel, Topological algebras. Mathematics Studies 24, North Holland, Amsterdam 1977. | MR 473835 | Zbl 0348.46041

[8] E. Beckenstein, L. Narici and A.R. Todd, Automatic continuity of linear maps on spaces of continuous functions. Manuscripta Math., 62 (1988), 257-275. | MR 966626 | Zbl 0666.46018

[9] L. Gillman and M. Jerison, Rings of continuous functions. University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. | MR 116199 | Zbl 0093.30001

[10] E. Hewitt, Rings of real-valued continuous functions. I. Trans. A. M. S. 64 (1948), 45-99. | MR 26239 | Zbl 0032.28603

[11] K. Jarosz, Automatic continuity of separating linear isomorphisms. Canad. Math. Bull., 33(2) (1990) 139-144. | MR 1060366 | Zbl 0714.46040

[12] L. Narici, E. Beckenstein and J. Araujo, Separating maps on rings of continuous functions. In p-adic Functional Analysis, edited by N. de Grande-de Kimpe, S. Navarro and W. H. Schikhof. Universidad de Santiago, Santiago, Chile, 1994, 69-82.

[13] A.C.M. Van Rooij, Non-archimedean Functional Analysis. Dekker, New York 1978. | MR 512894 | Zbl 0396.46061

[13] J. Araujo, E. Beckenstein and L. Narici Biseparating maps and homeomorphic realcompactifications to appear in J. Math. Ann. Appl. | MR 1329423 | Zbl 0828.47024

[14] J. Araujo, P. Fernandez-Ferreiros and J. Martinez-Maurica Pseudocompact and P-spaces in non archimedean Functional Analysis p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, 137. Dekker 1992, pags 13-21 | MR 1152565 | Zbl 0780.46042