@article{AMBP_1995__2_1_19_0, author = {J. Araujo and E. Beckenstein and L. Narici}, title = {Separating maps and the nonarchimedean {Hewitt} theorem}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {19--27}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, zbl = {0844.46053}, mrnumber = {1342801}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_19_0/} }
TY - JOUR AU - J. Araujo AU - E. Beckenstein AU - L. Narici TI - Separating maps and the nonarchimedean Hewitt theorem JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 19 EP - 27 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_19_0/ LA - en ID - AMBP_1995__2_1_19_0 ER -
%0 Journal Article %A J. Araujo %A E. Beckenstein %A L. Narici %T Separating maps and the nonarchimedean Hewitt theorem %J Annales mathématiques Blaise Pascal %D 1995 %P 19-27 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_19_0/ %G en %F AMBP_1995__2_1_19_0
J. Araujo; E. Beckenstein; L. Narici. Separating maps and the nonarchimedean Hewitt theorem. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 19-27. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_19_0/
[1] Distance from an isometry to the Banach-Stone maps. In p-adic Functional Analysis, edited by J. M. Bayod, N. de Grande-de Kimpe, J. Martinez-Maurica, Lect. Notes in Pure and Appl. Math. 137, Dekker, New York, 1992, 1-12. | MR | Zbl
,[2] The nonarchimedean Banach-Stone theorem. In p-adic Analysis, edited by F. Baldassarri, S. Bosch and B. Dwork, Lect. Notes in Math. 1454, Springer-Verlag, Berlin, -Heidelberg-New York1990, 64-79. | MR | Zbl
and ,[3] Isometries between non-Archimedean spaces of continuous functions. In Papers on General Topology and Applications, edited by S. Andima, R. Kopperman, P. Ram Misra, A. R. Todd, Annals of the New York Academy of Sciences, 659, 1992, 12-17. | MR
and ,[4] Rings of continuous functions with values in a topological field. Trans. A. M. S. 204 (1975), 91-112. | MR | Zbl
, , and ,[5] A nonarchimedean Banach-Stone theorem. Proc. A.M.S. 100 (1987), 242-246. | MR | Zbl
and ,[6] Automatic continuity of certain linear isomorphisms. Acad. Royale Belg. Bull. Cl. Sci. 73(5) (1987), 191-200. | MR | Zbl
and ,[7] Topological algebras. Mathematics Studies 24, North Holland, Amsterdam 1977. | MR | Zbl
, and ,[8] Automatic continuity of linear maps on spaces of continuous functions. Manuscripta Math., 62 (1988), 257-275. | MR | Zbl
, and ,[9] Rings of continuous functions. University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. | MR | Zbl
and ,[10] Rings of real-valued continuous functions. I. Trans. A. M. S. 64 (1948), 45-99. | MR | Zbl
,[11] Automatic continuity of separating linear isomorphisms. Canad. Math. Bull., 33(2) (1990) 139-144. | MR | Zbl
,[12] Separating maps on rings of continuous functions. In p-adic Functional Analysis, edited by N. de Grande-de Kimpe, S. Navarro and W. H. Schikhof. Universidad de Santiago, Santiago, Chile, 1994, 69-82.
, and ,[13] Non-archimedean Functional Analysis. Dekker, New York 1978. | MR | Zbl
,[13] Biseparating maps and homeomorphic realcompactifications to appear in J. Math. Ann. Appl. | MR | Zbl
, and[14] Pseudocompact and P-spaces in non archimedean Functional Analysis p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, 137. Dekker 1992, pags 13-21 | MR | Zbl
, and